Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ c958a8bd

History | View | Annotate | Download (34.6 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "ioport.h"
29

    
30
#ifdef CONFIG_KVM_PARA
31
#include <linux/kvm_para.h>
32
#endif
33
//
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifdef KVM_CAP_EXT_CPUID
48

    
49
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50
{
51
    struct kvm_cpuid2 *cpuid;
52
    int r, size;
53

    
54
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56
    cpuid->nent = max;
57
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58
    if (r == 0 && cpuid->nent >= max) {
59
        r = -E2BIG;
60
    }
61
    if (r < 0) {
62
        if (r == -E2BIG) {
63
            qemu_free(cpuid);
64
            return NULL;
65
        } else {
66
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67
                    strerror(-r));
68
            exit(1);
69
        }
70
    }
71
    return cpuid;
72
}
73

    
74
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75
                                      uint32_t index, int reg)
76
{
77
    struct kvm_cpuid2 *cpuid;
78
    int i, max;
79
    uint32_t ret = 0;
80
    uint32_t cpuid_1_edx;
81

    
82
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83
        return -1U;
84
    }
85

    
86
    max = 1;
87
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88
        max *= 2;
89
    }
90

    
91
    for (i = 0; i < cpuid->nent; ++i) {
92
        if (cpuid->entries[i].function == function &&
93
            cpuid->entries[i].index == index) {
94
            switch (reg) {
95
            case R_EAX:
96
                ret = cpuid->entries[i].eax;
97
                break;
98
            case R_EBX:
99
                ret = cpuid->entries[i].ebx;
100
                break;
101
            case R_ECX:
102
                ret = cpuid->entries[i].ecx;
103
                break;
104
            case R_EDX:
105
                ret = cpuid->entries[i].edx;
106
                switch (function) {
107
                case 1:
108
                    /* KVM before 2.6.30 misreports the following features */
109
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110
                    break;
111
                case 0x80000001:
112
                    /* On Intel, kvm returns cpuid according to the Intel spec,
113
                     * so add missing bits according to the AMD spec:
114
                     */
115
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116
                    ret |= cpuid_1_edx & 0x183f7ff;
117
                    break;
118
                }
119
                break;
120
            }
121
        }
122
    }
123

    
124
    qemu_free(cpuid);
125

    
126
    return ret;
127
}
128

    
129
#else
130

    
131
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132
                                      uint32_t index, int reg)
133
{
134
    return -1U;
135
}
136

    
137
#endif
138

    
139
#ifdef CONFIG_KVM_PARA
140
struct kvm_para_features {
141
        int cap;
142
        int feature;
143
} para_features[] = {
144
#ifdef KVM_CAP_CLOCKSOURCE
145
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146
#endif
147
#ifdef KVM_CAP_NOP_IO_DELAY
148
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149
#endif
150
#ifdef KVM_CAP_PV_MMU
151
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152
#endif
153
        { -1, -1 }
154
};
155

    
156
static int get_para_features(CPUState *env)
157
{
158
        int i, features = 0;
159

    
160
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162
                        features |= (1 << para_features[i].feature);
163
        }
164

    
165
        return features;
166
}
167
#endif
168

    
169
int kvm_arch_init_vcpu(CPUState *env)
170
{
171
    struct {
172
        struct kvm_cpuid2 cpuid;
173
        struct kvm_cpuid_entry2 entries[100];
174
    } __attribute__((packed)) cpuid_data;
175
    uint32_t limit, i, j, cpuid_i;
176
    uint32_t unused;
177
    struct kvm_cpuid_entry2 *c;
178
#ifdef KVM_CPUID_SIGNATURE
179
    uint32_t signature[3];
180
#endif
181

    
182
    env->mp_state = KVM_MP_STATE_RUNNABLE;
183

    
184
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
185

    
186
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
187
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
188
    env->cpuid_ext_features |= i;
189

    
190
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
191
                                                             0, R_EDX);
192
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
193
                                                             0, R_ECX);
194

    
195
    cpuid_i = 0;
196

    
197
#ifdef CONFIG_KVM_PARA
198
    /* Paravirtualization CPUIDs */
199
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
200
    c = &cpuid_data.entries[cpuid_i++];
201
    memset(c, 0, sizeof(*c));
202
    c->function = KVM_CPUID_SIGNATURE;
203
    c->eax = 0;
204
    c->ebx = signature[0];
205
    c->ecx = signature[1];
206
    c->edx = signature[2];
207

    
208
    c = &cpuid_data.entries[cpuid_i++];
209
    memset(c, 0, sizeof(*c));
210
    c->function = KVM_CPUID_FEATURES;
211
    c->eax = env->cpuid_kvm_features & get_para_features(env);
212
#endif
213

    
214
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215

    
216
    for (i = 0; i <= limit; i++) {
217
        c = &cpuid_data.entries[cpuid_i++];
218

    
219
        switch (i) {
220
        case 2: {
221
            /* Keep reading function 2 till all the input is received */
222
            int times;
223

    
224
            c->function = i;
225
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
226
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
227
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
228
            times = c->eax & 0xff;
229

    
230
            for (j = 1; j < times; ++j) {
231
                c = &cpuid_data.entries[cpuid_i++];
232
                c->function = i;
233
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
234
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235
            }
236
            break;
237
        }
238
        case 4:
239
        case 0xb:
240
        case 0xd:
241
            for (j = 0; ; j++) {
242
                c->function = i;
243
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
244
                c->index = j;
245
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246

    
247
                if (i == 4 && c->eax == 0)
248
                    break;
249
                if (i == 0xb && !(c->ecx & 0xff00))
250
                    break;
251
                if (i == 0xd && c->eax == 0)
252
                    break;
253

    
254
                c = &cpuid_data.entries[cpuid_i++];
255
            }
256
            break;
257
        default:
258
            c->function = i;
259
            c->flags = 0;
260
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
261
            break;
262
        }
263
    }
264
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265

    
266
    for (i = 0x80000000; i <= limit; i++) {
267
        c = &cpuid_data.entries[cpuid_i++];
268

    
269
        c->function = i;
270
        c->flags = 0;
271
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
272
    }
273

    
274
    cpuid_data.cpuid.nent = cpuid_i;
275

    
276
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
277
}
278

    
279
void kvm_arch_reset_vcpu(CPUState *env)
280
{
281
    env->exception_injected = -1;
282
    env->interrupt_injected = -1;
283
    env->nmi_injected = 0;
284
    env->nmi_pending = 0;
285
}
286

    
287
static int kvm_has_msr_star(CPUState *env)
288
{
289
    static int has_msr_star;
290
    int ret;
291

    
292
    /* first time */
293
    if (has_msr_star == 0) {        
294
        struct kvm_msr_list msr_list, *kvm_msr_list;
295

    
296
        has_msr_star = -1;
297

    
298
        /* Obtain MSR list from KVM.  These are the MSRs that we must
299
         * save/restore */
300
        msr_list.nmsrs = 0;
301
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
302
        if (ret < 0 && ret != -E2BIG) {
303
            return 0;
304
        }
305
        /* Old kernel modules had a bug and could write beyond the provided
306
           memory. Allocate at least a safe amount of 1K. */
307
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
308
                                              msr_list.nmsrs *
309
                                              sizeof(msr_list.indices[0])));
310

    
311
        kvm_msr_list->nmsrs = msr_list.nmsrs;
312
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
313
        if (ret >= 0) {
314
            int i;
315

    
316
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
317
                if (kvm_msr_list->indices[i] == MSR_STAR) {
318
                    has_msr_star = 1;
319
                    break;
320
                }
321
            }
322
        }
323

    
324
        free(kvm_msr_list);
325
    }
326

    
327
    if (has_msr_star == 1)
328
        return 1;
329
    return 0;
330
}
331

    
332
static int kvm_init_identity_map_page(KVMState *s)
333
{
334
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
335
    int ret;
336
    uint64_t addr = 0xfffbc000;
337

    
338
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
339
        return 0;
340
    }
341

    
342
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
343
    if (ret < 0) {
344
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
345
        return ret;
346
    }
347
#endif
348
    return 0;
349
}
350

    
351
int kvm_arch_init(KVMState *s, int smp_cpus)
352
{
353
    int ret;
354

    
355
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
356
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
357
     * must be part of guest physical memory, we need to allocate it.  Older
358
     * versions of KVM just assumed that it would be at the end of physical
359
     * memory but that doesn't work with more than 4GB of memory.  We simply
360
     * refuse to work with those older versions of KVM. */
361
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
362
    if (ret <= 0) {
363
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
364
        return ret;
365
    }
366

    
367
    /* this address is 3 pages before the bios, and the bios should present
368
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
369
     * this?
370
     */
371
    /*
372
     * Tell fw_cfg to notify the BIOS to reserve the range.
373
     */
374
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
375
        perror("e820_add_entry() table is full");
376
        exit(1);
377
    }
378
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
379
    if (ret < 0) {
380
        return ret;
381
    }
382

    
383
    return kvm_init_identity_map_page(s);
384
}
385
                    
386
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
387
{
388
    lhs->selector = rhs->selector;
389
    lhs->base = rhs->base;
390
    lhs->limit = rhs->limit;
391
    lhs->type = 3;
392
    lhs->present = 1;
393
    lhs->dpl = 3;
394
    lhs->db = 0;
395
    lhs->s = 1;
396
    lhs->l = 0;
397
    lhs->g = 0;
398
    lhs->avl = 0;
399
    lhs->unusable = 0;
400
}
401

    
402
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
403
{
404
    unsigned flags = rhs->flags;
405
    lhs->selector = rhs->selector;
406
    lhs->base = rhs->base;
407
    lhs->limit = rhs->limit;
408
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
409
    lhs->present = (flags & DESC_P_MASK) != 0;
410
    lhs->dpl = rhs->selector & 3;
411
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
412
    lhs->s = (flags & DESC_S_MASK) != 0;
413
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
414
    lhs->g = (flags & DESC_G_MASK) != 0;
415
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
416
    lhs->unusable = 0;
417
}
418

    
419
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
420
{
421
    lhs->selector = rhs->selector;
422
    lhs->base = rhs->base;
423
    lhs->limit = rhs->limit;
424
    lhs->flags =
425
        (rhs->type << DESC_TYPE_SHIFT)
426
        | (rhs->present * DESC_P_MASK)
427
        | (rhs->dpl << DESC_DPL_SHIFT)
428
        | (rhs->db << DESC_B_SHIFT)
429
        | (rhs->s * DESC_S_MASK)
430
        | (rhs->l << DESC_L_SHIFT)
431
        | (rhs->g * DESC_G_MASK)
432
        | (rhs->avl * DESC_AVL_MASK);
433
}
434

    
435
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
436
{
437
    if (set)
438
        *kvm_reg = *qemu_reg;
439
    else
440
        *qemu_reg = *kvm_reg;
441
}
442

    
443
static int kvm_getput_regs(CPUState *env, int set)
444
{
445
    struct kvm_regs regs;
446
    int ret = 0;
447

    
448
    if (!set) {
449
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
450
        if (ret < 0)
451
            return ret;
452
    }
453

    
454
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
455
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
456
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
457
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
458
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
459
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
460
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
461
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
462
#ifdef TARGET_X86_64
463
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
464
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
465
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
466
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
467
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
468
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
469
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
470
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
471
#endif
472

    
473
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
474
    kvm_getput_reg(&regs.rip, &env->eip, set);
475

    
476
    if (set)
477
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
478

    
479
    return ret;
480
}
481

    
482
static int kvm_put_fpu(CPUState *env)
483
{
484
    struct kvm_fpu fpu;
485
    int i;
486

    
487
    memset(&fpu, 0, sizeof fpu);
488
    fpu.fsw = env->fpus & ~(7 << 11);
489
    fpu.fsw |= (env->fpstt & 7) << 11;
490
    fpu.fcw = env->fpuc;
491
    for (i = 0; i < 8; ++i)
492
        fpu.ftwx |= (!env->fptags[i]) << i;
493
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
494
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
495
    fpu.mxcsr = env->mxcsr;
496

    
497
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
498
}
499

    
500
static int kvm_put_sregs(CPUState *env)
501
{
502
    struct kvm_sregs sregs;
503

    
504
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
505
    if (env->interrupt_injected >= 0) {
506
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
507
                (uint64_t)1 << (env->interrupt_injected % 64);
508
    }
509

    
510
    if ((env->eflags & VM_MASK)) {
511
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
512
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
513
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
514
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
515
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
516
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
517
    } else {
518
            set_seg(&sregs.cs, &env->segs[R_CS]);
519
            set_seg(&sregs.ds, &env->segs[R_DS]);
520
            set_seg(&sregs.es, &env->segs[R_ES]);
521
            set_seg(&sregs.fs, &env->segs[R_FS]);
522
            set_seg(&sregs.gs, &env->segs[R_GS]);
523
            set_seg(&sregs.ss, &env->segs[R_SS]);
524

    
525
            if (env->cr[0] & CR0_PE_MASK) {
526
                /* force ss cpl to cs cpl */
527
                sregs.ss.selector = (sregs.ss.selector & ~3) |
528
                        (sregs.cs.selector & 3);
529
                sregs.ss.dpl = sregs.ss.selector & 3;
530
            }
531
    }
532

    
533
    set_seg(&sregs.tr, &env->tr);
534
    set_seg(&sregs.ldt, &env->ldt);
535

    
536
    sregs.idt.limit = env->idt.limit;
537
    sregs.idt.base = env->idt.base;
538
    sregs.gdt.limit = env->gdt.limit;
539
    sregs.gdt.base = env->gdt.base;
540

    
541
    sregs.cr0 = env->cr[0];
542
    sregs.cr2 = env->cr[2];
543
    sregs.cr3 = env->cr[3];
544
    sregs.cr4 = env->cr[4];
545

    
546
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
547
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
548

    
549
    sregs.efer = env->efer;
550

    
551
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
552
}
553

    
554
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
555
                              uint32_t index, uint64_t value)
556
{
557
    entry->index = index;
558
    entry->data = value;
559
}
560

    
561
static int kvm_put_msrs(CPUState *env, int level)
562
{
563
    struct {
564
        struct kvm_msrs info;
565
        struct kvm_msr_entry entries[100];
566
    } msr_data;
567
    struct kvm_msr_entry *msrs = msr_data.entries;
568
    int n = 0;
569

    
570
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
571
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
572
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
573
    if (kvm_has_msr_star(env))
574
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
575
#ifdef TARGET_X86_64
576
    /* FIXME if lm capable */
577
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
578
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
579
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
580
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
581
#endif
582
    if (level == KVM_PUT_FULL_STATE) {
583
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
584
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
585
                          env->system_time_msr);
586
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
587
    }
588

    
589
    msr_data.info.nmsrs = n;
590

    
591
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
592

    
593
}
594

    
595

    
596
static int kvm_get_fpu(CPUState *env)
597
{
598
    struct kvm_fpu fpu;
599
    int i, ret;
600

    
601
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
602
    if (ret < 0)
603
        return ret;
604

    
605
    env->fpstt = (fpu.fsw >> 11) & 7;
606
    env->fpus = fpu.fsw;
607
    env->fpuc = fpu.fcw;
608
    for (i = 0; i < 8; ++i)
609
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
610
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
611
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
612
    env->mxcsr = fpu.mxcsr;
613

    
614
    return 0;
615
}
616

    
617
static int kvm_get_sregs(CPUState *env)
618
{
619
    struct kvm_sregs sregs;
620
    uint32_t hflags;
621
    int bit, i, ret;
622

    
623
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
624
    if (ret < 0)
625
        return ret;
626

    
627
    /* There can only be one pending IRQ set in the bitmap at a time, so try
628
       to find it and save its number instead (-1 for none). */
629
    env->interrupt_injected = -1;
630
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
631
        if (sregs.interrupt_bitmap[i]) {
632
            bit = ctz64(sregs.interrupt_bitmap[i]);
633
            env->interrupt_injected = i * 64 + bit;
634
            break;
635
        }
636
    }
637

    
638
    get_seg(&env->segs[R_CS], &sregs.cs);
639
    get_seg(&env->segs[R_DS], &sregs.ds);
640
    get_seg(&env->segs[R_ES], &sregs.es);
641
    get_seg(&env->segs[R_FS], &sregs.fs);
642
    get_seg(&env->segs[R_GS], &sregs.gs);
643
    get_seg(&env->segs[R_SS], &sregs.ss);
644

    
645
    get_seg(&env->tr, &sregs.tr);
646
    get_seg(&env->ldt, &sregs.ldt);
647

    
648
    env->idt.limit = sregs.idt.limit;
649
    env->idt.base = sregs.idt.base;
650
    env->gdt.limit = sregs.gdt.limit;
651
    env->gdt.base = sregs.gdt.base;
652

    
653
    env->cr[0] = sregs.cr0;
654
    env->cr[2] = sregs.cr2;
655
    env->cr[3] = sregs.cr3;
656
    env->cr[4] = sregs.cr4;
657

    
658
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
659

    
660
    env->efer = sregs.efer;
661
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
662

    
663
#define HFLAG_COPY_MASK ~( \
664
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
665
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
666
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
667
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
668

    
669

    
670

    
671
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
672
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
673
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
674
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
675
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
676
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
677
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
678

    
679
    if (env->efer & MSR_EFER_LMA) {
680
        hflags |= HF_LMA_MASK;
681
    }
682

    
683
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
684
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
685
    } else {
686
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
687
                (DESC_B_SHIFT - HF_CS32_SHIFT);
688
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
689
                (DESC_B_SHIFT - HF_SS32_SHIFT);
690
        if (!(env->cr[0] & CR0_PE_MASK) ||
691
                   (env->eflags & VM_MASK) ||
692
                   !(hflags & HF_CS32_MASK)) {
693
                hflags |= HF_ADDSEG_MASK;
694
            } else {
695
                hflags |= ((env->segs[R_DS].base |
696
                                env->segs[R_ES].base |
697
                                env->segs[R_SS].base) != 0) <<
698
                    HF_ADDSEG_SHIFT;
699
            }
700
    }
701
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
702

    
703
    return 0;
704
}
705

    
706
static int kvm_get_msrs(CPUState *env)
707
{
708
    struct {
709
        struct kvm_msrs info;
710
        struct kvm_msr_entry entries[100];
711
    } msr_data;
712
    struct kvm_msr_entry *msrs = msr_data.entries;
713
    int ret, i, n;
714

    
715
    n = 0;
716
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
717
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
718
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
719
    if (kvm_has_msr_star(env))
720
        msrs[n++].index = MSR_STAR;
721
    msrs[n++].index = MSR_IA32_TSC;
722
#ifdef TARGET_X86_64
723
    /* FIXME lm_capable_kernel */
724
    msrs[n++].index = MSR_CSTAR;
725
    msrs[n++].index = MSR_KERNELGSBASE;
726
    msrs[n++].index = MSR_FMASK;
727
    msrs[n++].index = MSR_LSTAR;
728
#endif
729
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
730
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
731

    
732
    msr_data.info.nmsrs = n;
733
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
734
    if (ret < 0)
735
        return ret;
736

    
737
    for (i = 0; i < ret; i++) {
738
        switch (msrs[i].index) {
739
        case MSR_IA32_SYSENTER_CS:
740
            env->sysenter_cs = msrs[i].data;
741
            break;
742
        case MSR_IA32_SYSENTER_ESP:
743
            env->sysenter_esp = msrs[i].data;
744
            break;
745
        case MSR_IA32_SYSENTER_EIP:
746
            env->sysenter_eip = msrs[i].data;
747
            break;
748
        case MSR_STAR:
749
            env->star = msrs[i].data;
750
            break;
751
#ifdef TARGET_X86_64
752
        case MSR_CSTAR:
753
            env->cstar = msrs[i].data;
754
            break;
755
        case MSR_KERNELGSBASE:
756
            env->kernelgsbase = msrs[i].data;
757
            break;
758
        case MSR_FMASK:
759
            env->fmask = msrs[i].data;
760
            break;
761
        case MSR_LSTAR:
762
            env->lstar = msrs[i].data;
763
            break;
764
#endif
765
        case MSR_IA32_TSC:
766
            env->tsc = msrs[i].data;
767
            break;
768
        case MSR_KVM_SYSTEM_TIME:
769
            env->system_time_msr = msrs[i].data;
770
            break;
771
        case MSR_KVM_WALL_CLOCK:
772
            env->wall_clock_msr = msrs[i].data;
773
            break;
774
        }
775
    }
776

    
777
    return 0;
778
}
779

    
780
static int kvm_put_mp_state(CPUState *env)
781
{
782
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
783

    
784
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
785
}
786

    
787
static int kvm_get_mp_state(CPUState *env)
788
{
789
    struct kvm_mp_state mp_state;
790
    int ret;
791

    
792
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
793
    if (ret < 0) {
794
        return ret;
795
    }
796
    env->mp_state = mp_state.mp_state;
797
    return 0;
798
}
799

    
800
static int kvm_put_vcpu_events(CPUState *env, int level)
801
{
802
#ifdef KVM_CAP_VCPU_EVENTS
803
    struct kvm_vcpu_events events;
804

    
805
    if (!kvm_has_vcpu_events()) {
806
        return 0;
807
    }
808

    
809
    events.exception.injected = (env->exception_injected >= 0);
810
    events.exception.nr = env->exception_injected;
811
    events.exception.has_error_code = env->has_error_code;
812
    events.exception.error_code = env->error_code;
813

    
814
    events.interrupt.injected = (env->interrupt_injected >= 0);
815
    events.interrupt.nr = env->interrupt_injected;
816
    events.interrupt.soft = env->soft_interrupt;
817

    
818
    events.nmi.injected = env->nmi_injected;
819
    events.nmi.pending = env->nmi_pending;
820
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
821

    
822
    events.sipi_vector = env->sipi_vector;
823

    
824
    events.flags = 0;
825
    if (level >= KVM_PUT_RESET_STATE) {
826
        events.flags |=
827
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
828
    }
829

    
830
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
831
#else
832
    return 0;
833
#endif
834
}
835

    
836
static int kvm_get_vcpu_events(CPUState *env)
837
{
838
#ifdef KVM_CAP_VCPU_EVENTS
839
    struct kvm_vcpu_events events;
840
    int ret;
841

    
842
    if (!kvm_has_vcpu_events()) {
843
        return 0;
844
    }
845

    
846
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
847
    if (ret < 0) {
848
       return ret;
849
    }
850
    env->exception_injected =
851
       events.exception.injected ? events.exception.nr : -1;
852
    env->has_error_code = events.exception.has_error_code;
853
    env->error_code = events.exception.error_code;
854

    
855
    env->interrupt_injected =
856
        events.interrupt.injected ? events.interrupt.nr : -1;
857
    env->soft_interrupt = events.interrupt.soft;
858

    
859
    env->nmi_injected = events.nmi.injected;
860
    env->nmi_pending = events.nmi.pending;
861
    if (events.nmi.masked) {
862
        env->hflags2 |= HF2_NMI_MASK;
863
    } else {
864
        env->hflags2 &= ~HF2_NMI_MASK;
865
    }
866

    
867
    env->sipi_vector = events.sipi_vector;
868
#endif
869

    
870
    return 0;
871
}
872

    
873
static int kvm_guest_debug_workarounds(CPUState *env)
874
{
875
    int ret = 0;
876
#ifdef KVM_CAP_SET_GUEST_DEBUG
877
    unsigned long reinject_trap = 0;
878

    
879
    if (!kvm_has_vcpu_events()) {
880
        if (env->exception_injected == 1) {
881
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
882
        } else if (env->exception_injected == 3) {
883
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
884
        }
885
        env->exception_injected = -1;
886
    }
887

    
888
    /*
889
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
890
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
891
     * by updating the debug state once again if single-stepping is on.
892
     * Another reason to call kvm_update_guest_debug here is a pending debug
893
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
894
     * reinject them via SET_GUEST_DEBUG.
895
     */
896
    if (reinject_trap ||
897
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
898
        ret = kvm_update_guest_debug(env, reinject_trap);
899
    }
900
#endif /* KVM_CAP_SET_GUEST_DEBUG */
901
    return ret;
902
}
903

    
904
static int kvm_put_debugregs(CPUState *env)
905
{
906
#ifdef KVM_CAP_DEBUGREGS
907
    struct kvm_debugregs dbgregs;
908
    int i;
909

    
910
    if (!kvm_has_debugregs()) {
911
        return 0;
912
    }
913

    
914
    for (i = 0; i < 4; i++) {
915
        dbgregs.db[i] = env->dr[i];
916
    }
917
    dbgregs.dr6 = env->dr[6];
918
    dbgregs.dr7 = env->dr[7];
919
    dbgregs.flags = 0;
920

    
921
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
922
#else
923
    return 0;
924
#endif
925
}
926

    
927
static int kvm_get_debugregs(CPUState *env)
928
{
929
#ifdef KVM_CAP_DEBUGREGS
930
    struct kvm_debugregs dbgregs;
931
    int i, ret;
932

    
933
    if (!kvm_has_debugregs()) {
934
        return 0;
935
    }
936

    
937
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
938
    if (ret < 0) {
939
       return ret;
940
    }
941
    for (i = 0; i < 4; i++) {
942
        env->dr[i] = dbgregs.db[i];
943
    }
944
    env->dr[4] = env->dr[6] = dbgregs.dr6;
945
    env->dr[5] = env->dr[7] = dbgregs.dr7;
946
#endif
947

    
948
    return 0;
949
}
950

    
951
int kvm_arch_put_registers(CPUState *env, int level)
952
{
953
    int ret;
954

    
955
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
956

    
957
    ret = kvm_getput_regs(env, 1);
958
    if (ret < 0)
959
        return ret;
960

    
961
    ret = kvm_put_fpu(env);
962
    if (ret < 0)
963
        return ret;
964

    
965
    ret = kvm_put_sregs(env);
966
    if (ret < 0)
967
        return ret;
968

    
969
    ret = kvm_put_msrs(env, level);
970
    if (ret < 0)
971
        return ret;
972

    
973
    if (level >= KVM_PUT_RESET_STATE) {
974
        ret = kvm_put_mp_state(env);
975
        if (ret < 0)
976
            return ret;
977
    }
978

    
979
    ret = kvm_put_vcpu_events(env, level);
980
    if (ret < 0)
981
        return ret;
982

    
983
    /* must be last */
984
    ret = kvm_guest_debug_workarounds(env);
985
    if (ret < 0)
986
        return ret;
987

    
988
    ret = kvm_put_debugregs(env);
989
    if (ret < 0)
990
        return ret;
991

    
992
    return 0;
993
}
994

    
995
int kvm_arch_get_registers(CPUState *env)
996
{
997
    int ret;
998

    
999
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1000

    
1001
    ret = kvm_getput_regs(env, 0);
1002
    if (ret < 0)
1003
        return ret;
1004

    
1005
    ret = kvm_get_fpu(env);
1006
    if (ret < 0)
1007
        return ret;
1008

    
1009
    ret = kvm_get_sregs(env);
1010
    if (ret < 0)
1011
        return ret;
1012

    
1013
    ret = kvm_get_msrs(env);
1014
    if (ret < 0)
1015
        return ret;
1016

    
1017
    ret = kvm_get_mp_state(env);
1018
    if (ret < 0)
1019
        return ret;
1020

    
1021
    ret = kvm_get_vcpu_events(env);
1022
    if (ret < 0)
1023
        return ret;
1024

    
1025
    ret = kvm_get_debugregs(env);
1026
    if (ret < 0)
1027
        return ret;
1028

    
1029
    return 0;
1030
}
1031

    
1032
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1033
{
1034
    /* Try to inject an interrupt if the guest can accept it */
1035
    if (run->ready_for_interrupt_injection &&
1036
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1037
        (env->eflags & IF_MASK)) {
1038
        int irq;
1039

    
1040
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1041
        irq = cpu_get_pic_interrupt(env);
1042
        if (irq >= 0) {
1043
            struct kvm_interrupt intr;
1044
            intr.irq = irq;
1045
            /* FIXME: errors */
1046
            DPRINTF("injected interrupt %d\n", irq);
1047
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1048
        }
1049
    }
1050

    
1051
    /* If we have an interrupt but the guest is not ready to receive an
1052
     * interrupt, request an interrupt window exit.  This will
1053
     * cause a return to userspace as soon as the guest is ready to
1054
     * receive interrupts. */
1055
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1056
        run->request_interrupt_window = 1;
1057
    else
1058
        run->request_interrupt_window = 0;
1059

    
1060
    DPRINTF("setting tpr\n");
1061
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1062

    
1063
    return 0;
1064
}
1065

    
1066
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1067
{
1068
    if (run->if_flag)
1069
        env->eflags |= IF_MASK;
1070
    else
1071
        env->eflags &= ~IF_MASK;
1072
    
1073
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1074
    cpu_set_apic_base(env->apic_state, run->apic_base);
1075

    
1076
    return 0;
1077
}
1078

    
1079
int kvm_arch_process_irqchip_events(CPUState *env)
1080
{
1081
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1082
        kvm_cpu_synchronize_state(env);
1083
        do_cpu_init(env);
1084
        env->exception_index = EXCP_HALTED;
1085
    }
1086

    
1087
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1088
        kvm_cpu_synchronize_state(env);
1089
        do_cpu_sipi(env);
1090
    }
1091

    
1092
    return env->halted;
1093
}
1094

    
1095
static int kvm_handle_halt(CPUState *env)
1096
{
1097
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1098
          (env->eflags & IF_MASK)) &&
1099
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1100
        env->halted = 1;
1101
        env->exception_index = EXCP_HLT;
1102
        return 0;
1103
    }
1104

    
1105
    return 1;
1106
}
1107

    
1108
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1109
{
1110
    int ret = 0;
1111

    
1112
    switch (run->exit_reason) {
1113
    case KVM_EXIT_HLT:
1114
        DPRINTF("handle_hlt\n");
1115
        ret = kvm_handle_halt(env);
1116
        break;
1117
    }
1118

    
1119
    return ret;
1120
}
1121

    
1122
#ifdef KVM_CAP_SET_GUEST_DEBUG
1123
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1124
{
1125
    static const uint8_t int3 = 0xcc;
1126

    
1127
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1128
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1129
        return -EINVAL;
1130
    return 0;
1131
}
1132

    
1133
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1134
{
1135
    uint8_t int3;
1136

    
1137
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1138
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1139
        return -EINVAL;
1140
    return 0;
1141
}
1142

    
1143
static struct {
1144
    target_ulong addr;
1145
    int len;
1146
    int type;
1147
} hw_breakpoint[4];
1148

    
1149
static int nb_hw_breakpoint;
1150

    
1151
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1152
{
1153
    int n;
1154

    
1155
    for (n = 0; n < nb_hw_breakpoint; n++)
1156
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1157
            (hw_breakpoint[n].len == len || len == -1))
1158
            return n;
1159
    return -1;
1160
}
1161

    
1162
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1163
                                  target_ulong len, int type)
1164
{
1165
    switch (type) {
1166
    case GDB_BREAKPOINT_HW:
1167
        len = 1;
1168
        break;
1169
    case GDB_WATCHPOINT_WRITE:
1170
    case GDB_WATCHPOINT_ACCESS:
1171
        switch (len) {
1172
        case 1:
1173
            break;
1174
        case 2:
1175
        case 4:
1176
        case 8:
1177
            if (addr & (len - 1))
1178
                return -EINVAL;
1179
            break;
1180
        default:
1181
            return -EINVAL;
1182
        }
1183
        break;
1184
    default:
1185
        return -ENOSYS;
1186
    }
1187

    
1188
    if (nb_hw_breakpoint == 4)
1189
        return -ENOBUFS;
1190

    
1191
    if (find_hw_breakpoint(addr, len, type) >= 0)
1192
        return -EEXIST;
1193

    
1194
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1195
    hw_breakpoint[nb_hw_breakpoint].len = len;
1196
    hw_breakpoint[nb_hw_breakpoint].type = type;
1197
    nb_hw_breakpoint++;
1198

    
1199
    return 0;
1200
}
1201

    
1202
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1203
                                  target_ulong len, int type)
1204
{
1205
    int n;
1206

    
1207
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1208
    if (n < 0)
1209
        return -ENOENT;
1210

    
1211
    nb_hw_breakpoint--;
1212
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1213

    
1214
    return 0;
1215
}
1216

    
1217
void kvm_arch_remove_all_hw_breakpoints(void)
1218
{
1219
    nb_hw_breakpoint = 0;
1220
}
1221

    
1222
static CPUWatchpoint hw_watchpoint;
1223

    
1224
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1225
{
1226
    int handle = 0;
1227
    int n;
1228

    
1229
    if (arch_info->exception == 1) {
1230
        if (arch_info->dr6 & (1 << 14)) {
1231
            if (cpu_single_env->singlestep_enabled)
1232
                handle = 1;
1233
        } else {
1234
            for (n = 0; n < 4; n++)
1235
                if (arch_info->dr6 & (1 << n))
1236
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1237
                    case 0x0:
1238
                        handle = 1;
1239
                        break;
1240
                    case 0x1:
1241
                        handle = 1;
1242
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1243
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1244
                        hw_watchpoint.flags = BP_MEM_WRITE;
1245
                        break;
1246
                    case 0x3:
1247
                        handle = 1;
1248
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1249
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1250
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1251
                        break;
1252
                    }
1253
        }
1254
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1255
        handle = 1;
1256

    
1257
    if (!handle) {
1258
        cpu_synchronize_state(cpu_single_env);
1259
        assert(cpu_single_env->exception_injected == -1);
1260

    
1261
        cpu_single_env->exception_injected = arch_info->exception;
1262
        cpu_single_env->has_error_code = 0;
1263
    }
1264

    
1265
    return handle;
1266
}
1267

    
1268
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1269
{
1270
    const uint8_t type_code[] = {
1271
        [GDB_BREAKPOINT_HW] = 0x0,
1272
        [GDB_WATCHPOINT_WRITE] = 0x1,
1273
        [GDB_WATCHPOINT_ACCESS] = 0x3
1274
    };
1275
    const uint8_t len_code[] = {
1276
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1277
    };
1278
    int n;
1279

    
1280
    if (kvm_sw_breakpoints_active(env))
1281
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1282

    
1283
    if (nb_hw_breakpoint > 0) {
1284
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1285
        dbg->arch.debugreg[7] = 0x0600;
1286
        for (n = 0; n < nb_hw_breakpoint; n++) {
1287
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1288
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1289
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1290
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1291
        }
1292
    }
1293
}
1294
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1295

    
1296
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1297
{
1298
      return !(env->cr[0] & CR0_PE_MASK) ||
1299
              ((env->segs[R_CS].selector  & 3) != 3);
1300
}
1301