Revision ca20cf32

b/Makefile.hw
11 11
QEMU_CFLAGS+=-I.. -I$(SRC_PATH)/fpu
12 12

  
13 13
obj-y =
14
obj-y += loader.o
14 15
obj-y += virtio.o
15 16
obj-y += fw_cfg.o
16 17
obj-y += watchdog.o
b/Makefile.target
155 155
# System emulator target
156 156
ifdef CONFIG_SOFTMMU
157 157

  
158
obj-y = vl.o monitor.o pci.o loader.o isa_mmio.o machine.o \
158
obj-y = vl.o monitor.o pci.o isa_mmio.o machine.o \
159 159
        gdbstub.o gdbstub-xml.o msix.o ioport.o
160 160
# virtio has to be here due to weird dependency between PCI and virtio-net.
161 161
# need to fix this properly
b/disas.h
3 3

  
4 4
#include "qemu-common.h"
5 5

  
6
#ifdef NEED_CPU_H
6 7
/* Disassemble this for me please... (debugging). */
7 8
void disas(FILE *out, void *code, unsigned long size);
8 9
void target_disas(FILE *out, target_ulong code, target_ulong size, int flags);
......
15 16

  
16 17
/* Look up symbol for debugging purpose.  Returns "" if unknown. */
17 18
const char *lookup_symbol(target_ulong orig_addr);
19
#endif
18 20

  
19 21
struct syminfo;
20 22
struct elf32_sym;
21 23
struct elf64_sym;
22 24

  
23
typedef const char *(*lookup_symbol_t)(struct syminfo *s, target_ulong orig_addr);
25
typedef const char *(*lookup_symbol_t)(struct syminfo *s, target_phys_addr_t orig_addr);
24 26

  
25 27
struct syminfo {
26 28
    lookup_symbol_t lookup_symbol;
/dev/null
1
static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
2
{
3
    bswap16s(&ehdr->e_type);			/* Object file type */
4
    bswap16s(&ehdr->e_machine);		/* Architecture */
5
    bswap32s(&ehdr->e_version);		/* Object file version */
6
    bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
7
    bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
8
    bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
9
    bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
10
    bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
11
    bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
12
    bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
13
    bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
14
    bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
15
    bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
16
}
17

  
18
static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
19
{
20
    bswap32s(&phdr->p_type);			/* Segment type */
21
    bswapSZs(&phdr->p_offset);		/* Segment file offset */
22
    bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
23
    bswapSZs(&phdr->p_paddr);		/* Segment physical address */
24
    bswapSZs(&phdr->p_filesz);		/* Segment size in file */
25
    bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
26
    bswap32s(&phdr->p_flags);		/* Segment flags */
27
    bswapSZs(&phdr->p_align);		/* Segment alignment */
28
}
29

  
30
static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
31
{
32
    bswap32s(&shdr->sh_name);
33
    bswap32s(&shdr->sh_type);
34
    bswapSZs(&shdr->sh_flags);
35
    bswapSZs(&shdr->sh_addr);
36
    bswapSZs(&shdr->sh_offset);
37
    bswapSZs(&shdr->sh_size);
38
    bswap32s(&shdr->sh_link);
39
    bswap32s(&shdr->sh_info);
40
    bswapSZs(&shdr->sh_addralign);
41
    bswapSZs(&shdr->sh_entsize);
42
}
43

  
44
static void glue(bswap_sym, SZ)(struct elf_sym *sym)
45
{
46
    bswap32s(&sym->st_name);
47
    bswapSZs(&sym->st_value);
48
    bswapSZs(&sym->st_size);
49
    bswap16s(&sym->st_shndx);
50
}
51

  
52
static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
53
                                               int n, int type)
54
{
55
    int i;
56
    for(i=0;i<n;i++) {
57
        if (shdr_table[i].sh_type == type)
58
            return shdr_table + i;
59
    }
60
    return NULL;
61
}
62

  
63
static int glue(symfind, SZ)(const void *s0, const void *s1)
64
{
65
    struct elf_sym *key = (struct elf_sym *)s0;
66
    struct elf_sym *sym = (struct elf_sym *)s1;
67
    int result = 0;
68
    if (key->st_value < sym->st_value) {
69
        result = -1;
70
    } else if (key->st_value >= sym->st_value + sym->st_size) {
71
        result = 1;
72
    }
73
    return result;
74
}
75

  
76
static const char *glue(lookup_symbol, SZ)(struct syminfo *s, target_ulong orig_addr)
77
{
78
    struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
79
    struct elf_sym key;
80
    struct elf_sym *sym;
81

  
82
    key.st_value = orig_addr;
83

  
84
    sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), glue(symfind, SZ));
85
    if (sym != NULL) {
86
        return s->disas_strtab + sym->st_name;
87
    }
88

  
89
    return "";
90
}
91

  
92
static int glue(symcmp, SZ)(const void *s0, const void *s1)
93
{
94
    struct elf_sym *sym0 = (struct elf_sym *)s0;
95
    struct elf_sym *sym1 = (struct elf_sym *)s1;
96
    return (sym0->st_value < sym1->st_value)
97
        ? -1
98
        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
99
}
100

  
101
static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab)
102
{
103
    struct elf_shdr *symtab, *strtab, *shdr_table = NULL;
104
    struct elf_sym *syms = NULL;
105
    struct syminfo *s;
106
    int nsyms, i;
107
    char *str = NULL;
108

  
109
    shdr_table = load_at(fd, ehdr->e_shoff,
110
                         sizeof(struct elf_shdr) * ehdr->e_shnum);
111
    if (!shdr_table)
112
        return -1;
113

  
114
    if (must_swab) {
115
        for (i = 0; i < ehdr->e_shnum; i++) {
116
            glue(bswap_shdr, SZ)(shdr_table + i);
117
        }
118
    }
119

  
120
    symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
121
    if (!symtab)
122
        goto fail;
123
    syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
124
    if (!syms)
125
        goto fail;
126

  
127
    nsyms = symtab->sh_size / sizeof(struct elf_sym);
128

  
129
    i = 0;
130
    while (i < nsyms) {
131
        if (must_swab)
132
            glue(bswap_sym, SZ)(&syms[i]);
133
        /* We are only interested in function symbols.
134
           Throw everything else away.  */
135
        if (syms[i].st_shndx == SHN_UNDEF ||
136
                syms[i].st_shndx >= SHN_LORESERVE ||
137
                ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
138
            nsyms--;
139
            if (i < nsyms) {
140
                syms[i] = syms[nsyms];
141
            }
142
            continue;
143
        }
144
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
145
        /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
146
        syms[i].st_value &= ~(target_ulong)1;
147
#endif
148
        i++;
149
    }
150
    syms = qemu_realloc(syms, nsyms * sizeof(*syms));
151

  
152
    qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
153

  
154
    /* String table */
155
    if (symtab->sh_link >= ehdr->e_shnum)
156
        goto fail;
157
    strtab = &shdr_table[symtab->sh_link];
158

  
159
    str = load_at(fd, strtab->sh_offset, strtab->sh_size);
160
    if (!str)
161
        goto fail;
162

  
163
    /* Commit */
164
    s = qemu_mallocz(sizeof(*s));
165
    s->lookup_symbol = glue(lookup_symbol, SZ);
166
    glue(s->disas_symtab.elf, SZ) = syms;
167
    s->disas_num_syms = nsyms;
168
    s->disas_strtab = str;
169
    s->next = syminfos;
170
    syminfos = s;
171
    qemu_free(shdr_table);
172
    return 0;
173
 fail:
174
    qemu_free(syms);
175
    qemu_free(str);
176
    qemu_free(shdr_table);
177
    return -1;
178
}
179

  
180
static int glue(load_elf, SZ)(int fd, int64_t address_offset,
181
                              int must_swab, uint64_t *pentry,
182
                              uint64_t *lowaddr, uint64_t *highaddr)
183
{
184
    struct elfhdr ehdr;
185
    struct elf_phdr *phdr = NULL, *ph;
186
    int size, i, total_size;
187
    elf_word mem_size;
188
    uint64_t addr, low = (uint64_t)-1, high = 0;
189
    uint8_t *data = NULL;
190

  
191
    if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
192
        goto fail;
193
    if (must_swab) {
194
        glue(bswap_ehdr, SZ)(&ehdr);
195
    }
196

  
197
    switch (ELF_MACHINE) {
198
        case EM_PPC64:
199
            if (EM_PPC64 != ehdr.e_machine)
200
                if (EM_PPC != ehdr.e_machine)
201
                    goto fail;
202
            break;
203
        case EM_X86_64:
204
            if (EM_X86_64 != ehdr.e_machine)
205
                if (EM_386 != ehdr.e_machine)
206
                    goto fail;
207
            break;
208
        default:
209
            if (ELF_MACHINE != ehdr.e_machine)
210
                goto fail;
211
    }
212

  
213
    if (pentry)
214
   	*pentry = (uint64_t)(elf_sword)ehdr.e_entry;
215

  
216
    glue(load_symbols, SZ)(&ehdr, fd, must_swab);
217

  
218
    size = ehdr.e_phnum * sizeof(phdr[0]);
219
    lseek(fd, ehdr.e_phoff, SEEK_SET);
220
    phdr = qemu_mallocz(size);
221
    if (!phdr)
222
        goto fail;
223
    if (read(fd, phdr, size) != size)
224
        goto fail;
225
    if (must_swab) {
226
        for(i = 0; i < ehdr.e_phnum; i++) {
227
            ph = &phdr[i];
228
            glue(bswap_phdr, SZ)(ph);
229
        }
230
    }
231

  
232
    total_size = 0;
233
    for(i = 0; i < ehdr.e_phnum; i++) {
234
        ph = &phdr[i];
235
        if (ph->p_type == PT_LOAD) {
236
            mem_size = ph->p_memsz;
237
            /* XXX: avoid allocating */
238
            data = qemu_mallocz(mem_size);
239
            if (ph->p_filesz > 0) {
240
                if (lseek(fd, ph->p_offset, SEEK_SET) < 0)
241
                    goto fail;
242
                if (read(fd, data, ph->p_filesz) != ph->p_filesz)
243
                    goto fail;
244
            }
245
            /* address_offset is hack for kernel images that are
246
               linked at the wrong physical address.  */
247
            addr = ph->p_paddr + address_offset;
248

  
249
            cpu_physical_memory_write_rom(addr, data, mem_size);
250

  
251
            total_size += mem_size;
252
            if (addr < low)
253
                low = addr;
254
            if ((addr + mem_size) > high)
255
                high = addr + mem_size;
256

  
257
            qemu_free(data);
258
            data = NULL;
259
        }
260
    }
261
    qemu_free(phdr);
262
    if (lowaddr)
263
        *lowaddr = (uint64_t)(elf_sword)low;
264
    if (highaddr)
265
        *highaddr = (uint64_t)(elf_sword)high;
266
    return total_size;
267
 fail:
268
    qemu_free(data);
269
    qemu_free(phdr);
270
    return -1;
271
}
b/hw/an5206.c
11 11
#include "mcf.h"
12 12
#include "sysemu.h"
13 13
#include "boards.h"
14
#include "loader.h"
15
#include "elf.h"
14 16

  
15 17
#define KERNEL_LOAD_ADDR 0x10000
16 18
#define AN5206_MBAR_ADDR 0x10000000
......
35 37
    CPUState *env;
36 38
    int kernel_size;
37 39
    uint64_t elf_entry;
38
    target_ulong entry;
40
    target_phys_addr_t entry;
39 41

  
40 42
    if (!cpu_model)
41 43
        cpu_model = "m5206";
......
66 68
        exit(1);
67 69
    }
68 70

  
69
    kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
71
    kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
72
                           1, ELF_MACHINE, 0);
70 73
    entry = elf_entry;
71 74
    if (kernel_size < 0) {
72 75
        kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
b/hw/arm_boot.c
10 10
#include "hw.h"
11 11
#include "arm-misc.h"
12 12
#include "sysemu.h"
13
#include "loader.h"
14
#include "elf.h"
13 15

  
14 16
#define KERNEL_ARGS_ADDR 0x100
15 17
#define KERNEL_LOAD_ADDR 0x00010000
......
191 193
    int n;
192 194
    int is_linux = 0;
193 195
    uint64_t elf_entry;
194
    target_ulong entry;
196
    target_phys_addr_t entry;
197
    int big_endian;
195 198

  
196 199
    /* Load the kernel.  */
197 200
    if (!info->kernel_filename) {
......
206 209
        qemu_register_reset(main_cpu_reset, env);
207 210
    }
208 211

  
212
#ifdef TARGET_WORDS_BIGENDIAN
213
    big_endian = 1;
214
#else
215
    big_endian = 0;
216
#endif
217

  
209 218
    /* Assume that raw images are linux kernels, and ELF images are not.  */
210
    kernel_size = load_elf(info->kernel_filename, 0, &elf_entry, NULL, NULL);
219
    kernel_size = load_elf(info->kernel_filename, 0, &elf_entry, NULL, NULL,
220
                           big_endian, ELF_MACHINE, 1);
211 221
    entry = elf_entry;
212 222
    if (kernel_size < 0) {
213 223
        kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
b/hw/armv7m.c
10 10
#include "sysbus.h"
11 11
#include "arm-misc.h"
12 12
#include "sysemu.h"
13
#include "loader.h"
14
#include "elf.h"
13 15

  
14 16
/* Bitbanded IO.  Each word corresponds to a single bit.  */
15 17

  
......
166 168
    uint64_t entry;
167 169
    uint64_t lowaddr;
168 170
    int i;
171
    int big_endian;
169 172

  
170 173
    flash_size *= 1024;
171 174
    sram_size *= 1024;
......
206 209
        pic[i] = qdev_get_gpio_in(nvic, i);
207 210
    }
208 211

  
209
    image_size = load_elf(kernel_filename, 0, &entry, &lowaddr, NULL);
212
#ifdef TARGET_WORDS_BIGENDIAN
213
    big_endian = 1;
214
#else
215
    big_endian = 0;
216
#endif
217

  
218
    image_size = load_elf(kernel_filename, 0, &entry, &lowaddr, NULL,
219
                          big_endian, ELF_MACHINE, 1);
210 220
    if (image_size < 0) {
211 221
        image_size = load_image_targphys(kernel_filename, 0, flash_size);
212 222
	lowaddr = 0;
b/hw/axis_dev88.c
28 28
#include "boards.h"
29 29
#include "sysemu.h"
30 30
#include "etraxfs.h"
31
#include "loader.h"
32
#include "elf.h"
31 33

  
32 34
#define D(x)
33 35
#define DNAND(x)
......
344 346
        /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis 
345 347
           devboard SDK.  */
346 348
        kernel_size = load_elf(kernel_filename, -0x80000000LL,
347
                               &entry, NULL, &high);
349
                               &entry, NULL, &high, 0, ELF_MACHINE, 0);
348 350
        bootstrap_pc = entry;
349 351
        if (kernel_size < 0) {
350 352
            /* Takes a kimage from the axis devboard SDK.  */
b/hw/dummy_m68k.c
9 9
#include "hw.h"
10 10
#include "sysemu.h"
11 11
#include "boards.h"
12
#include "loader.h"
13
#include "elf.h"
12 14

  
13 15
#define KERNEL_LOAD_ADDR 0x10000
14 16

  
......
22 24
    CPUState *env;
23 25
    int kernel_size;
24 26
    uint64_t elf_entry;
25
    target_ulong entry;
27
    target_phys_addr_t entry;
26 28

  
27 29
    if (!cpu_model)
28 30
        cpu_model = "cfv4e";
......
41 43

  
42 44
    /* Load kernel.  */
43 45
    if (kernel_filename) {
44
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
46
        kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
47
                               1, ELF_MACHINE, 0);
45 48
        entry = elf_entry;
46 49
        if (kernel_size < 0) {
47 50
            kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
b/hw/elf_ops.h
1
static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
2
{
3
    bswap16s(&ehdr->e_type);			/* Object file type */
4
    bswap16s(&ehdr->e_machine);		/* Architecture */
5
    bswap32s(&ehdr->e_version);		/* Object file version */
6
    bswapSZs(&ehdr->e_entry);		/* Entry point virtual address */
7
    bswapSZs(&ehdr->e_phoff);		/* Program header table file offset */
8
    bswapSZs(&ehdr->e_shoff);		/* Section header table file offset */
9
    bswap32s(&ehdr->e_flags);		/* Processor-specific flags */
10
    bswap16s(&ehdr->e_ehsize);		/* ELF header size in bytes */
11
    bswap16s(&ehdr->e_phentsize);		/* Program header table entry size */
12
    bswap16s(&ehdr->e_phnum);		/* Program header table entry count */
13
    bswap16s(&ehdr->e_shentsize);		/* Section header table entry size */
14
    bswap16s(&ehdr->e_shnum);		/* Section header table entry count */
15
    bswap16s(&ehdr->e_shstrndx);		/* Section header string table index */
16
}
17

  
18
static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
19
{
20
    bswap32s(&phdr->p_type);			/* Segment type */
21
    bswapSZs(&phdr->p_offset);		/* Segment file offset */
22
    bswapSZs(&phdr->p_vaddr);		/* Segment virtual address */
23
    bswapSZs(&phdr->p_paddr);		/* Segment physical address */
24
    bswapSZs(&phdr->p_filesz);		/* Segment size in file */
25
    bswapSZs(&phdr->p_memsz);		/* Segment size in memory */
26
    bswap32s(&phdr->p_flags);		/* Segment flags */
27
    bswapSZs(&phdr->p_align);		/* Segment alignment */
28
}
29

  
30
static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
31
{
32
    bswap32s(&shdr->sh_name);
33
    bswap32s(&shdr->sh_type);
34
    bswapSZs(&shdr->sh_flags);
35
    bswapSZs(&shdr->sh_addr);
36
    bswapSZs(&shdr->sh_offset);
37
    bswapSZs(&shdr->sh_size);
38
    bswap32s(&shdr->sh_link);
39
    bswap32s(&shdr->sh_info);
40
    bswapSZs(&shdr->sh_addralign);
41
    bswapSZs(&shdr->sh_entsize);
42
}
43

  
44
static void glue(bswap_sym, SZ)(struct elf_sym *sym)
45
{
46
    bswap32s(&sym->st_name);
47
    bswapSZs(&sym->st_value);
48
    bswapSZs(&sym->st_size);
49
    bswap16s(&sym->st_shndx);
50
}
51

  
52
static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
53
                                               int n, int type)
54
{
55
    int i;
56
    for(i=0;i<n;i++) {
57
        if (shdr_table[i].sh_type == type)
58
            return shdr_table + i;
59
    }
60
    return NULL;
61
}
62

  
63
static int glue(symfind, SZ)(const void *s0, const void *s1)
64
{
65
    struct elf_sym *key = (struct elf_sym *)s0;
66
    struct elf_sym *sym = (struct elf_sym *)s1;
67
    int result = 0;
68
    if (key->st_value < sym->st_value) {
69
        result = -1;
70
    } else if (key->st_value >= sym->st_value + sym->st_size) {
71
        result = 1;
72
    }
73
    return result;
74
}
75

  
76
static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
77
                                           target_phys_addr_t orig_addr)
78
{
79
    struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
80
    struct elf_sym key;
81
    struct elf_sym *sym;
82

  
83
    key.st_value = orig_addr;
84

  
85
    sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), glue(symfind, SZ));
86
    if (sym != NULL) {
87
        return s->disas_strtab + sym->st_name;
88
    }
89

  
90
    return "";
91
}
92

  
93
static int glue(symcmp, SZ)(const void *s0, const void *s1)
94
{
95
    struct elf_sym *sym0 = (struct elf_sym *)s0;
96
    struct elf_sym *sym1 = (struct elf_sym *)s1;
97
    return (sym0->st_value < sym1->st_value)
98
        ? -1
99
        : ((sym0->st_value > sym1->st_value) ? 1 : 0);
100
}
101

  
102
static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
103
                                  int clear_lsb)
104
{
105
    struct elf_shdr *symtab, *strtab, *shdr_table = NULL;
106
    struct elf_sym *syms = NULL;
107
    struct syminfo *s;
108
    int nsyms, i;
109
    char *str = NULL;
110

  
111
    shdr_table = load_at(fd, ehdr->e_shoff,
112
                         sizeof(struct elf_shdr) * ehdr->e_shnum);
113
    if (!shdr_table)
114
        return -1;
115

  
116
    if (must_swab) {
117
        for (i = 0; i < ehdr->e_shnum; i++) {
118
            glue(bswap_shdr, SZ)(shdr_table + i);
119
        }
120
    }
121

  
122
    symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
123
    if (!symtab)
124
        goto fail;
125
    syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
126
    if (!syms)
127
        goto fail;
128

  
129
    nsyms = symtab->sh_size / sizeof(struct elf_sym);
130

  
131
    i = 0;
132
    while (i < nsyms) {
133
        if (must_swab)
134
            glue(bswap_sym, SZ)(&syms[i]);
135
        /* We are only interested in function symbols.
136
           Throw everything else away.  */
137
        if (syms[i].st_shndx == SHN_UNDEF ||
138
                syms[i].st_shndx >= SHN_LORESERVE ||
139
                ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
140
            nsyms--;
141
            if (i < nsyms) {
142
                syms[i] = syms[nsyms];
143
            }
144
            continue;
145
        }
146
        if (clear_lsb) {
147
            /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
148
            syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
149
        }
150
        i++;
151
    }
152
    syms = qemu_realloc(syms, nsyms * sizeof(*syms));
153

  
154
    qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
155

  
156
    /* String table */
157
    if (symtab->sh_link >= ehdr->e_shnum)
158
        goto fail;
159
    strtab = &shdr_table[symtab->sh_link];
160

  
161
    str = load_at(fd, strtab->sh_offset, strtab->sh_size);
162
    if (!str)
163
        goto fail;
164

  
165
    /* Commit */
166
    s = qemu_mallocz(sizeof(*s));
167
    s->lookup_symbol = glue(lookup_symbol, SZ);
168
    glue(s->disas_symtab.elf, SZ) = syms;
169
    s->disas_num_syms = nsyms;
170
    s->disas_strtab = str;
171
    s->next = syminfos;
172
    syminfos = s;
173
    qemu_free(shdr_table);
174
    return 0;
175
 fail:
176
    qemu_free(syms);
177
    qemu_free(str);
178
    qemu_free(shdr_table);
179
    return -1;
180
}
181

  
182
static int glue(load_elf, SZ)(int fd, int64_t address_offset,
183
                              int must_swab, uint64_t *pentry,
184
                              uint64_t *lowaddr, uint64_t *highaddr,
185
                              int elf_machine, int clear_lsb)
186
{
187
    struct elfhdr ehdr;
188
    struct elf_phdr *phdr = NULL, *ph;
189
    int size, i, total_size;
190
    elf_word mem_size;
191
    uint64_t addr, low = (uint64_t)-1, high = 0;
192
    uint8_t *data = NULL;
193

  
194
    if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
195
        goto fail;
196
    if (must_swab) {
197
        glue(bswap_ehdr, SZ)(&ehdr);
198
    }
199

  
200
    switch (elf_machine) {
201
        case EM_PPC64:
202
            if (EM_PPC64 != ehdr.e_machine)
203
                if (EM_PPC != ehdr.e_machine)
204
                    goto fail;
205
            break;
206
        case EM_X86_64:
207
            if (EM_X86_64 != ehdr.e_machine)
208
                if (EM_386 != ehdr.e_machine)
209
                    goto fail;
210
            break;
211
        default:
212
            if (elf_machine != ehdr.e_machine)
213
                goto fail;
214
    }
215

  
216
    if (pentry)
217
   	*pentry = (uint64_t)(elf_sword)ehdr.e_entry;
218

  
219
    glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb);
220

  
221
    size = ehdr.e_phnum * sizeof(phdr[0]);
222
    lseek(fd, ehdr.e_phoff, SEEK_SET);
223
    phdr = qemu_mallocz(size);
224
    if (!phdr)
225
        goto fail;
226
    if (read(fd, phdr, size) != size)
227
        goto fail;
228
    if (must_swab) {
229
        for(i = 0; i < ehdr.e_phnum; i++) {
230
            ph = &phdr[i];
231
            glue(bswap_phdr, SZ)(ph);
232
        }
233
    }
234

  
235
    total_size = 0;
236
    for(i = 0; i < ehdr.e_phnum; i++) {
237
        ph = &phdr[i];
238
        if (ph->p_type == PT_LOAD) {
239
            mem_size = ph->p_memsz;
240
            /* XXX: avoid allocating */
241
            data = qemu_mallocz(mem_size);
242
            if (ph->p_filesz > 0) {
243
                if (lseek(fd, ph->p_offset, SEEK_SET) < 0)
244
                    goto fail;
245
                if (read(fd, data, ph->p_filesz) != ph->p_filesz)
246
                    goto fail;
247
            }
248
            /* address_offset is hack for kernel images that are
249
               linked at the wrong physical address.  */
250
            addr = ph->p_paddr + address_offset;
251

  
252
            cpu_physical_memory_write_rom(addr, data, mem_size);
253

  
254
            total_size += mem_size;
255
            if (addr < low)
256
                low = addr;
257
            if ((addr + mem_size) > high)
258
                high = addr + mem_size;
259

  
260
            qemu_free(data);
261
            data = NULL;
262
        }
263
    }
264
    qemu_free(phdr);
265
    if (lowaddr)
266
        *lowaddr = (uint64_t)(elf_sword)low;
267
    if (highaddr)
268
        *highaddr = (uint64_t)(elf_sword)high;
269
    return total_size;
270
 fail:
271
    qemu_free(data);
272
    qemu_free(phdr);
273
    return -1;
274
}
b/hw/etraxfs.c
28 28
#include "net.h"
29 29
#include "flash.h"
30 30
#include "etraxfs.h"
31
#include "loader.h"
32
#include "elf.h"
31 33

  
32 34
#define FLASH_SIZE 0x2000000
33 35
#define INTMEM_SIZE (128 * 1024)
......
136 138
        /* Boots a kernel elf binary, os/linux-2.6/vmlinux from the axis 
137 139
           devboard SDK.  */
138 140
        kernel_size = load_elf(kernel_filename, -0x80000000LL,
139
                               &entry, NULL, &high);
141
                               &entry, NULL, &high, 0, ELF_MACHINE, 0);
140 142
        bootstrap_pc = entry;
141 143
        if (kernel_size < 0) {
142 144
            /* Takes a kimage from the axis devboard SDK.  */
b/hw/loader.c
1
/*
2
 * QEMU Executable loader
3
 *
4
 * Copyright (c) 2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 *
24
 * Gunzip functionality in this file is derived from u-boot:
25
 *
26
 * (C) Copyright 2008 Semihalf
27
 *
28
 * (C) Copyright 2000-2005
29
 * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
30
 *
31
 * This program is free software; you can redistribute it and/or
32
 * modify it under the terms of the GNU General Public License as
33
 * published by the Free Software Foundation; either version 2 of
34
 * the License, or (at your option) any later version.
35
 *
36
 * This program is distributed in the hope that it will be useful,
37
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
38
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
39
 * GNU General Public License for more details.
40
 *
41
 * You should have received a copy of the GNU General Public License along
42
 * with this program; if not, see <http://www.gnu.org/licenses/>.
43
 */
44

  
45
#include "hw.h"
46
#include "disas.h"
47
#include "sysemu.h"
48
#include "uboot_image.h"
49
#include "loader.h"
50

  
51
#include <zlib.h>
52

  
53
/* return the size or -1 if error */
54
int get_image_size(const char *filename)
55
{
56
    int fd, size;
57
    fd = open(filename, O_RDONLY | O_BINARY);
58
    if (fd < 0)
59
        return -1;
60
    size = lseek(fd, 0, SEEK_END);
61
    close(fd);
62
    return size;
63
}
64

  
65
/* return the size or -1 if error */
66
/* deprecated, because caller does not specify buffer size! */
67
int load_image(const char *filename, uint8_t *addr)
68
{
69
    int fd, size;
70
    fd = open(filename, O_RDONLY | O_BINARY);
71
    if (fd < 0)
72
        return -1;
73
    size = lseek(fd, 0, SEEK_END);
74
    lseek(fd, 0, SEEK_SET);
75
    if (read(fd, addr, size) != size) {
76
        close(fd);
77
        return -1;
78
    }
79
    close(fd);
80
    return size;
81
}
82

  
83
/* return the amount read, just like fread.  0 may mean error or eof */
84
int fread_targphys(target_phys_addr_t dst_addr, size_t nbytes, FILE *f)
85
{
86
    uint8_t buf[4096];
87
    target_phys_addr_t dst_begin = dst_addr;
88
    size_t want, did;
89

  
90
    while (nbytes) {
91
	want = nbytes > sizeof(buf) ? sizeof(buf) : nbytes;
92
	did = fread(buf, 1, want, f);
93

  
94
	cpu_physical_memory_write_rom(dst_addr, buf, did);
95
	dst_addr += did;
96
	nbytes -= did;
97
	if (did != want)
98
	    break;
99
    }
100
    return dst_addr - dst_begin;
101
}
102

  
103
/* returns 0 on error, 1 if ok */
104
int fread_targphys_ok(target_phys_addr_t dst_addr, size_t nbytes, FILE *f)
105
{
106
    return fread_targphys(dst_addr, nbytes, f) == nbytes;
107
}
108

  
109
/* read()-like version */
110
int read_targphys(int fd, target_phys_addr_t dst_addr, size_t nbytes)
111
{
112
    uint8_t buf[4096];
113
    target_phys_addr_t dst_begin = dst_addr;
114
    size_t want, did;
115

  
116
    while (nbytes) {
117
	want = nbytes > sizeof(buf) ? sizeof(buf) : nbytes;
118
	did = read(fd, buf, want);
119
	if (did != want) break;
120

  
121
	cpu_physical_memory_write_rom(dst_addr, buf, did);
122
	dst_addr += did;
123
	nbytes -= did;
124
    }
125
    return dst_addr - dst_begin;
126
}
127

  
128
/* return the size or -1 if error */
129
int load_image_targphys(const char *filename,
130
			target_phys_addr_t addr, int max_sz)
131
{
132
    FILE *f;
133
    size_t got;
134

  
135
    f = fopen(filename, "rb");
136
    if (!f) return -1;
137

  
138
    got = fread_targphys(addr, max_sz, f);
139
    if (ferror(f)) { fclose(f); return -1; }
140
    fclose(f);
141

  
142
    return got;
143
}
144

  
145
void pstrcpy_targphys(target_phys_addr_t dest, int buf_size,
146
                      const char *source)
147
{
148
    static const uint8_t nul_byte = 0;
149
    const char *nulp;
150

  
151
    if (buf_size <= 0) return;
152
    nulp = memchr(source, 0, buf_size);
153
    if (nulp) {
154
	cpu_physical_memory_write_rom(dest, (uint8_t *)source,
155
                                      (nulp - source) + 1);
156
    } else {
157
	cpu_physical_memory_write_rom(dest, (uint8_t *)source, buf_size - 1);
158
	cpu_physical_memory_write_rom(dest, &nul_byte, 1);
159
    }
160
}
161

  
162
/* A.OUT loader */
163

  
164
struct exec
165
{
166
  uint32_t a_info;   /* Use macros N_MAGIC, etc for access */
167
  uint32_t a_text;   /* length of text, in bytes */
168
  uint32_t a_data;   /* length of data, in bytes */
169
  uint32_t a_bss;    /* length of uninitialized data area, in bytes */
170
  uint32_t a_syms;   /* length of symbol table data in file, in bytes */
171
  uint32_t a_entry;  /* start address */
172
  uint32_t a_trsize; /* length of relocation info for text, in bytes */
173
  uint32_t a_drsize; /* length of relocation info for data, in bytes */
174
};
175

  
176
static void bswap_ahdr(struct exec *e)
177
{
178
    bswap32s(&e->a_info);
179
    bswap32s(&e->a_text);
180
    bswap32s(&e->a_data);
181
    bswap32s(&e->a_bss);
182
    bswap32s(&e->a_syms);
183
    bswap32s(&e->a_entry);
184
    bswap32s(&e->a_trsize);
185
    bswap32s(&e->a_drsize);
186
}
187

  
188
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
189
#define OMAGIC 0407
190
#define NMAGIC 0410
191
#define ZMAGIC 0413
192
#define QMAGIC 0314
193
#define _N_HDROFF(x) (1024 - sizeof (struct exec))
194
#define N_TXTOFF(x)							\
195
    (N_MAGIC(x) == ZMAGIC ? _N_HDROFF((x)) + sizeof (struct exec) :	\
196
     (N_MAGIC(x) == QMAGIC ? 0 : sizeof (struct exec)))
197
#define N_TXTADDR(x, target_page_size) (N_MAGIC(x) == QMAGIC ? target_page_size : 0)
198
#define _N_SEGMENT_ROUND(x, target_page_size) (((x) + target_page_size - 1) & ~(target_page_size - 1))
199

  
200
#define _N_TXTENDADDR(x, target_page_size) (N_TXTADDR(x, target_page_size)+(x).a_text)
201

  
202
#define N_DATADDR(x, target_page_size) \
203
    (N_MAGIC(x)==OMAGIC? (_N_TXTENDADDR(x, target_page_size)) \
204
     : (_N_SEGMENT_ROUND (_N_TXTENDADDR(x, target_page_size), target_page_size)))
205

  
206

  
207
int load_aout(const char *filename, target_phys_addr_t addr, int max_sz,
208
              int bswap_needed, target_phys_addr_t target_page_size)
209
{
210
    int fd, size, ret;
211
    struct exec e;
212
    uint32_t magic;
213

  
214
    fd = open(filename, O_RDONLY | O_BINARY);
215
    if (fd < 0)
216
        return -1;
217

  
218
    size = read(fd, &e, sizeof(e));
219
    if (size < 0)
220
        goto fail;
221

  
222
    if (bswap_needed) {
223
        bswap_ahdr(&e);
224
    }
225

  
226
    magic = N_MAGIC(e);
227
    switch (magic) {
228
    case ZMAGIC:
229
    case QMAGIC:
230
    case OMAGIC:
231
        if (e.a_text + e.a_data > max_sz)
232
            goto fail;
233
	lseek(fd, N_TXTOFF(e), SEEK_SET);
234
	size = read_targphys(fd, addr, e.a_text + e.a_data);
235
	if (size < 0)
236
	    goto fail;
237
	break;
238
    case NMAGIC:
239
        if (N_DATADDR(e, target_page_size) + e.a_data > max_sz)
240
            goto fail;
241
	lseek(fd, N_TXTOFF(e), SEEK_SET);
242
	size = read_targphys(fd, addr, e.a_text);
243
	if (size < 0)
244
	    goto fail;
245
        ret = read_targphys(fd, addr + N_DATADDR(e, target_page_size),
246
                            e.a_data);
247
	if (ret < 0)
248
	    goto fail;
249
	size += ret;
250
	break;
251
    default:
252
	goto fail;
253
    }
254
    close(fd);
255
    return size;
256
 fail:
257
    close(fd);
258
    return -1;
259
}
260

  
261
/* ELF loader */
262

  
263
static void *load_at(int fd, int offset, int size)
264
{
265
    void *ptr;
266
    if (lseek(fd, offset, SEEK_SET) < 0)
267
        return NULL;
268
    ptr = qemu_malloc(size);
269
    if (read(fd, ptr, size) != size) {
270
        qemu_free(ptr);
271
        return NULL;
272
    }
273
    return ptr;
274
}
275

  
276
#ifdef ELF_CLASS
277
#undef ELF_CLASS
278
#endif
279

  
280
#define ELF_CLASS   ELFCLASS32
281
#include "elf.h"
282

  
283
#define SZ		32
284
#define elf_word        uint32_t
285
#define elf_sword        int32_t
286
#define bswapSZs	bswap32s
287
#include "elf_ops.h"
288

  
289
#undef elfhdr
290
#undef elf_phdr
291
#undef elf_shdr
292
#undef elf_sym
293
#undef elf_note
294
#undef elf_word
295
#undef elf_sword
296
#undef bswapSZs
297
#undef SZ
298
#define elfhdr		elf64_hdr
299
#define elf_phdr	elf64_phdr
300
#define elf_note	elf64_note
301
#define elf_shdr	elf64_shdr
302
#define elf_sym		elf64_sym
303
#define elf_word        uint64_t
304
#define elf_sword        int64_t
305
#define bswapSZs	bswap64s
306
#define SZ		64
307
#include "elf_ops.h"
308

  
309
/* return < 0 if error, otherwise the number of bytes loaded in memory */
310
int load_elf(const char *filename, int64_t address_offset,
311
             uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr,
312
             int big_endian, int elf_machine, int clear_lsb)
313
{
314
    int fd, data_order, target_data_order, must_swab, ret;
315
    uint8_t e_ident[EI_NIDENT];
316

  
317
    fd = open(filename, O_RDONLY | O_BINARY);
318
    if (fd < 0) {
319
        perror(filename);
320
        return -1;
321
    }
322
    if (read(fd, e_ident, sizeof(e_ident)) != sizeof(e_ident))
323
        goto fail;
324
    if (e_ident[0] != ELFMAG0 ||
325
        e_ident[1] != ELFMAG1 ||
326
        e_ident[2] != ELFMAG2 ||
327
        e_ident[3] != ELFMAG3)
328
        goto fail;
329
#ifdef HOST_WORDS_BIGENDIAN
330
    data_order = ELFDATA2MSB;
331
#else
332
    data_order = ELFDATA2LSB;
333
#endif
334
    must_swab = data_order != e_ident[EI_DATA];
335
    if (big_endian) {
336
        target_data_order = ELFDATA2MSB;
337
    } else {
338
        target_data_order = ELFDATA2LSB;
339
    }
340

  
341
    if (target_data_order != e_ident[EI_DATA])
342
        return -1;
343

  
344
    lseek(fd, 0, SEEK_SET);
345
    if (e_ident[EI_CLASS] == ELFCLASS64) {
346
        ret = load_elf64(fd, address_offset, must_swab, pentry,
347
                         lowaddr, highaddr, elf_machine, clear_lsb);
348
    } else {
349
        ret = load_elf32(fd, address_offset, must_swab, pentry,
350
                         lowaddr, highaddr, elf_machine, clear_lsb);
351
    }
352

  
353
    close(fd);
354
    return ret;
355

  
356
 fail:
357
    close(fd);
358
    return -1;
359
}
360

  
361
static void bswap_uboot_header(uboot_image_header_t *hdr)
362
{
363
#ifndef HOST_WORDS_BIGENDIAN
364
    bswap32s(&hdr->ih_magic);
365
    bswap32s(&hdr->ih_hcrc);
366
    bswap32s(&hdr->ih_time);
367
    bswap32s(&hdr->ih_size);
368
    bswap32s(&hdr->ih_load);
369
    bswap32s(&hdr->ih_ep);
370
    bswap32s(&hdr->ih_dcrc);
371
#endif
372
}
373

  
374

  
375
#define ZALLOC_ALIGNMENT	16
376

  
377
static void *zalloc(void *x, unsigned items, unsigned size)
378
{
379
    void *p;
380

  
381
    size *= items;
382
    size = (size + ZALLOC_ALIGNMENT - 1) & ~(ZALLOC_ALIGNMENT - 1);
383

  
384
    p = qemu_malloc(size);
385

  
386
    return (p);
387
}
388

  
389
static void zfree(void *x, void *addr)
390
{
391
    qemu_free(addr);
392
}
393

  
394

  
395
#define HEAD_CRC	2
396
#define EXTRA_FIELD	4
397
#define ORIG_NAME	8
398
#define COMMENT		0x10
399
#define RESERVED	0xe0
400

  
401
#define DEFLATED	8
402

  
403
/* This is the maximum in uboot, so if a uImage overflows this, it would
404
 * overflow on real hardware too. */
405
#define UBOOT_MAX_GUNZIP_BYTES 0x800000
406

  
407
static ssize_t gunzip(void *dst, size_t dstlen, uint8_t *src,
408
                      size_t srclen)
409
{
410
    z_stream s;
411
    ssize_t dstbytes;
412
    int r, i, flags;
413

  
414
    /* skip header */
415
    i = 10;
416
    flags = src[3];
417
    if (src[2] != DEFLATED || (flags & RESERVED) != 0) {
418
        puts ("Error: Bad gzipped data\n");
419
        return -1;
420
    }
421
    if ((flags & EXTRA_FIELD) != 0)
422
        i = 12 + src[10] + (src[11] << 8);
423
    if ((flags & ORIG_NAME) != 0)
424
        while (src[i++] != 0)
425
            ;
426
    if ((flags & COMMENT) != 0)
427
        while (src[i++] != 0)
428
            ;
429
    if ((flags & HEAD_CRC) != 0)
430
        i += 2;
431
    if (i >= srclen) {
432
        puts ("Error: gunzip out of data in header\n");
433
        return -1;
434
    }
435

  
436
    s.zalloc = zalloc;
437
    s.zfree = zfree;
438

  
439
    r = inflateInit2(&s, -MAX_WBITS);
440
    if (r != Z_OK) {
441
        printf ("Error: inflateInit2() returned %d\n", r);
442
        return (-1);
443
    }
444
    s.next_in = src + i;
445
    s.avail_in = srclen - i;
446
    s.next_out = dst;
447
    s.avail_out = dstlen;
448
    r = inflate(&s, Z_FINISH);
449
    if (r != Z_OK && r != Z_STREAM_END) {
450
        printf ("Error: inflate() returned %d\n", r);
451
        return -1;
452
    }
453
    dstbytes = s.next_out - (unsigned char *) dst;
454
    inflateEnd(&s);
455

  
456
    return dstbytes;
457
}
458

  
459
/* Load a U-Boot image.  */
460
int load_uimage(const char *filename, target_phys_addr_t *ep,
461
                target_phys_addr_t *loadaddr, int *is_linux)
462
{
463
    int fd;
464
    int size;
465
    uboot_image_header_t h;
466
    uboot_image_header_t *hdr = &h;
467
    uint8_t *data = NULL;
468
    int ret = -1;
469

  
470
    fd = open(filename, O_RDONLY | O_BINARY);
471
    if (fd < 0)
472
        return -1;
473

  
474
    size = read(fd, hdr, sizeof(uboot_image_header_t));
475
    if (size < 0)
476
        goto out;
477

  
478
    bswap_uboot_header(hdr);
479

  
480
    if (hdr->ih_magic != IH_MAGIC)
481
        goto out;
482

  
483
    /* TODO: Implement other image types.  */
484
    if (hdr->ih_type != IH_TYPE_KERNEL) {
485
        fprintf(stderr, "Can only load u-boot image type \"kernel\"\n");
486
        goto out;
487
    }
488

  
489
    switch (hdr->ih_comp) {
490
    case IH_COMP_NONE:
491
    case IH_COMP_GZIP:
492
        break;
493
    default:
494
        fprintf(stderr,
495
                "Unable to load u-boot images with compression type %d\n",
496
                hdr->ih_comp);
497
        goto out;
498
    }
499

  
500
    /* TODO: Check CPU type.  */
501
    if (is_linux) {
502
        if (hdr->ih_os == IH_OS_LINUX)
503
            *is_linux = 1;
504
        else
505
            *is_linux = 0;
506
    }
507

  
508
    *ep = hdr->ih_ep;
509
    data = qemu_malloc(hdr->ih_size);
510

  
511
    if (read(fd, data, hdr->ih_size) != hdr->ih_size) {
512
        fprintf(stderr, "Error reading file\n");
513
        goto out;
514
    }
515

  
516
    if (hdr->ih_comp == IH_COMP_GZIP) {
517
        uint8_t *compressed_data;
518
        size_t max_bytes;
519
        ssize_t bytes;
520

  
521
        compressed_data = data;
522
        max_bytes = UBOOT_MAX_GUNZIP_BYTES;
523
        data = qemu_malloc(max_bytes);
524

  
525
        bytes = gunzip(data, max_bytes, compressed_data, hdr->ih_size);
526
        qemu_free(compressed_data);
527
        if (bytes < 0) {
528
            fprintf(stderr, "Unable to decompress gzipped image!\n");
529
            goto out;
530
        }
531
        hdr->ih_size = bytes;
532
    }
533

  
534
    cpu_physical_memory_write_rom(hdr->ih_load, data, hdr->ih_size);
535

  
536
    if (loadaddr)
537
        *loadaddr = hdr->ih_load;
538

  
539
    ret = hdr->ih_size;
540

  
541
out:
542
    if (data)
543
        qemu_free(data);
544
    close(fd);
545
    return ret;
546
}
b/hw/loader.h
1
#ifndef LOADER_H
2
#define LOADER_H
3

  
4
/* loader.c */
5
int get_image_size(const char *filename);
6
int load_image(const char *filename, uint8_t *addr); /* deprecated */
7
int load_image_targphys(const char *filename, target_phys_addr_t, int max_sz);
8
int load_elf(const char *filename, int64_t address_offset,
9
             uint64_t *pentry, uint64_t *lowaddr, uint64_t *highaddr,
10
             int big_endian, int elf_machine, int clear_lsb);
11
int load_aout(const char *filename, target_phys_addr_t addr, int max_sz,
12
              int bswap_needed, target_phys_addr_t target_page_size);
13
int load_uimage(const char *filename, target_phys_addr_t *ep,
14
                target_phys_addr_t *loadaddr, int *is_linux);
15

  
16
int fread_targphys(target_phys_addr_t dst_addr, size_t nbytes, FILE *f);
17
int fread_targphys_ok(target_phys_addr_t dst_addr, size_t nbytes, FILE *f);
18
int read_targphys(int fd, target_phys_addr_t dst_addr, size_t nbytes);
19
void pstrcpy_targphys(target_phys_addr_t dest, int buf_size,
20
                      const char *source);
21
#endif
b/hw/mcf5208.c
11 11
#include "sysemu.h"
12 12
#include "net.h"
13 13
#include "boards.h"
14
#include "loader.h"
15
#include "elf.h"
14 16

  
15 17
#define SYS_FREQ 66000000
16 18

  
......
201 203
    CPUState *env;
202 204
    int kernel_size;
203 205
    uint64_t elf_entry;
204
    target_ulong entry;
206
    target_phys_addr_t entry;
205 207
    qemu_irq *pic;
206 208

  
207 209
    if (!cpu_model)
......
268 270
        exit(1);
269 271
    }
270 272

  
271
    kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL);
273
    kernel_size = load_elf(kernel_filename, 0, &elf_entry, NULL, NULL,
274
                           1, ELF_MACHINE, 0);
272 275
    entry = elf_entry;
273 276
    if (kernel_size < 0) {
274 277
        kernel_size = load_uimage(kernel_filename, &entry, NULL, NULL);
b/hw/mips_jazz.c
33 33
#include "net.h"
34 34
#include "scsi.h"
35 35
#include "mips-bios.h"
36
#include "loader.h"
36 37

  
37 38
enum jazz_model_e
38 39
{
b/hw/mips_malta.c
39 39
#include "qemu-log.h"
40 40
#include "mips-bios.h"
41 41
#include "ide.h"
42
#include "loader.h"
43
#include "elf.h"
42 44

  
43 45
//#define DEBUG_BOARD_INIT
44 46

  
......
687 689
    int index = 0;
688 690
    long initrd_size;
689 691
    ram_addr_t initrd_offset;
692
    int big_endian;
693

  
694
#ifdef TARGET_WORDS_BIGENDIAN
695
    big_endian = 1;
696
#else
697
    big_endian = 0;
698
#endif
690 699

  
691 700
    if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
692 701
                 (uint64_t *)&kernel_entry, (uint64_t *)&kernel_low,
693
                 (uint64_t *)&kernel_high) < 0) {
702
                 (uint64_t *)&kernel_high, big_endian, ELF_MACHINE, 1) < 0) {
694 703
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
695 704
                loaderparams.kernel_filename);
696 705
        exit(1);
b/hw/mips_mipssim.c
32 32
#include "sysemu.h"
33 33
#include "boards.h"
34 34
#include "mips-bios.h"
35
#include "loader.h"
36
#include "elf.h"
35 37

  
36 38
#ifdef TARGET_MIPS64
37 39
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
......
54 56
    long kernel_size;
55 57
    long initrd_size;
56 58
    ram_addr_t initrd_offset;
59
    int big_endian;
60

  
61
#ifdef TARGET_WORDS_BIGENDIAN
62
    big_endian = 1;
63
#else
64
    big_endian = 0;
65
#endif
57 66

  
58 67
    kernel_size = load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
59 68
                           (uint64_t *)&entry, (uint64_t *)&kernel_low,
60
                           (uint64_t *)&kernel_high);
69
                           (uint64_t *)&kernel_high, big_endian, ELF_MACHINE, 1);
61 70
    if (kernel_size >= 0) {
62 71
        if ((entry & ~0x7fffffffULL) == 0x80000000)
63 72
            entry = (int32_t)entry;
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff