Statistics
| Branch: | Revision:

root / hw / fmopl.c @ c973a36d

History | View | Annotate | Download (35 kB)

1
/*
2
**
3
** File: fmopl.c -- software implementation of FM sound generator
4
**
5
** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
6
**
7
** Version 0.37a
8
**
9
*/
10

    
11
/*
12
        preliminary :
13
        Problem :
14
        note:
15
*/
16

    
17
/* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
18
 *
19
 * This library is free software; you can redistribute it and/or
20
 * modify it under the terms of the GNU Lesser General Public
21
 * License as published by the Free Software Foundation; either
22
 * version 2.1 of the License, or (at your option) any later version.
23
 *
24
 * This library is distributed in the hope that it will be useful,
25
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
27
 * Lesser General Public License for more details.
28
 *
29
 * You should have received a copy of the GNU Lesser General Public
30
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31
 */
32

    
33
#define INLINE                static inline
34
#define HAS_YM3812        1
35

    
36
#include <stdio.h>
37
#include <stdlib.h>
38
#include <string.h>
39
#include <stdarg.h>
40
#include <math.h>
41
//#include "driver.h"                /* use M.A.M.E. */
42
#include "fmopl.h"
43

    
44
#ifndef PI
45
#define PI 3.14159265358979323846
46
#endif
47

    
48
/* -------------------- for debug --------------------- */
49
/* #define OPL_OUTPUT_LOG */
50
#ifdef OPL_OUTPUT_LOG
51
static FILE *opl_dbg_fp = NULL;
52
static FM_OPL *opl_dbg_opl[16];
53
static int opl_dbg_maxchip,opl_dbg_chip;
54
#endif
55

    
56
/* -------------------- preliminary define section --------------------- */
57
/* attack/decay rate time rate */
58
#define OPL_ARRATE     141280  /* RATE 4 =  2826.24ms @ 3.6MHz */
59
#define OPL_DRRATE    1956000  /* RATE 4 = 39280.64ms @ 3.6MHz */
60

    
61
#define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
62

    
63
#define FREQ_BITS 24                        /* frequency turn          */
64

    
65
/* counter bits = 20 , octerve 7 */
66
#define FREQ_RATE   (1<<(FREQ_BITS-20))
67
#define TL_BITS    (FREQ_BITS+2)
68

    
69
/* final output shift , limit minimum and maximum */
70
#define OPL_OUTSB   (TL_BITS+3-16)                /* OPL output final shift 16bit */
71
#define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
72
#define OPL_MINOUT (-0x8000<<OPL_OUTSB)
73

    
74
/* -------------------- quality selection --------------------- */
75

    
76
/* sinwave entries */
77
/* used static memory = SIN_ENT * 4 (byte) */
78
#define SIN_ENT 2048
79

    
80
/* output level entries (envelope,sinwave) */
81
/* envelope counter lower bits */
82
#define ENV_BITS 16
83
/* envelope output entries */
84
#define EG_ENT   4096
85
/* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
86
/* used static  memory = EG_ENT*4 (byte)                     */
87

    
88
#define EG_OFF   ((2*EG_ENT)<<ENV_BITS)  /* OFF          */
89
#define EG_DED   EG_OFF
90
#define EG_DST   (EG_ENT<<ENV_BITS)      /* DECAY  START */
91
#define EG_AED   EG_DST
92
#define EG_AST   0                       /* ATTACK START */
93

    
94
#define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step  */
95

    
96
/* LFO table entries */
97
#define VIB_ENT 512
98
#define VIB_SHIFT (32-9)
99
#define AMS_ENT 512
100
#define AMS_SHIFT (32-9)
101

    
102
#define VIB_RATE 256
103

    
104
/* -------------------- local defines , macros --------------------- */
105

    
106
/* register number to channel number , slot offset */
107
#define SLOT1 0
108
#define SLOT2 1
109

    
110
/* envelope phase */
111
#define ENV_MOD_RR  0x00
112
#define ENV_MOD_DR  0x01
113
#define ENV_MOD_AR  0x02
114

    
115
/* -------------------- tables --------------------- */
116
static const int slot_array[32]=
117
{
118
         0, 2, 4, 1, 3, 5,-1,-1,
119
         6, 8,10, 7, 9,11,-1,-1,
120
        12,14,16,13,15,17,-1,-1,
121
        -1,-1,-1,-1,-1,-1,-1,-1
122
};
123

    
124
/* key scale level */
125
/* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
126
#define DV (EG_STEP/2)
127
static const UINT32 KSL_TABLE[8*16]=
128
{
129
        /* OCT 0 */
130
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
131
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
132
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
133
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
134
        /* OCT 1 */
135
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
136
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
137
         0.000/DV, 0.750/DV, 1.125/DV, 1.500/DV,
138
         1.875/DV, 2.250/DV, 2.625/DV, 3.000/DV,
139
        /* OCT 2 */
140
         0.000/DV, 0.000/DV, 0.000/DV, 0.000/DV,
141
         0.000/DV, 1.125/DV, 1.875/DV, 2.625/DV,
142
         3.000/DV, 3.750/DV, 4.125/DV, 4.500/DV,
143
         4.875/DV, 5.250/DV, 5.625/DV, 6.000/DV,
144
        /* OCT 3 */
145
         0.000/DV, 0.000/DV, 0.000/DV, 1.875/DV,
146
         3.000/DV, 4.125/DV, 4.875/DV, 5.625/DV,
147
         6.000/DV, 6.750/DV, 7.125/DV, 7.500/DV,
148
         7.875/DV, 8.250/DV, 8.625/DV, 9.000/DV,
149
        /* OCT 4 */
150
         0.000/DV, 0.000/DV, 3.000/DV, 4.875/DV,
151
         6.000/DV, 7.125/DV, 7.875/DV, 8.625/DV,
152
         9.000/DV, 9.750/DV,10.125/DV,10.500/DV,
153
        10.875/DV,11.250/DV,11.625/DV,12.000/DV,
154
        /* OCT 5 */
155
         0.000/DV, 3.000/DV, 6.000/DV, 7.875/DV,
156
         9.000/DV,10.125/DV,10.875/DV,11.625/DV,
157
        12.000/DV,12.750/DV,13.125/DV,13.500/DV,
158
        13.875/DV,14.250/DV,14.625/DV,15.000/DV,
159
        /* OCT 6 */
160
         0.000/DV, 6.000/DV, 9.000/DV,10.875/DV,
161
        12.000/DV,13.125/DV,13.875/DV,14.625/DV,
162
        15.000/DV,15.750/DV,16.125/DV,16.500/DV,
163
        16.875/DV,17.250/DV,17.625/DV,18.000/DV,
164
        /* OCT 7 */
165
         0.000/DV, 9.000/DV,12.000/DV,13.875/DV,
166
        15.000/DV,16.125/DV,16.875/DV,17.625/DV,
167
        18.000/DV,18.750/DV,19.125/DV,19.500/DV,
168
        19.875/DV,20.250/DV,20.625/DV,21.000/DV
169
};
170
#undef DV
171

    
172
/* sustain lebel table (3db per step) */
173
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
174
#define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
175
static const INT32 SL_TABLE[16]={
176
 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
177
 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
178
};
179
#undef SC
180

    
181
#define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
182
/* TotalLevel : 48 24 12  6  3 1.5 0.75 (dB) */
183
/* TL_TABLE[ 0      to TL_MAX          ] : plus  section */
184
/* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
185
static INT32 *TL_TABLE;
186

    
187
/* pointers to TL_TABLE with sinwave output offset */
188
static INT32 **SIN_TABLE;
189

    
190
/* LFO table */
191
static INT32 *AMS_TABLE;
192
static INT32 *VIB_TABLE;
193

    
194
/* envelope output curve table */
195
/* attack + decay + OFF */
196
static INT32 ENV_CURVE[2*EG_ENT+1];
197

    
198
/* multiple table */
199
#define ML 2
200
static const UINT32 MUL_TABLE[16]= {
201
/* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
202
   0.50*ML, 1.00*ML, 2.00*ML, 3.00*ML, 4.00*ML, 5.00*ML, 6.00*ML, 7.00*ML,
203
   8.00*ML, 9.00*ML,10.00*ML,10.00*ML,12.00*ML,12.00*ML,15.00*ML,15.00*ML
204
};
205
#undef ML
206

    
207
/* dummy attack / decay rate ( when rate == 0 ) */
208
static INT32 RATE_0[16]=
209
{0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
210

    
211
/* -------------------- static state --------------------- */
212

    
213
/* lock level of common table */
214
static int num_lock = 0;
215

    
216
/* work table */
217
static void *cur_chip = NULL;        /* current chip point */
218
/* currenct chip state */
219
/* static OPLSAMPLE  *bufL,*bufR; */
220
static OPL_CH *S_CH;
221
static OPL_CH *E_CH;
222
OPL_SLOT *SLOT7_1,*SLOT7_2,*SLOT8_1,*SLOT8_2;
223

    
224
static INT32 outd[1];
225
static INT32 ams;
226
static INT32 vib;
227
INT32  *ams_table;
228
INT32  *vib_table;
229
static INT32 amsIncr;
230
static INT32 vibIncr;
231
static INT32 feedback2;                /* connect for SLOT 2 */
232

    
233
/* log output level */
234
#define LOG_ERR  3      /* ERROR       */
235
#define LOG_WAR  2      /* WARNING     */
236
#define LOG_INF  1      /* INFORMATION */
237

    
238
//#define LOG_LEVEL LOG_INF
239
#define LOG_LEVEL        LOG_ERR
240

    
241
//#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
242
#define LOG(n,x)
243

    
244
/* --------------------- subroutines  --------------------- */
245

    
246
INLINE int Limit( int val, int max, int min ) {
247
        if ( val > max )
248
                val = max;
249
        else if ( val < min )
250
                val = min;
251

    
252
        return val;
253
}
254

    
255
/* status set and IRQ handling */
256
INLINE void OPL_STATUS_SET(FM_OPL *OPL,int flag)
257
{
258
        /* set status flag */
259
        OPL->status |= flag;
260
        if(!(OPL->status & 0x80))
261
        {
262
                if(OPL->status & OPL->statusmask)
263
                {        /* IRQ on */
264
                        OPL->status |= 0x80;
265
                        /* callback user interrupt handler (IRQ is OFF to ON) */
266
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,1);
267
                }
268
        }
269
}
270

    
271
/* status reset and IRQ handling */
272
INLINE void OPL_STATUS_RESET(FM_OPL *OPL,int flag)
273
{
274
        /* reset status flag */
275
        OPL->status &=~flag;
276
        if((OPL->status & 0x80))
277
        {
278
                if (!(OPL->status & OPL->statusmask) )
279
                {
280
                        OPL->status &= 0x7f;
281
                        /* callback user interrupt handler (IRQ is ON to OFF) */
282
                        if(OPL->IRQHandler) (OPL->IRQHandler)(OPL->IRQParam,0);
283
                }
284
        }
285
}
286

    
287
/* IRQ mask set */
288
INLINE void OPL_STATUSMASK_SET(FM_OPL *OPL,int flag)
289
{
290
        OPL->statusmask = flag;
291
        /* IRQ handling check */
292
        OPL_STATUS_SET(OPL,0);
293
        OPL_STATUS_RESET(OPL,0);
294
}
295

    
296
/* ----- key on  ----- */
297
INLINE void OPL_KEYON(OPL_SLOT *SLOT)
298
{
299
        /* sin wave restart */
300
        SLOT->Cnt = 0;
301
        /* set attack */
302
        SLOT->evm = ENV_MOD_AR;
303
        SLOT->evs = SLOT->evsa;
304
        SLOT->evc = EG_AST;
305
        SLOT->eve = EG_AED;
306
}
307
/* ----- key off ----- */
308
INLINE void OPL_KEYOFF(OPL_SLOT *SLOT)
309
{
310
        if( SLOT->evm > ENV_MOD_RR)
311
        {
312
                /* set envelope counter from envleope output */
313
                SLOT->evm = ENV_MOD_RR;
314
                if( !(SLOT->evc&EG_DST) )
315
                        //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
316
                        SLOT->evc = EG_DST;
317
                SLOT->eve = EG_DED;
318
                SLOT->evs = SLOT->evsr;
319
        }
320
}
321

    
322
/* ---------- calcrate Envelope Generator & Phase Generator ---------- */
323
/* return : envelope output */
324
INLINE UINT32 OPL_CALC_SLOT( OPL_SLOT *SLOT )
325
{
326
        /* calcrate envelope generator */
327
        if( (SLOT->evc+=SLOT->evs) >= SLOT->eve )
328
        {
329
                switch( SLOT->evm ){
330
                case ENV_MOD_AR: /* ATTACK -> DECAY1 */
331
                        /* next DR */
332
                        SLOT->evm = ENV_MOD_DR;
333
                        SLOT->evc = EG_DST;
334
                        SLOT->eve = SLOT->SL;
335
                        SLOT->evs = SLOT->evsd;
336
                        break;
337
                case ENV_MOD_DR: /* DECAY -> SL or RR */
338
                        SLOT->evc = SLOT->SL;
339
                        SLOT->eve = EG_DED;
340
                        if(SLOT->eg_typ)
341
                        {
342
                                SLOT->evs = 0;
343
                        }
344
                        else
345
                        {
346
                                SLOT->evm = ENV_MOD_RR;
347
                                SLOT->evs = SLOT->evsr;
348
                        }
349
                        break;
350
                case ENV_MOD_RR: /* RR -> OFF */
351
                        SLOT->evc = EG_OFF;
352
                        SLOT->eve = EG_OFF+1;
353
                        SLOT->evs = 0;
354
                        break;
355
                }
356
        }
357
        /* calcrate envelope */
358
        return SLOT->TLL+ENV_CURVE[SLOT->evc>>ENV_BITS]+(SLOT->ams ? ams : 0);
359
}
360

    
361
/* set algorythm connection */
362
static void set_algorythm( OPL_CH *CH)
363
{
364
        INT32 *carrier = &outd[0];
365
        CH->connect1 = CH->CON ? carrier : &feedback2;
366
        CH->connect2 = carrier;
367
}
368

    
369
/* ---------- frequency counter for operater update ---------- */
370
INLINE void CALC_FCSLOT(OPL_CH *CH,OPL_SLOT *SLOT)
371
{
372
        int ksr;
373

    
374
        /* frequency step counter */
375
        SLOT->Incr = CH->fc * SLOT->mul;
376
        ksr = CH->kcode >> SLOT->KSR;
377

    
378
        if( SLOT->ksr != ksr )
379
        {
380
                SLOT->ksr = ksr;
381
                /* attack , decay rate recalcration */
382
                SLOT->evsa = SLOT->AR[ksr];
383
                SLOT->evsd = SLOT->DR[ksr];
384
                SLOT->evsr = SLOT->RR[ksr];
385
        }
386
        SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
387
}
388

    
389
/* set multi,am,vib,EG-TYP,KSR,mul */
390
INLINE void set_mul(FM_OPL *OPL,int slot,int v)
391
{
392
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
393
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
394

    
395
        SLOT->mul    = MUL_TABLE[v&0x0f];
396
        SLOT->KSR    = (v&0x10) ? 0 : 2;
397
        SLOT->eg_typ = (v&0x20)>>5;
398
        SLOT->vib    = (v&0x40);
399
        SLOT->ams    = (v&0x80);
400
        CALC_FCSLOT(CH,SLOT);
401
}
402

    
403
/* set ksl & tl */
404
INLINE void set_ksl_tl(FM_OPL *OPL,int slot,int v)
405
{
406
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
407
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
408
        int ksl = v>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
409

    
410
        SLOT->ksl = ksl ? 3-ksl : 31;
411
        SLOT->TL  = (v&0x3f)*(0.75/EG_STEP); /* 0.75db step */
412

    
413
        if( !(OPL->mode&0x80) )
414
        {        /* not CSM latch total level */
415
                SLOT->TLL = SLOT->TL + (CH->ksl_base>>SLOT->ksl);
416
        }
417
}
418

    
419
/* set attack rate & decay rate  */
420
INLINE void set_ar_dr(FM_OPL *OPL,int slot,int v)
421
{
422
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
423
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
424
        int ar = v>>4;
425
        int dr = v&0x0f;
426

    
427
        SLOT->AR = ar ? &OPL->AR_TABLE[ar<<2] : RATE_0;
428
        SLOT->evsa = SLOT->AR[SLOT->ksr];
429
        if( SLOT->evm == ENV_MOD_AR ) SLOT->evs = SLOT->evsa;
430

    
431
        SLOT->DR = dr ? &OPL->DR_TABLE[dr<<2] : RATE_0;
432
        SLOT->evsd = SLOT->DR[SLOT->ksr];
433
        if( SLOT->evm == ENV_MOD_DR ) SLOT->evs = SLOT->evsd;
434
}
435

    
436
/* set sustain level & release rate */
437
INLINE void set_sl_rr(FM_OPL *OPL,int slot,int v)
438
{
439
        OPL_CH   *CH   = &OPL->P_CH[slot/2];
440
        OPL_SLOT *SLOT = &CH->SLOT[slot&1];
441
        int sl = v>>4;
442
        int rr = v & 0x0f;
443

    
444
        SLOT->SL = SL_TABLE[sl];
445
        if( SLOT->evm == ENV_MOD_DR ) SLOT->eve = SLOT->SL;
446
        SLOT->RR = &OPL->DR_TABLE[rr<<2];
447
        SLOT->evsr = SLOT->RR[SLOT->ksr];
448
        if( SLOT->evm == ENV_MOD_RR ) SLOT->evs = SLOT->evsr;
449
}
450

    
451
/* operator output calcrator */
452
#define OP_OUT(slot,env,con)   slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
453
/* ---------- calcrate one of channel ---------- */
454
INLINE void OPL_CALC_CH( OPL_CH *CH )
455
{
456
        UINT32 env_out;
457
        OPL_SLOT *SLOT;
458

    
459
        feedback2 = 0;
460
        /* SLOT 1 */
461
        SLOT = &CH->SLOT[SLOT1];
462
        env_out=OPL_CALC_SLOT(SLOT);
463
        if( env_out < EG_ENT-1 )
464
        {
465
                /* PG */
466
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
467
                else          SLOT->Cnt += SLOT->Incr;
468
                /* connectoion */
469
                if(CH->FB)
470
                {
471
                        int feedback1 = (CH->op1_out[0]+CH->op1_out[1])>>CH->FB;
472
                        CH->op1_out[1] = CH->op1_out[0];
473
                        *CH->connect1 += CH->op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
474
                }
475
                else
476
                {
477
                        *CH->connect1 += OP_OUT(SLOT,env_out,0);
478
                }
479
        }else
480
        {
481
                CH->op1_out[1] = CH->op1_out[0];
482
                CH->op1_out[0] = 0;
483
        }
484
        /* SLOT 2 */
485
        SLOT = &CH->SLOT[SLOT2];
486
        env_out=OPL_CALC_SLOT(SLOT);
487
        if( env_out < EG_ENT-1 )
488
        {
489
                /* PG */
490
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
491
                else          SLOT->Cnt += SLOT->Incr;
492
                /* connectoion */
493
                outd[0] += OP_OUT(SLOT,env_out, feedback2);
494
        }
495
}
496

    
497
/* ---------- calcrate rythm block ---------- */
498
#define WHITE_NOISE_db 6.0
499
INLINE void OPL_CALC_RH( OPL_CH *CH )
500
{
501
        UINT32 env_tam,env_sd,env_top,env_hh;
502
        int whitenoise = (rand()&1)*(WHITE_NOISE_db/EG_STEP);
503
        INT32 tone8;
504

    
505
        OPL_SLOT *SLOT;
506
        int env_out;
507

    
508
        /* BD : same as FM serial mode and output level is large */
509
        feedback2 = 0;
510
        /* SLOT 1 */
511
        SLOT = &CH[6].SLOT[SLOT1];
512
        env_out=OPL_CALC_SLOT(SLOT);
513
        if( env_out < EG_ENT-1 )
514
        {
515
                /* PG */
516
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
517
                else          SLOT->Cnt += SLOT->Incr;
518
                /* connectoion */
519
                if(CH[6].FB)
520
                {
521
                        int feedback1 = (CH[6].op1_out[0]+CH[6].op1_out[1])>>CH[6].FB;
522
                        CH[6].op1_out[1] = CH[6].op1_out[0];
523
                        feedback2 = CH[6].op1_out[0] = OP_OUT(SLOT,env_out,feedback1);
524
                }
525
                else
526
                {
527
                        feedback2 = OP_OUT(SLOT,env_out,0);
528
                }
529
        }else
530
        {
531
                feedback2 = 0;
532
                CH[6].op1_out[1] = CH[6].op1_out[0];
533
                CH[6].op1_out[0] = 0;
534
        }
535
        /* SLOT 2 */
536
        SLOT = &CH[6].SLOT[SLOT2];
537
        env_out=OPL_CALC_SLOT(SLOT);
538
        if( env_out < EG_ENT-1 )
539
        {
540
                /* PG */
541
                if(SLOT->vib) SLOT->Cnt += (SLOT->Incr*vib/VIB_RATE);
542
                else          SLOT->Cnt += SLOT->Incr;
543
                /* connectoion */
544
                outd[0] += OP_OUT(SLOT,env_out, feedback2)*2;
545
        }
546

    
547
        // SD  (17) = mul14[fnum7] + white noise
548
        // TAM (15) = mul15[fnum8]
549
        // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
550
        // HH  (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
551
        env_sd =OPL_CALC_SLOT(SLOT7_2) + whitenoise;
552
        env_tam=OPL_CALC_SLOT(SLOT8_1);
553
        env_top=OPL_CALC_SLOT(SLOT8_2);
554
        env_hh =OPL_CALC_SLOT(SLOT7_1) + whitenoise;
555

    
556
        /* PG */
557
        if(SLOT7_1->vib) SLOT7_1->Cnt += (2*SLOT7_1->Incr*vib/VIB_RATE);
558
        else             SLOT7_1->Cnt += 2*SLOT7_1->Incr;
559
        if(SLOT7_2->vib) SLOT7_2->Cnt += ((CH[7].fc*8)*vib/VIB_RATE);
560
        else             SLOT7_2->Cnt += (CH[7].fc*8);
561
        if(SLOT8_1->vib) SLOT8_1->Cnt += (SLOT8_1->Incr*vib/VIB_RATE);
562
        else             SLOT8_1->Cnt += SLOT8_1->Incr;
563
        if(SLOT8_2->vib) SLOT8_2->Cnt += ((CH[8].fc*48)*vib/VIB_RATE);
564
        else             SLOT8_2->Cnt += (CH[8].fc*48);
565

    
566
        tone8 = OP_OUT(SLOT8_2,whitenoise,0 );
567

    
568
        /* SD */
569
        if( env_sd < EG_ENT-1 )
570
                outd[0] += OP_OUT(SLOT7_1,env_sd, 0)*8;
571
        /* TAM */
572
        if( env_tam < EG_ENT-1 )
573
                outd[0] += OP_OUT(SLOT8_1,env_tam, 0)*2;
574
        /* TOP-CY */
575
        if( env_top < EG_ENT-1 )
576
                outd[0] += OP_OUT(SLOT7_2,env_top,tone8)*2;
577
        /* HH */
578
        if( env_hh  < EG_ENT-1 )
579
                outd[0] += OP_OUT(SLOT7_2,env_hh,tone8)*2;
580
}
581

    
582
/* ----------- initialize time tabls ----------- */
583
static void init_timetables( FM_OPL *OPL , int ARRATE , int DRRATE )
584
{
585
        int i;
586
        double rate;
587

    
588
        /* make attack rate & decay rate tables */
589
        for (i = 0;i < 4;i++) OPL->AR_TABLE[i] = OPL->DR_TABLE[i] = 0;
590
        for (i = 4;i <= 60;i++){
591
                rate  = OPL->freqbase;                                                /* frequency rate */
592
                if( i < 60 ) rate *= 1.0+(i&3)*0.25;                /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
593
                rate *= 1<<((i>>2)-1);                                                /* b2-5 : shift bit */
594
                rate *= (double)(EG_ENT<<ENV_BITS);
595
                OPL->AR_TABLE[i] = rate / ARRATE;
596
                OPL->DR_TABLE[i] = rate / DRRATE;
597
        }
598
        for (i = 60;i < 76;i++)
599
        {
600
                OPL->AR_TABLE[i] = EG_AED-1;
601
                OPL->DR_TABLE[i] = OPL->DR_TABLE[60];
602
        }
603
#if 0
604
        for (i = 0;i < 64 ;i++){        /* make for overflow area */
605
                LOG(LOG_WAR,("rate %2d , ar %f ms , dr %f ms \n",i,
606
                        ((double)(EG_ENT<<ENV_BITS) / OPL->AR_TABLE[i]) * (1000.0 / OPL->rate),
607
                        ((double)(EG_ENT<<ENV_BITS) / OPL->DR_TABLE[i]) * (1000.0 / OPL->rate) ));
608
        }
609
#endif
610
}
611

    
612
/* ---------- generic table initialize ---------- */
613
static int OPLOpenTable( void )
614
{
615
        int s,t;
616
        double rate;
617
        int i,j;
618
        double pom;
619

    
620
        /* allocate dynamic tables */
621
        if( (TL_TABLE = malloc(TL_MAX*2*sizeof(INT32))) == NULL)
622
                return 0;
623
        if( (SIN_TABLE = malloc(SIN_ENT*4 *sizeof(INT32 *))) == NULL)
624
        {
625
                free(TL_TABLE);
626
                return 0;
627
        }
628
        if( (AMS_TABLE = malloc(AMS_ENT*2 *sizeof(INT32))) == NULL)
629
        {
630
                free(TL_TABLE);
631
                free(SIN_TABLE);
632
                return 0;
633
        }
634
        if( (VIB_TABLE = malloc(VIB_ENT*2 *sizeof(INT32))) == NULL)
635
        {
636
                free(TL_TABLE);
637
                free(SIN_TABLE);
638
                free(AMS_TABLE);
639
                return 0;
640
        }
641
        /* make total level table */
642
        for (t = 0;t < EG_ENT-1 ;t++){
643
                rate = ((1<<TL_BITS)-1)/pow(10,EG_STEP*t/20);        /* dB -> voltage */
644
                TL_TABLE[       t] =  (int)rate;
645
                TL_TABLE[TL_MAX+t] = -TL_TABLE[t];
646
/*                LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
647
        }
648
        /* fill volume off area */
649
        for ( t = EG_ENT-1; t < TL_MAX ;t++){
650
                TL_TABLE[t] = TL_TABLE[TL_MAX+t] = 0;
651
        }
652

    
653
        /* make sinwave table (total level offet) */
654
        /* degree 0 = degree 180                   = off */
655
        SIN_TABLE[0] = SIN_TABLE[SIN_ENT/2]         = &TL_TABLE[EG_ENT-1];
656
        for (s = 1;s <= SIN_ENT/4;s++){
657
                pom = sin(2*PI*s/SIN_ENT); /* sin     */
658
                pom = 20*log10(1/pom);           /* decibel */
659
                j = pom / EG_STEP;         /* TL_TABLE steps */
660

    
661
        /* degree 0   -  90    , degree 180 -  90 : plus section */
662
                SIN_TABLE[          s] = SIN_TABLE[SIN_ENT/2-s] = &TL_TABLE[j];
663
        /* degree 180 - 270    , degree 360 - 270 : minus section */
664
                SIN_TABLE[SIN_ENT/2+s] = SIN_TABLE[SIN_ENT  -s] = &TL_TABLE[TL_MAX+j];
665
/*                LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
666
        }
667
        for (s = 0;s < SIN_ENT;s++)
668
        {
669
                SIN_TABLE[SIN_ENT*1+s] = s<(SIN_ENT/2) ? SIN_TABLE[s] : &TL_TABLE[EG_ENT];
670
                SIN_TABLE[SIN_ENT*2+s] = SIN_TABLE[s % (SIN_ENT/2)];
671
                SIN_TABLE[SIN_ENT*3+s] = (s/(SIN_ENT/4))&1 ? &TL_TABLE[EG_ENT] : SIN_TABLE[SIN_ENT*2+s];
672
        }
673

    
674
        /* envelope counter -> envelope output table */
675
        for (i=0; i<EG_ENT; i++)
676
        {
677
                /* ATTACK curve */
678
                pom = pow( ((double)(EG_ENT-1-i)/EG_ENT) , 8 ) * EG_ENT;
679
                /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
680
                ENV_CURVE[i] = (int)pom;
681
                /* DECAY ,RELEASE curve */
682
                ENV_CURVE[(EG_DST>>ENV_BITS)+i]= i;
683
        }
684
        /* off */
685
        ENV_CURVE[EG_OFF>>ENV_BITS]= EG_ENT-1;
686
        /* make LFO ams table */
687
        for (i=0; i<AMS_ENT; i++)
688
        {
689
                pom = (1.0+sin(2*PI*i/AMS_ENT))/2; /* sin */
690
                AMS_TABLE[i]         = (1.0/EG_STEP)*pom; /* 1dB   */
691
                AMS_TABLE[AMS_ENT+i] = (4.8/EG_STEP)*pom; /* 4.8dB */
692
        }
693
        /* make LFO vibrate table */
694
        for (i=0; i<VIB_ENT; i++)
695
        {
696
                /* 100cent = 1seminote = 6% ?? */
697
                pom = (double)VIB_RATE*0.06*sin(2*PI*i/VIB_ENT); /* +-100sect step */
698
                VIB_TABLE[i]         = VIB_RATE + (pom*0.07); /* +- 7cent */
699
                VIB_TABLE[VIB_ENT+i] = VIB_RATE + (pom*0.14); /* +-14cent */
700
                /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
701
        }
702
        return 1;
703
}
704

    
705

    
706
static void OPLCloseTable( void )
707
{
708
        free(TL_TABLE);
709
        free(SIN_TABLE);
710
        free(AMS_TABLE);
711
        free(VIB_TABLE);
712
}
713

    
714
/* CSM Key Controll */
715
INLINE void CSMKeyControll(OPL_CH *CH)
716
{
717
        OPL_SLOT *slot1 = &CH->SLOT[SLOT1];
718
        OPL_SLOT *slot2 = &CH->SLOT[SLOT2];
719
        /* all key off */
720
        OPL_KEYOFF(slot1);
721
        OPL_KEYOFF(slot2);
722
        /* total level latch */
723
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
724
        slot1->TLL = slot1->TL + (CH->ksl_base>>slot1->ksl);
725
        /* key on */
726
        CH->op1_out[0] = CH->op1_out[1] = 0;
727
        OPL_KEYON(slot1);
728
        OPL_KEYON(slot2);
729
}
730

    
731
/* ---------- opl initialize ---------- */
732
static void OPL_initalize(FM_OPL *OPL)
733
{
734
        int fn;
735

    
736
        /* frequency base */
737
        OPL->freqbase = (OPL->rate) ? ((double)OPL->clock / OPL->rate) / 72  : 0;
738
        /* Timer base time */
739
        OPL->TimerBase = 1.0/((double)OPL->clock / 72.0 );
740
        /* make time tables */
741
        init_timetables( OPL , OPL_ARRATE , OPL_DRRATE );
742
        /* make fnumber -> increment counter table */
743
        for( fn=0 ; fn < 1024 ; fn++ )
744
        {
745
                OPL->FN_TABLE[fn] = OPL->freqbase * fn * FREQ_RATE * (1<<7) / 2;
746
        }
747
        /* LFO freq.table */
748
        OPL->amsIncr = OPL->rate ? (double)AMS_ENT*(1<<AMS_SHIFT) / OPL->rate * 3.7 * ((double)OPL->clock/3600000) : 0;
749
        OPL->vibIncr = OPL->rate ? (double)VIB_ENT*(1<<VIB_SHIFT) / OPL->rate * 6.4 * ((double)OPL->clock/3600000) : 0;
750
}
751

    
752
/* ---------- write a OPL registers ---------- */
753
static void OPLWriteReg(FM_OPL *OPL, int r, int v)
754
{
755
        OPL_CH *CH;
756
        int slot;
757
        int block_fnum;
758

    
759
        switch(r&0xe0)
760
        {
761
        case 0x00: /* 00-1f:controll */
762
                switch(r&0x1f)
763
                {
764
                case 0x01:
765
                        /* wave selector enable */
766
                        if(OPL->type&OPL_TYPE_WAVESEL)
767
                        {
768
                                OPL->wavesel = v&0x20;
769
                                if(!OPL->wavesel)
770
                                {
771
                                        /* preset compatible mode */
772
                                        int c;
773
                                        for(c=0;c<OPL->max_ch;c++)
774
                                        {
775
                                                OPL->P_CH[c].SLOT[SLOT1].wavetable = &SIN_TABLE[0];
776
                                                OPL->P_CH[c].SLOT[SLOT2].wavetable = &SIN_TABLE[0];
777
                                        }
778
                                }
779
                        }
780
                        return;
781
                case 0x02:        /* Timer 1 */
782
                        OPL->T[0] = (256-v)*4;
783
                        break;
784
                case 0x03:        /* Timer 2 */
785
                        OPL->T[1] = (256-v)*16;
786
                        return;
787
                case 0x04:        /* IRQ clear / mask and Timer enable */
788
                        if(v&0x80)
789
                        {        /* IRQ flag clear */
790
                                OPL_STATUS_RESET(OPL,0x7f);
791
                        }
792
                        else
793
                        {        /* set IRQ mask ,timer enable*/
794
                                UINT8 st1 = v&1;
795
                                UINT8 st2 = (v>>1)&1;
796
                                /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
797
                                OPL_STATUS_RESET(OPL,v&0x78);
798
                                OPL_STATUSMASK_SET(OPL,((~v)&0x78)|0x01);
799
                                /* timer 2 */
800
                                if(OPL->st[1] != st2)
801
                                {
802
                                        double interval = st2 ? (double)OPL->T[1]*OPL->TimerBase : 0.0;
803
                                        OPL->st[1] = st2;
804
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+1,interval);
805
                                }
806
                                /* timer 1 */
807
                                if(OPL->st[0] != st1)
808
                                {
809
                                        double interval = st1 ? (double)OPL->T[0]*OPL->TimerBase : 0.0;
810
                                        OPL->st[0] = st1;
811
                                        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+0,interval);
812
                                }
813
                        }
814
                        return;
815
#if BUILD_Y8950
816
                case 0x06:                /* Key Board OUT */
817
                        if(OPL->type&OPL_TYPE_KEYBOARD)
818
                        {
819
                                if(OPL->keyboardhandler_w)
820
                                        OPL->keyboardhandler_w(OPL->keyboard_param,v);
821
                                else
822
                                        LOG(LOG_WAR,("OPL:write unmapped KEYBOARD port\n"));
823
                        }
824
                        return;
825
                case 0x07:        /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
826
                        if(OPL->type&OPL_TYPE_ADPCM)
827
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
828
                        return;
829
                case 0x08:        /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
830
                        OPL->mode = v;
831
                        v&=0x1f;        /* for DELTA-T unit */
832
                case 0x09:                /* START ADD */
833
                case 0x0a:
834
                case 0x0b:                /* STOP ADD  */
835
                case 0x0c:
836
                case 0x0d:                /* PRESCALE   */
837
                case 0x0e:
838
                case 0x0f:                /* ADPCM data */
839
                case 0x10:                 /* DELTA-N    */
840
                case 0x11:                 /* DELTA-N    */
841
                case 0x12:                 /* EG-CTRL    */
842
                        if(OPL->type&OPL_TYPE_ADPCM)
843
                                YM_DELTAT_ADPCM_Write(OPL->deltat,r-0x07,v);
844
                        return;
845
#if 0
846
                case 0x15:                /* DAC data    */
847
                case 0x16:
848
                case 0x17:                /* SHIFT    */
849
                        return;
850
                case 0x18:                /* I/O CTRL (Direction) */
851
                        if(OPL->type&OPL_TYPE_IO)
852
                                OPL->portDirection = v&0x0f;
853
                        return;
854
                case 0x19:                /* I/O DATA */
855
                        if(OPL->type&OPL_TYPE_IO)
856
                        {
857
                                OPL->portLatch = v;
858
                                if(OPL->porthandler_w)
859
                                        OPL->porthandler_w(OPL->port_param,v&OPL->portDirection);
860
                        }
861
                        return;
862
                case 0x1a:                /* PCM data */
863
                        return;
864
#endif
865
#endif
866
                }
867
                break;
868
        case 0x20:        /* am,vib,ksr,eg type,mul */
869
                slot = slot_array[r&0x1f];
870
                if(slot == -1) return;
871
                set_mul(OPL,slot,v);
872
                return;
873
        case 0x40:
874
                slot = slot_array[r&0x1f];
875
                if(slot == -1) return;
876
                set_ksl_tl(OPL,slot,v);
877
                return;
878
        case 0x60:
879
                slot = slot_array[r&0x1f];
880
                if(slot == -1) return;
881
                set_ar_dr(OPL,slot,v);
882
                return;
883
        case 0x80:
884
                slot = slot_array[r&0x1f];
885
                if(slot == -1) return;
886
                set_sl_rr(OPL,slot,v);
887
                return;
888
        case 0xa0:
889
                switch(r)
890
                {
891
                case 0xbd:
892
                        /* amsep,vibdep,r,bd,sd,tom,tc,hh */
893
                        {
894
                        UINT8 rkey = OPL->rythm^v;
895
                        OPL->ams_table = &AMS_TABLE[v&0x80 ? AMS_ENT : 0];
896
                        OPL->vib_table = &VIB_TABLE[v&0x40 ? VIB_ENT : 0];
897
                        OPL->rythm  = v&0x3f;
898
                        if(OPL->rythm&0x20)
899
                        {
900
#if 0
901
                                usrintf_showmessage("OPL Rythm mode select");
902
#endif
903
                                /* BD key on/off */
904
                                if(rkey&0x10)
905
                                {
906
                                        if(v&0x10)
907
                                        {
908
                                                OPL->P_CH[6].op1_out[0] = OPL->P_CH[6].op1_out[1] = 0;
909
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT1]);
910
                                                OPL_KEYON(&OPL->P_CH[6].SLOT[SLOT2]);
911
                                        }
912
                                        else
913
                                        {
914
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT1]);
915
                                                OPL_KEYOFF(&OPL->P_CH[6].SLOT[SLOT2]);
916
                                        }
917
                                }
918
                                /* SD key on/off */
919
                                if(rkey&0x08)
920
                                {
921
                                        if(v&0x08) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT2]);
922
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT2]);
923
                                }/* TAM key on/off */
924
                                if(rkey&0x04)
925
                                {
926
                                        if(v&0x04) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT1]);
927
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT1]);
928
                                }
929
                                /* TOP-CY key on/off */
930
                                if(rkey&0x02)
931
                                {
932
                                        if(v&0x02) OPL_KEYON(&OPL->P_CH[8].SLOT[SLOT2]);
933
                                        else       OPL_KEYOFF(&OPL->P_CH[8].SLOT[SLOT2]);
934
                                }
935
                                /* HH key on/off */
936
                                if(rkey&0x01)
937
                                {
938
                                        if(v&0x01) OPL_KEYON(&OPL->P_CH[7].SLOT[SLOT1]);
939
                                        else       OPL_KEYOFF(&OPL->P_CH[7].SLOT[SLOT1]);
940
                                }
941
                        }
942
                        }
943
                        return;
944
                }
945
                /* keyon,block,fnum */
946
                if( (r&0x0f) > 8) return;
947
                CH = &OPL->P_CH[r&0x0f];
948
                if(!(r&0x10))
949
                {        /* a0-a8 */
950
                        block_fnum  = (CH->block_fnum&0x1f00) | v;
951
                }
952
                else
953
                {        /* b0-b8 */
954
                        int keyon = (v>>5)&1;
955
                        block_fnum = ((v&0x1f)<<8) | (CH->block_fnum&0xff);
956
                        if(CH->keyon != keyon)
957
                        {
958
                                if( (CH->keyon=keyon) )
959
                                {
960
                                        CH->op1_out[0] = CH->op1_out[1] = 0;
961
                                        OPL_KEYON(&CH->SLOT[SLOT1]);
962
                                        OPL_KEYON(&CH->SLOT[SLOT2]);
963
                                }
964
                                else
965
                                {
966
                                        OPL_KEYOFF(&CH->SLOT[SLOT1]);
967
                                        OPL_KEYOFF(&CH->SLOT[SLOT2]);
968
                                }
969
                        }
970
                }
971
                /* update */
972
                if(CH->block_fnum != block_fnum)
973
                {
974
                        int blockRv = 7-(block_fnum>>10);
975
                        int fnum   = block_fnum&0x3ff;
976
                        CH->block_fnum = block_fnum;
977

    
978
                        CH->ksl_base = KSL_TABLE[block_fnum>>6];
979
                        CH->fc = OPL->FN_TABLE[fnum]>>blockRv;
980
                        CH->kcode = CH->block_fnum>>9;
981
                        if( (OPL->mode&0x40) && CH->block_fnum&0x100) CH->kcode |=1;
982
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT1]);
983
                        CALC_FCSLOT(CH,&CH->SLOT[SLOT2]);
984
                }
985
                return;
986
        case 0xc0:
987
                /* FB,C */
988
                if( (r&0x0f) > 8) return;
989
                CH = &OPL->P_CH[r&0x0f];
990
                {
991
                int feedback = (v>>1)&7;
992
                CH->FB   = feedback ? (8+1) - feedback : 0;
993
                CH->CON = v&1;
994
                set_algorythm(CH);
995
                }
996
                return;
997
        case 0xe0: /* wave type */
998
                slot = slot_array[r&0x1f];
999
                if(slot == -1) return;
1000
                CH = &OPL->P_CH[slot/2];
1001
                if(OPL->wavesel)
1002
                {
1003
                        /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1004
                        CH->SLOT[slot&1].wavetable = &SIN_TABLE[(v&0x03)*SIN_ENT];
1005
                }
1006
                return;
1007
        }
1008
}
1009

    
1010
/* lock/unlock for common table */
1011
static int OPL_LockTable(void)
1012
{
1013
        num_lock++;
1014
        if(num_lock>1) return 0;
1015
        /* first time */
1016
        cur_chip = NULL;
1017
        /* allocate total level table (128kb space) */
1018
        if( !OPLOpenTable() )
1019
        {
1020
                num_lock--;
1021
                return -1;
1022
        }
1023
        return 0;
1024
}
1025

    
1026
static void OPL_UnLockTable(void)
1027
{
1028
        if(num_lock) num_lock--;
1029
        if(num_lock) return;
1030
        /* last time */
1031
        cur_chip = NULL;
1032
        OPLCloseTable();
1033
}
1034

    
1035
#if (BUILD_YM3812 || BUILD_YM3526)
1036
/*******************************************************************************/
1037
/*                YM3812 local section                                                   */
1038
/*******************************************************************************/
1039

    
1040
/* ---------- update one of chip ----------- */
1041
void YM3812UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1042
{
1043
    int i;
1044
        int data;
1045
        OPLSAMPLE *buf = buffer;
1046
        UINT32 amsCnt  = OPL->amsCnt;
1047
        UINT32 vibCnt  = OPL->vibCnt;
1048
        UINT8 rythm = OPL->rythm&0x20;
1049
        OPL_CH *CH,*R_CH;
1050

    
1051
        if( (void *)OPL != cur_chip ){
1052
                cur_chip = (void *)OPL;
1053
                /* channel pointers */
1054
                S_CH = OPL->P_CH;
1055
                E_CH = &S_CH[9];
1056
                /* rythm slot */
1057
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1058
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1059
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1060
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1061
                /* LFO state */
1062
                amsIncr = OPL->amsIncr;
1063
                vibIncr = OPL->vibIncr;
1064
                ams_table = OPL->ams_table;
1065
                vib_table = OPL->vib_table;
1066
        }
1067
        R_CH = rythm ? &S_CH[6] : E_CH;
1068
    for( i=0; i < length ; i++ )
1069
        {
1070
                /*            channel A         channel B         channel C      */
1071
                /* LFO */
1072
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1073
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1074
                outd[0] = 0;
1075
                /* FM part */
1076
                for(CH=S_CH ; CH < R_CH ; CH++)
1077
                        OPL_CALC_CH(CH);
1078
                /* Rythn part */
1079
                if(rythm)
1080
                        OPL_CALC_RH(S_CH);
1081
                /* limit check */
1082
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1083
                /* store to sound buffer */
1084
                buf[i] = data >> OPL_OUTSB;
1085
        }
1086

    
1087
        OPL->amsCnt = amsCnt;
1088
        OPL->vibCnt = vibCnt;
1089
#ifdef OPL_OUTPUT_LOG
1090
        if(opl_dbg_fp)
1091
        {
1092
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1093
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1094
                fprintf(opl_dbg_fp,"%c%c%c",0x20+opl_dbg_chip,length&0xff,length/256);
1095
        }
1096
#endif
1097
}
1098
#endif /* (BUILD_YM3812 || BUILD_YM3526) */
1099

    
1100
#if BUILD_Y8950
1101

    
1102
void Y8950UpdateOne(FM_OPL *OPL, INT16 *buffer, int length)
1103
{
1104
    int i;
1105
        int data;
1106
        OPLSAMPLE *buf = buffer;
1107
        UINT32 amsCnt  = OPL->amsCnt;
1108
        UINT32 vibCnt  = OPL->vibCnt;
1109
        UINT8 rythm = OPL->rythm&0x20;
1110
        OPL_CH *CH,*R_CH;
1111
        YM_DELTAT *DELTAT = OPL->deltat;
1112

    
1113
        /* setup DELTA-T unit */
1114
        YM_DELTAT_DECODE_PRESET(DELTAT);
1115

    
1116
        if( (void *)OPL != cur_chip ){
1117
                cur_chip = (void *)OPL;
1118
                /* channel pointers */
1119
                S_CH = OPL->P_CH;
1120
                E_CH = &S_CH[9];
1121
                /* rythm slot */
1122
                SLOT7_1 = &S_CH[7].SLOT[SLOT1];
1123
                SLOT7_2 = &S_CH[7].SLOT[SLOT2];
1124
                SLOT8_1 = &S_CH[8].SLOT[SLOT1];
1125
                SLOT8_2 = &S_CH[8].SLOT[SLOT2];
1126
                /* LFO state */
1127
                amsIncr = OPL->amsIncr;
1128
                vibIncr = OPL->vibIncr;
1129
                ams_table = OPL->ams_table;
1130
                vib_table = OPL->vib_table;
1131
        }
1132
        R_CH = rythm ? &S_CH[6] : E_CH;
1133
    for( i=0; i < length ; i++ )
1134
        {
1135
                /*            channel A         channel B         channel C      */
1136
                /* LFO */
1137
                ams = ams_table[(amsCnt+=amsIncr)>>AMS_SHIFT];
1138
                vib = vib_table[(vibCnt+=vibIncr)>>VIB_SHIFT];
1139
                outd[0] = 0;
1140
                /* deltaT ADPCM */
1141
                if( DELTAT->portstate )
1142
                        YM_DELTAT_ADPCM_CALC(DELTAT);
1143
                /* FM part */
1144
                for(CH=S_CH ; CH < R_CH ; CH++)
1145
                        OPL_CALC_CH(CH);
1146
                /* Rythn part */
1147
                if(rythm)
1148
                        OPL_CALC_RH(S_CH);
1149
                /* limit check */
1150
                data = Limit( outd[0] , OPL_MAXOUT, OPL_MINOUT );
1151
                /* store to sound buffer */
1152
                buf[i] = data >> OPL_OUTSB;
1153
        }
1154
        OPL->amsCnt = amsCnt;
1155
        OPL->vibCnt = vibCnt;
1156
        /* deltaT START flag */
1157
        if( !DELTAT->portstate )
1158
                OPL->status &= 0xfe;
1159
}
1160
#endif
1161

    
1162
/* ---------- reset one of chip ---------- */
1163
void OPLResetChip(FM_OPL *OPL)
1164
{
1165
        int c,s;
1166
        int i;
1167

    
1168
        /* reset chip */
1169
        OPL->mode   = 0;        /* normal mode */
1170
        OPL_STATUS_RESET(OPL,0x7f);
1171
        /* reset with register write */
1172
        OPLWriteReg(OPL,0x01,0); /* wabesel disable */
1173
        OPLWriteReg(OPL,0x02,0); /* Timer1 */
1174
        OPLWriteReg(OPL,0x03,0); /* Timer2 */
1175
        OPLWriteReg(OPL,0x04,0); /* IRQ mask clear */
1176
        for(i = 0xff ; i >= 0x20 ; i-- ) OPLWriteReg(OPL,i,0);
1177
        /* reset OPerator paramater */
1178
        for( c = 0 ; c < OPL->max_ch ; c++ )
1179
        {
1180
                OPL_CH *CH = &OPL->P_CH[c];
1181
                /* OPL->P_CH[c].PAN = OPN_CENTER; */
1182
                for(s = 0 ; s < 2 ; s++ )
1183
                {
1184
                        /* wave table */
1185
                        CH->SLOT[s].wavetable = &SIN_TABLE[0];
1186
                        /* CH->SLOT[s].evm = ENV_MOD_RR; */
1187
                        CH->SLOT[s].evc = EG_OFF;
1188
                        CH->SLOT[s].eve = EG_OFF+1;
1189
                        CH->SLOT[s].evs = 0;
1190
                }
1191
        }
1192
#if BUILD_Y8950
1193
        if(OPL->type&OPL_TYPE_ADPCM)
1194
        {
1195
                YM_DELTAT *DELTAT = OPL->deltat;
1196

    
1197
                DELTAT->freqbase = OPL->freqbase;
1198
                DELTAT->output_pointer = outd;
1199
                DELTAT->portshift = 5;
1200
                DELTAT->output_range = DELTAT_MIXING_LEVEL<<TL_BITS;
1201
                YM_DELTAT_ADPCM_Reset(DELTAT,0);
1202
        }
1203
#endif
1204
}
1205

    
1206
/* ----------  Create one of vietual YM3812 ----------       */
1207
/* 'rate'  is sampling rate and 'bufsiz' is the size of the  */
1208
FM_OPL *OPLCreate(int type, int clock, int rate)
1209
{
1210
        char *ptr;
1211
        FM_OPL *OPL;
1212
        int state_size;
1213
        int max_ch = 9; /* normaly 9 channels */
1214

    
1215
        if( OPL_LockTable() ==-1) return NULL;
1216
        /* allocate OPL state space */
1217
        state_size  = sizeof(FM_OPL);
1218
        state_size += sizeof(OPL_CH)*max_ch;
1219
#if BUILD_Y8950
1220
        if(type&OPL_TYPE_ADPCM) state_size+= sizeof(YM_DELTAT);
1221
#endif
1222
        /* allocate memory block */
1223
        ptr = malloc(state_size);
1224
        if(ptr==NULL) return NULL;
1225
        /* clear */
1226
        memset(ptr,0,state_size);
1227
        OPL        = (FM_OPL *)ptr; ptr+=sizeof(FM_OPL);
1228
        OPL->P_CH  = (OPL_CH *)ptr; ptr+=sizeof(OPL_CH)*max_ch;
1229
#if BUILD_Y8950
1230
        if(type&OPL_TYPE_ADPCM) OPL->deltat = (YM_DELTAT *)ptr; ptr+=sizeof(YM_DELTAT);
1231
#endif
1232
        /* set channel state pointer */
1233
        OPL->type  = type;
1234
        OPL->clock = clock;
1235
        OPL->rate  = rate;
1236
        OPL->max_ch = max_ch;
1237
        /* init grobal tables */
1238
        OPL_initalize(OPL);
1239
        /* reset chip */
1240
        OPLResetChip(OPL);
1241
#ifdef OPL_OUTPUT_LOG
1242
        if(!opl_dbg_fp)
1243
        {
1244
                opl_dbg_fp = fopen("opllog.opl","wb");
1245
                opl_dbg_maxchip = 0;
1246
        }
1247
        if(opl_dbg_fp)
1248
        {
1249
                opl_dbg_opl[opl_dbg_maxchip] = OPL;
1250
                fprintf(opl_dbg_fp,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip,
1251
                        type,
1252
                        clock&0xff,
1253
                        (clock/0x100)&0xff,
1254
                        (clock/0x10000)&0xff,
1255
                        (clock/0x1000000)&0xff);
1256
                opl_dbg_maxchip++;
1257
        }
1258
#endif
1259
        return OPL;
1260
}
1261

    
1262
/* ----------  Destroy one of vietual YM3812 ----------       */
1263
void OPLDestroy(FM_OPL *OPL)
1264
{
1265
#ifdef OPL_OUTPUT_LOG
1266
        if(opl_dbg_fp)
1267
        {
1268
                fclose(opl_dbg_fp);
1269
                opl_dbg_fp = NULL;
1270
        }
1271
#endif
1272
        OPL_UnLockTable();
1273
        free(OPL);
1274
}
1275

    
1276
/* ----------  Option handlers ----------       */
1277

    
1278
void OPLSetTimerHandler(FM_OPL *OPL,OPL_TIMERHANDLER TimerHandler,int channelOffset)
1279
{
1280
        OPL->TimerHandler   = TimerHandler;
1281
        OPL->TimerParam = channelOffset;
1282
}
1283
void OPLSetIRQHandler(FM_OPL *OPL,OPL_IRQHANDLER IRQHandler,int param)
1284
{
1285
        OPL->IRQHandler     = IRQHandler;
1286
        OPL->IRQParam = param;
1287
}
1288
void OPLSetUpdateHandler(FM_OPL *OPL,OPL_UPDATEHANDLER UpdateHandler,int param)
1289
{
1290
        OPL->UpdateHandler = UpdateHandler;
1291
        OPL->UpdateParam = param;
1292
}
1293
#if BUILD_Y8950
1294
void OPLSetPortHandler(FM_OPL *OPL,OPL_PORTHANDLER_W PortHandler_w,OPL_PORTHANDLER_R PortHandler_r,int param)
1295
{
1296
        OPL->porthandler_w = PortHandler_w;
1297
        OPL->porthandler_r = PortHandler_r;
1298
        OPL->port_param = param;
1299
}
1300

    
1301
void OPLSetKeyboardHandler(FM_OPL *OPL,OPL_PORTHANDLER_W KeyboardHandler_w,OPL_PORTHANDLER_R KeyboardHandler_r,int param)
1302
{
1303
        OPL->keyboardhandler_w = KeyboardHandler_w;
1304
        OPL->keyboardhandler_r = KeyboardHandler_r;
1305
        OPL->keyboard_param = param;
1306
}
1307
#endif
1308
/* ---------- YM3812 I/O interface ---------- */
1309
int OPLWrite(FM_OPL *OPL,int a,int v)
1310
{
1311
        if( !(a&1) )
1312
        {        /* address port */
1313
                OPL->address = v & 0xff;
1314
        }
1315
        else
1316
        {        /* data port */
1317
                if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1318
#ifdef OPL_OUTPUT_LOG
1319
        if(opl_dbg_fp)
1320
        {
1321
                for(opl_dbg_chip=0;opl_dbg_chip<opl_dbg_maxchip;opl_dbg_chip++)
1322
                        if( opl_dbg_opl[opl_dbg_chip] == OPL) break;
1323
                fprintf(opl_dbg_fp,"%c%c%c",0x10+opl_dbg_chip,OPL->address,v);
1324
        }
1325
#endif
1326
                OPLWriteReg(OPL,OPL->address,v);
1327
        }
1328
        return OPL->status>>7;
1329
}
1330

    
1331
unsigned char OPLRead(FM_OPL *OPL,int a)
1332
{
1333
        if( !(a&1) )
1334
        {        /* status port */
1335
                return OPL->status & (OPL->statusmask|0x80);
1336
        }
1337
        /* data port */
1338
        switch(OPL->address)
1339
        {
1340
        case 0x05: /* KeyBoard IN */
1341
                if(OPL->type&OPL_TYPE_KEYBOARD)
1342
                {
1343
                        if(OPL->keyboardhandler_r)
1344
                                return OPL->keyboardhandler_r(OPL->keyboard_param);
1345
                        else {
1346
                                LOG(LOG_WAR,("OPL:read unmapped KEYBOARD port\n"));
1347
                        }
1348
                }
1349
                return 0;
1350
#if 0
1351
        case 0x0f: /* ADPCM-DATA  */
1352
                return 0;
1353
#endif
1354
        case 0x19: /* I/O DATA    */
1355
                if(OPL->type&OPL_TYPE_IO)
1356
                {
1357
                        if(OPL->porthandler_r)
1358
                                return OPL->porthandler_r(OPL->port_param);
1359
                        else {
1360
                                LOG(LOG_WAR,("OPL:read unmapped I/O port\n"));
1361
                        }
1362
                }
1363
                return 0;
1364
        case 0x1a: /* PCM-DATA    */
1365
                return 0;
1366
        }
1367
        return 0;
1368
}
1369

    
1370
int OPLTimerOver(FM_OPL *OPL,int c)
1371
{
1372
        if( c )
1373
        {        /* Timer B */
1374
                OPL_STATUS_SET(OPL,0x20);
1375
        }
1376
        else
1377
        {        /* Timer A */
1378
                OPL_STATUS_SET(OPL,0x40);
1379
                /* CSM mode key,TL controll */
1380
                if( OPL->mode & 0x80 )
1381
                {        /* CSM mode total level latch and auto key on */
1382
                        int ch;
1383
                        if(OPL->UpdateHandler) OPL->UpdateHandler(OPL->UpdateParam,0);
1384
                        for(ch=0;ch<9;ch++)
1385
                                CSMKeyControll( &OPL->P_CH[ch] );
1386
                }
1387
        }
1388
        /* reload timer */
1389
        if (OPL->TimerHandler) (OPL->TimerHandler)(OPL->TimerParam+c,(double)OPL->T[c]*OPL->TimerBase);
1390
        return OPL->status>>7;
1391
}