Statistics
| Branch: | Revision:

root / kvm-all.c @ ca821806

History | View | Annotate | Download (29.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29

    
30
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31
#define PAGE_SIZE TARGET_PAGE_SIZE
32

    
33
//#define DEBUG_KVM
34

    
35
#ifdef DEBUG_KVM
36
#define dprintf(fmt, ...) \
37
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38
#else
39
#define dprintf(fmt, ...) \
40
    do { } while (0)
41
#endif
42

    
43
typedef struct KVMSlot
44
{
45
    target_phys_addr_t start_addr;
46
    ram_addr_t memory_size;
47
    ram_addr_t phys_offset;
48
    int slot;
49
    int flags;
50
} KVMSlot;
51

    
52
typedef struct kvm_dirty_log KVMDirtyLog;
53

    
54
struct KVMState
55
{
56
    KVMSlot slots[32];
57
    int fd;
58
    int vmfd;
59
    int coalesced_mmio;
60
#ifdef KVM_CAP_COALESCED_MMIO
61
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
62
#endif
63
    int broken_set_mem_region;
64
    int migration_log;
65
    int vcpu_events;
66
    int robust_singlestep;
67
#ifdef KVM_CAP_SET_GUEST_DEBUG
68
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
69
#endif
70
    int irqchip_in_kernel;
71
    int pit_in_kernel;
72
};
73

    
74
static KVMState *kvm_state;
75

    
76
static KVMSlot *kvm_alloc_slot(KVMState *s)
77
{
78
    int i;
79

    
80
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
81
        /* KVM private memory slots */
82
        if (i >= 8 && i < 12)
83
            continue;
84
        if (s->slots[i].memory_size == 0)
85
            return &s->slots[i];
86
    }
87

    
88
    fprintf(stderr, "%s: no free slot available\n", __func__);
89
    abort();
90
}
91

    
92
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
93
                                         target_phys_addr_t start_addr,
94
                                         target_phys_addr_t end_addr)
95
{
96
    int i;
97

    
98
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
99
        KVMSlot *mem = &s->slots[i];
100

    
101
        if (start_addr == mem->start_addr &&
102
            end_addr == mem->start_addr + mem->memory_size) {
103
            return mem;
104
        }
105
    }
106

    
107
    return NULL;
108
}
109

    
110
/*
111
 * Find overlapping slot with lowest start address
112
 */
113
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
114
                                            target_phys_addr_t start_addr,
115
                                            target_phys_addr_t end_addr)
116
{
117
    KVMSlot *found = NULL;
118
    int i;
119

    
120
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
121
        KVMSlot *mem = &s->slots[i];
122

    
123
        if (mem->memory_size == 0 ||
124
            (found && found->start_addr < mem->start_addr)) {
125
            continue;
126
        }
127

    
128
        if (end_addr > mem->start_addr &&
129
            start_addr < mem->start_addr + mem->memory_size) {
130
            found = mem;
131
        }
132
    }
133

    
134
    return found;
135
}
136

    
137
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
138
{
139
    struct kvm_userspace_memory_region mem;
140

    
141
    mem.slot = slot->slot;
142
    mem.guest_phys_addr = slot->start_addr;
143
    mem.memory_size = slot->memory_size;
144
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
145
    mem.flags = slot->flags;
146
    if (s->migration_log) {
147
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
148
    }
149
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
150
}
151

    
152
static void kvm_reset_vcpu(void *opaque)
153
{
154
    CPUState *env = opaque;
155

    
156
    kvm_arch_reset_vcpu(env);
157
}
158

    
159
int kvm_irqchip_in_kernel(void)
160
{
161
    return kvm_state->irqchip_in_kernel;
162
}
163

    
164
int kvm_pit_in_kernel(void)
165
{
166
    return kvm_state->pit_in_kernel;
167
}
168

    
169

    
170
int kvm_init_vcpu(CPUState *env)
171
{
172
    KVMState *s = kvm_state;
173
    long mmap_size;
174
    int ret;
175

    
176
    dprintf("kvm_init_vcpu\n");
177

    
178
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179
    if (ret < 0) {
180
        dprintf("kvm_create_vcpu failed\n");
181
        goto err;
182
    }
183

    
184
    env->kvm_fd = ret;
185
    env->kvm_state = s;
186

    
187
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188
    if (mmap_size < 0) {
189
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190
        goto err;
191
    }
192

    
193
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194
                        env->kvm_fd, 0);
195
    if (env->kvm_run == MAP_FAILED) {
196
        ret = -errno;
197
        dprintf("mmap'ing vcpu state failed\n");
198
        goto err;
199
    }
200

    
201
#ifdef KVM_CAP_COALESCED_MMIO
202
    if (s->coalesced_mmio && !s->coalesced_mmio_ring)
203
        s->coalesced_mmio_ring = (void *) env->kvm_run +
204
                s->coalesced_mmio * PAGE_SIZE;
205
#endif
206

    
207
    ret = kvm_arch_init_vcpu(env);
208
    if (ret == 0) {
209
        qemu_register_reset(kvm_reset_vcpu, env);
210
        kvm_arch_reset_vcpu(env);
211
    }
212
err:
213
    return ret;
214
}
215

    
216
/*
217
 * dirty pages logging control
218
 */
219
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
220
                                      ram_addr_t size, int flags, int mask)
221
{
222
    KVMState *s = kvm_state;
223
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
224
    int old_flags;
225

    
226
    if (mem == NULL)  {
227
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
228
                    TARGET_FMT_plx "\n", __func__, phys_addr,
229
                    (target_phys_addr_t)(phys_addr + size - 1));
230
            return -EINVAL;
231
    }
232

    
233
    old_flags = mem->flags;
234

    
235
    flags = (mem->flags & ~mask) | flags;
236
    mem->flags = flags;
237

    
238
    /* If nothing changed effectively, no need to issue ioctl */
239
    if (s->migration_log) {
240
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
241
    }
242
    if (flags == old_flags) {
243
            return 0;
244
    }
245

    
246
    return kvm_set_user_memory_region(s, mem);
247
}
248

    
249
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
250
{
251
        return kvm_dirty_pages_log_change(phys_addr, size,
252
                                          KVM_MEM_LOG_DIRTY_PAGES,
253
                                          KVM_MEM_LOG_DIRTY_PAGES);
254
}
255

    
256
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
257
{
258
        return kvm_dirty_pages_log_change(phys_addr, size,
259
                                          0,
260
                                          KVM_MEM_LOG_DIRTY_PAGES);
261
}
262

    
263
static int kvm_set_migration_log(int enable)
264
{
265
    KVMState *s = kvm_state;
266
    KVMSlot *mem;
267
    int i, err;
268

    
269
    s->migration_log = enable;
270

    
271
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
272
        mem = &s->slots[i];
273

    
274
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
275
            continue;
276
        }
277
        err = kvm_set_user_memory_region(s, mem);
278
        if (err) {
279
            return err;
280
        }
281
    }
282
    return 0;
283
}
284

    
285
static int test_le_bit(unsigned long nr, unsigned char *addr)
286
{
287
    return (addr[nr >> 3] >> (nr & 7)) & 1;
288
}
289

    
290
/**
291
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
292
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
293
 * This means all bits are set to dirty.
294
 *
295
 * @start_add: start of logged region.
296
 * @end_addr: end of logged region.
297
 */
298
static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
299
                                          target_phys_addr_t end_addr)
300
{
301
    KVMState *s = kvm_state;
302
    unsigned long size, allocated_size = 0;
303
    target_phys_addr_t phys_addr;
304
    ram_addr_t addr;
305
    KVMDirtyLog d;
306
    KVMSlot *mem;
307
    int ret = 0;
308

    
309
    d.dirty_bitmap = NULL;
310
    while (start_addr < end_addr) {
311
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
312
        if (mem == NULL) {
313
            break;
314
        }
315

    
316
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
317
        if (!d.dirty_bitmap) {
318
            d.dirty_bitmap = qemu_malloc(size);
319
        } else if (size > allocated_size) {
320
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
321
        }
322
        allocated_size = size;
323
        memset(d.dirty_bitmap, 0, allocated_size);
324

    
325
        d.slot = mem->slot;
326

    
327
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
328
            dprintf("ioctl failed %d\n", errno);
329
            ret = -1;
330
            break;
331
        }
332

    
333
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
334
             phys_addr < mem->start_addr + mem->memory_size;
335
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
336
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
337
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
338

    
339
            if (test_le_bit(nr, bitmap)) {
340
                cpu_physical_memory_set_dirty(addr);
341
            }
342
        }
343
        start_addr = phys_addr;
344
    }
345
    qemu_free(d.dirty_bitmap);
346

    
347
    return ret;
348
}
349

    
350
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
351
{
352
    int ret = -ENOSYS;
353
#ifdef KVM_CAP_COALESCED_MMIO
354
    KVMState *s = kvm_state;
355

    
356
    if (s->coalesced_mmio) {
357
        struct kvm_coalesced_mmio_zone zone;
358

    
359
        zone.addr = start;
360
        zone.size = size;
361

    
362
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
363
    }
364
#endif
365

    
366
    return ret;
367
}
368

    
369
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
370
{
371
    int ret = -ENOSYS;
372
#ifdef KVM_CAP_COALESCED_MMIO
373
    KVMState *s = kvm_state;
374

    
375
    if (s->coalesced_mmio) {
376
        struct kvm_coalesced_mmio_zone zone;
377

    
378
        zone.addr = start;
379
        zone.size = size;
380

    
381
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
382
    }
383
#endif
384

    
385
    return ret;
386
}
387

    
388
int kvm_check_extension(KVMState *s, unsigned int extension)
389
{
390
    int ret;
391

    
392
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
393
    if (ret < 0) {
394
        ret = 0;
395
    }
396

    
397
    return ret;
398
}
399

    
400
static void kvm_set_phys_mem(target_phys_addr_t start_addr,
401
                             ram_addr_t size,
402
                             ram_addr_t phys_offset)
403
{
404
    KVMState *s = kvm_state;
405
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
406
    KVMSlot *mem, old;
407
    int err;
408

    
409
    if (start_addr & ~TARGET_PAGE_MASK) {
410
        if (flags >= IO_MEM_UNASSIGNED) {
411
            if (!kvm_lookup_overlapping_slot(s, start_addr,
412
                                             start_addr + size)) {
413
                return;
414
            }
415
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
416
        } else {
417
            fprintf(stderr, "Only page-aligned memory slots supported\n");
418
        }
419
        abort();
420
    }
421

    
422
    /* KVM does not support read-only slots */
423
    phys_offset &= ~IO_MEM_ROM;
424

    
425
    while (1) {
426
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
427
        if (!mem) {
428
            break;
429
        }
430

    
431
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
432
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
433
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
434
            /* The new slot fits into the existing one and comes with
435
             * identical parameters - nothing to be done. */
436
            return;
437
        }
438

    
439
        old = *mem;
440

    
441
        /* unregister the overlapping slot */
442
        mem->memory_size = 0;
443
        err = kvm_set_user_memory_region(s, mem);
444
        if (err) {
445
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
446
                    __func__, strerror(-err));
447
            abort();
448
        }
449

    
450
        /* Workaround for older KVM versions: we can't join slots, even not by
451
         * unregistering the previous ones and then registering the larger
452
         * slot. We have to maintain the existing fragmentation. Sigh.
453
         *
454
         * This workaround assumes that the new slot starts at the same
455
         * address as the first existing one. If not or if some overlapping
456
         * slot comes around later, we will fail (not seen in practice so far)
457
         * - and actually require a recent KVM version. */
458
        if (s->broken_set_mem_region &&
459
            old.start_addr == start_addr && old.memory_size < size &&
460
            flags < IO_MEM_UNASSIGNED) {
461
            mem = kvm_alloc_slot(s);
462
            mem->memory_size = old.memory_size;
463
            mem->start_addr = old.start_addr;
464
            mem->phys_offset = old.phys_offset;
465
            mem->flags = 0;
466

    
467
            err = kvm_set_user_memory_region(s, mem);
468
            if (err) {
469
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
470
                        strerror(-err));
471
                abort();
472
            }
473

    
474
            start_addr += old.memory_size;
475
            phys_offset += old.memory_size;
476
            size -= old.memory_size;
477
            continue;
478
        }
479

    
480
        /* register prefix slot */
481
        if (old.start_addr < start_addr) {
482
            mem = kvm_alloc_slot(s);
483
            mem->memory_size = start_addr - old.start_addr;
484
            mem->start_addr = old.start_addr;
485
            mem->phys_offset = old.phys_offset;
486
            mem->flags = 0;
487

    
488
            err = kvm_set_user_memory_region(s, mem);
489
            if (err) {
490
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
491
                        __func__, strerror(-err));
492
                abort();
493
            }
494
        }
495

    
496
        /* register suffix slot */
497
        if (old.start_addr + old.memory_size > start_addr + size) {
498
            ram_addr_t size_delta;
499

    
500
            mem = kvm_alloc_slot(s);
501
            mem->start_addr = start_addr + size;
502
            size_delta = mem->start_addr - old.start_addr;
503
            mem->memory_size = old.memory_size - size_delta;
504
            mem->phys_offset = old.phys_offset + size_delta;
505
            mem->flags = 0;
506

    
507
            err = kvm_set_user_memory_region(s, mem);
508
            if (err) {
509
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
510
                        __func__, strerror(-err));
511
                abort();
512
            }
513
        }
514
    }
515

    
516
    /* in case the KVM bug workaround already "consumed" the new slot */
517
    if (!size)
518
        return;
519

    
520
    /* KVM does not need to know about this memory */
521
    if (flags >= IO_MEM_UNASSIGNED)
522
        return;
523

    
524
    mem = kvm_alloc_slot(s);
525
    mem->memory_size = size;
526
    mem->start_addr = start_addr;
527
    mem->phys_offset = phys_offset;
528
    mem->flags = 0;
529

    
530
    err = kvm_set_user_memory_region(s, mem);
531
    if (err) {
532
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
533
                strerror(-err));
534
        abort();
535
    }
536
}
537

    
538
static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
539
                                  target_phys_addr_t start_addr,
540
                                  ram_addr_t size,
541
                                  ram_addr_t phys_offset)
542
{
543
        kvm_set_phys_mem(start_addr, size, phys_offset);
544
}
545

    
546
static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
547
                                        target_phys_addr_t start_addr,
548
                                        target_phys_addr_t end_addr)
549
{
550
        return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
551
}
552

    
553
static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
554
                                    int enable)
555
{
556
        return kvm_set_migration_log(enable);
557
}
558

    
559
static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
560
        .set_memory = kvm_client_set_memory,
561
        .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
562
        .migration_log = kvm_client_migration_log,
563
};
564

    
565
int kvm_init(int smp_cpus)
566
{
567
    static const char upgrade_note[] =
568
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
569
        "(see http://sourceforge.net/projects/kvm).\n";
570
    KVMState *s;
571
    int ret;
572
    int i;
573

    
574
    if (smp_cpus > 1) {
575
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
576
        return -EINVAL;
577
    }
578

    
579
    s = qemu_mallocz(sizeof(KVMState));
580

    
581
#ifdef KVM_CAP_SET_GUEST_DEBUG
582
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
583
#endif
584
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
585
        s->slots[i].slot = i;
586

    
587
    s->vmfd = -1;
588
    s->fd = qemu_open("/dev/kvm", O_RDWR);
589
    if (s->fd == -1) {
590
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
591
        ret = -errno;
592
        goto err;
593
    }
594

    
595
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
596
    if (ret < KVM_API_VERSION) {
597
        if (ret > 0)
598
            ret = -EINVAL;
599
        fprintf(stderr, "kvm version too old\n");
600
        goto err;
601
    }
602

    
603
    if (ret > KVM_API_VERSION) {
604
        ret = -EINVAL;
605
        fprintf(stderr, "kvm version not supported\n");
606
        goto err;
607
    }
608

    
609
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
610
    if (s->vmfd < 0)
611
        goto err;
612

    
613
    /* initially, KVM allocated its own memory and we had to jump through
614
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
615
     * just use a user allocated buffer so we can use regular pages
616
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
617
     */
618
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
619
        ret = -EINVAL;
620
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
621
                upgrade_note);
622
        goto err;
623
    }
624

    
625
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
626
     * destroyed properly.  Since we rely on this capability, refuse to work
627
     * with any kernel without this capability. */
628
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
629
        ret = -EINVAL;
630

    
631
        fprintf(stderr,
632
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
633
                upgrade_note);
634
        goto err;
635
    }
636

    
637
    s->coalesced_mmio = 0;
638
#ifdef KVM_CAP_COALESCED_MMIO
639
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
640
    s->coalesced_mmio_ring = NULL;
641
#endif
642

    
643
    s->broken_set_mem_region = 1;
644
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
645
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
646
    if (ret > 0) {
647
        s->broken_set_mem_region = 0;
648
    }
649
#endif
650

    
651
    s->vcpu_events = 0;
652
#ifdef KVM_CAP_VCPU_EVENTS
653
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
654
#endif
655

    
656
    s->robust_singlestep = 0;
657
#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
658
    s->robust_singlestep =
659
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
660
#endif
661

    
662
    ret = kvm_arch_init(s, smp_cpus);
663
    if (ret < 0)
664
        goto err;
665

    
666
    kvm_state = s;
667
    cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
668

    
669
    return 0;
670

    
671
err:
672
    if (s) {
673
        if (s->vmfd != -1)
674
            close(s->vmfd);
675
        if (s->fd != -1)
676
            close(s->fd);
677
    }
678
    qemu_free(s);
679

    
680
    return ret;
681
}
682

    
683
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
684
                         uint32_t count)
685
{
686
    int i;
687
    uint8_t *ptr = data;
688

    
689
    for (i = 0; i < count; i++) {
690
        if (direction == KVM_EXIT_IO_IN) {
691
            switch (size) {
692
            case 1:
693
                stb_p(ptr, cpu_inb(port));
694
                break;
695
            case 2:
696
                stw_p(ptr, cpu_inw(port));
697
                break;
698
            case 4:
699
                stl_p(ptr, cpu_inl(port));
700
                break;
701
            }
702
        } else {
703
            switch (size) {
704
            case 1:
705
                cpu_outb(port, ldub_p(ptr));
706
                break;
707
            case 2:
708
                cpu_outw(port, lduw_p(ptr));
709
                break;
710
            case 4:
711
                cpu_outl(port, ldl_p(ptr));
712
                break;
713
            }
714
        }
715

    
716
        ptr += size;
717
    }
718

    
719
    return 1;
720
}
721

    
722
void kvm_flush_coalesced_mmio_buffer(void)
723
{
724
#ifdef KVM_CAP_COALESCED_MMIO
725
    KVMState *s = kvm_state;
726
    if (s->coalesced_mmio_ring) {
727
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
728
        while (ring->first != ring->last) {
729
            struct kvm_coalesced_mmio *ent;
730

    
731
            ent = &ring->coalesced_mmio[ring->first];
732

    
733
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
734
            smp_wmb();
735
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
736
        }
737
    }
738
#endif
739
}
740

    
741
void kvm_cpu_synchronize_state(CPUState *env)
742
{
743
    if (!env->kvm_vcpu_dirty) {
744
        kvm_arch_get_registers(env);
745
        env->kvm_vcpu_dirty = 1;
746
    }
747
}
748

    
749
void kvm_cpu_synchronize_post_reset(CPUState *env)
750
{
751
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
752
    env->kvm_vcpu_dirty = 0;
753
}
754

    
755
void kvm_cpu_synchronize_post_init(CPUState *env)
756
{
757
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
758
    env->kvm_vcpu_dirty = 0;
759
}
760

    
761
int kvm_cpu_exec(CPUState *env)
762
{
763
    struct kvm_run *run = env->kvm_run;
764
    int ret;
765

    
766
    dprintf("kvm_cpu_exec()\n");
767

    
768
    do {
769
#ifndef CONFIG_IOTHREAD
770
        if (env->exit_request) {
771
            dprintf("interrupt exit requested\n");
772
            ret = 0;
773
            break;
774
        }
775
#endif
776

    
777
        if (env->kvm_vcpu_dirty) {
778
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
779
            env->kvm_vcpu_dirty = 0;
780
        }
781

    
782
        kvm_arch_pre_run(env, run);
783
        qemu_mutex_unlock_iothread();
784
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
785
        qemu_mutex_lock_iothread();
786
        kvm_arch_post_run(env, run);
787

    
788
        if (ret == -EINTR || ret == -EAGAIN) {
789
            cpu_exit(env);
790
            dprintf("io window exit\n");
791
            ret = 0;
792
            break;
793
        }
794

    
795
        if (ret < 0) {
796
            dprintf("kvm run failed %s\n", strerror(-ret));
797
            abort();
798
        }
799

    
800
        kvm_flush_coalesced_mmio_buffer();
801

    
802
        ret = 0; /* exit loop */
803
        switch (run->exit_reason) {
804
        case KVM_EXIT_IO:
805
            dprintf("handle_io\n");
806
            ret = kvm_handle_io(run->io.port,
807
                                (uint8_t *)run + run->io.data_offset,
808
                                run->io.direction,
809
                                run->io.size,
810
                                run->io.count);
811
            break;
812
        case KVM_EXIT_MMIO:
813
            dprintf("handle_mmio\n");
814
            cpu_physical_memory_rw(run->mmio.phys_addr,
815
                                   run->mmio.data,
816
                                   run->mmio.len,
817
                                   run->mmio.is_write);
818
            ret = 1;
819
            break;
820
        case KVM_EXIT_IRQ_WINDOW_OPEN:
821
            dprintf("irq_window_open\n");
822
            break;
823
        case KVM_EXIT_SHUTDOWN:
824
            dprintf("shutdown\n");
825
            qemu_system_reset_request();
826
            ret = 1;
827
            break;
828
        case KVM_EXIT_UNKNOWN:
829
            dprintf("kvm_exit_unknown\n");
830
            break;
831
        case KVM_EXIT_FAIL_ENTRY:
832
            dprintf("kvm_exit_fail_entry\n");
833
            break;
834
        case KVM_EXIT_EXCEPTION:
835
            dprintf("kvm_exit_exception\n");
836
            break;
837
        case KVM_EXIT_DEBUG:
838
            dprintf("kvm_exit_debug\n");
839
#ifdef KVM_CAP_SET_GUEST_DEBUG
840
            if (kvm_arch_debug(&run->debug.arch)) {
841
                gdb_set_stop_cpu(env);
842
                vm_stop(EXCP_DEBUG);
843
                env->exception_index = EXCP_DEBUG;
844
                return 0;
845
            }
846
            /* re-enter, this exception was guest-internal */
847
            ret = 1;
848
#endif /* KVM_CAP_SET_GUEST_DEBUG */
849
            break;
850
        default:
851
            dprintf("kvm_arch_handle_exit\n");
852
            ret = kvm_arch_handle_exit(env, run);
853
            break;
854
        }
855
    } while (ret > 0);
856

    
857
    if (env->exit_request) {
858
        env->exit_request = 0;
859
        env->exception_index = EXCP_INTERRUPT;
860
    }
861

    
862
    return ret;
863
}
864

    
865
int kvm_ioctl(KVMState *s, int type, ...)
866
{
867
    int ret;
868
    void *arg;
869
    va_list ap;
870

    
871
    va_start(ap, type);
872
    arg = va_arg(ap, void *);
873
    va_end(ap);
874

    
875
    ret = ioctl(s->fd, type, arg);
876
    if (ret == -1)
877
        ret = -errno;
878

    
879
    return ret;
880
}
881

    
882
int kvm_vm_ioctl(KVMState *s, int type, ...)
883
{
884
    int ret;
885
    void *arg;
886
    va_list ap;
887

    
888
    va_start(ap, type);
889
    arg = va_arg(ap, void *);
890
    va_end(ap);
891

    
892
    ret = ioctl(s->vmfd, type, arg);
893
    if (ret == -1)
894
        ret = -errno;
895

    
896
    return ret;
897
}
898

    
899
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
900
{
901
    int ret;
902
    void *arg;
903
    va_list ap;
904

    
905
    va_start(ap, type);
906
    arg = va_arg(ap, void *);
907
    va_end(ap);
908

    
909
    ret = ioctl(env->kvm_fd, type, arg);
910
    if (ret == -1)
911
        ret = -errno;
912

    
913
    return ret;
914
}
915

    
916
int kvm_has_sync_mmu(void)
917
{
918
#ifdef KVM_CAP_SYNC_MMU
919
    KVMState *s = kvm_state;
920

    
921
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
922
#else
923
    return 0;
924
#endif
925
}
926

    
927
int kvm_has_vcpu_events(void)
928
{
929
    return kvm_state->vcpu_events;
930
}
931

    
932
int kvm_has_robust_singlestep(void)
933
{
934
    return kvm_state->robust_singlestep;
935
}
936

    
937
void kvm_setup_guest_memory(void *start, size_t size)
938
{
939
    if (!kvm_has_sync_mmu()) {
940
#ifdef MADV_DONTFORK
941
        int ret = madvise(start, size, MADV_DONTFORK);
942

    
943
        if (ret) {
944
            perror("madvice");
945
            exit(1);
946
        }
947
#else
948
        fprintf(stderr,
949
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
950
        exit(1);
951
#endif
952
    }
953
}
954

    
955
#ifdef KVM_CAP_SET_GUEST_DEBUG
956
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
957
{
958
#ifdef CONFIG_IOTHREAD
959
    if (env != cpu_single_env) {
960
        abort();
961
    }
962
#endif
963
    func(data);
964
}
965

    
966
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
967
                                                 target_ulong pc)
968
{
969
    struct kvm_sw_breakpoint *bp;
970

    
971
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
972
        if (bp->pc == pc)
973
            return bp;
974
    }
975
    return NULL;
976
}
977

    
978
int kvm_sw_breakpoints_active(CPUState *env)
979
{
980
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
981
}
982

    
983
struct kvm_set_guest_debug_data {
984
    struct kvm_guest_debug dbg;
985
    CPUState *env;
986
    int err;
987
};
988

    
989
static void kvm_invoke_set_guest_debug(void *data)
990
{
991
    struct kvm_set_guest_debug_data *dbg_data = data;
992
    CPUState *env = dbg_data->env;
993

    
994
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
995
}
996

    
997
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
998
{
999
    struct kvm_set_guest_debug_data data;
1000

    
1001
    data.dbg.control = reinject_trap;
1002

    
1003
    if (env->singlestep_enabled) {
1004
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1005
    }
1006
    kvm_arch_update_guest_debug(env, &data.dbg);
1007
    data.env = env;
1008

    
1009
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1010
    return data.err;
1011
}
1012

    
1013
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1014
                          target_ulong len, int type)
1015
{
1016
    struct kvm_sw_breakpoint *bp;
1017
    CPUState *env;
1018
    int err;
1019

    
1020
    if (type == GDB_BREAKPOINT_SW) {
1021
        bp = kvm_find_sw_breakpoint(current_env, addr);
1022
        if (bp) {
1023
            bp->use_count++;
1024
            return 0;
1025
        }
1026

    
1027
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1028
        if (!bp)
1029
            return -ENOMEM;
1030

    
1031
        bp->pc = addr;
1032
        bp->use_count = 1;
1033
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1034
        if (err) {
1035
            free(bp);
1036
            return err;
1037
        }
1038

    
1039
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1040
                          bp, entry);
1041
    } else {
1042
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1043
        if (err)
1044
            return err;
1045
    }
1046

    
1047
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1048
        err = kvm_update_guest_debug(env, 0);
1049
        if (err)
1050
            return err;
1051
    }
1052
    return 0;
1053
}
1054

    
1055
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1056
                          target_ulong len, int type)
1057
{
1058
    struct kvm_sw_breakpoint *bp;
1059
    CPUState *env;
1060
    int err;
1061

    
1062
    if (type == GDB_BREAKPOINT_SW) {
1063
        bp = kvm_find_sw_breakpoint(current_env, addr);
1064
        if (!bp)
1065
            return -ENOENT;
1066

    
1067
        if (bp->use_count > 1) {
1068
            bp->use_count--;
1069
            return 0;
1070
        }
1071

    
1072
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1073
        if (err)
1074
            return err;
1075

    
1076
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1077
        qemu_free(bp);
1078
    } else {
1079
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1080
        if (err)
1081
            return err;
1082
    }
1083

    
1084
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1085
        err = kvm_update_guest_debug(env, 0);
1086
        if (err)
1087
            return err;
1088
    }
1089
    return 0;
1090
}
1091

    
1092
void kvm_remove_all_breakpoints(CPUState *current_env)
1093
{
1094
    struct kvm_sw_breakpoint *bp, *next;
1095
    KVMState *s = current_env->kvm_state;
1096
    CPUState *env;
1097

    
1098
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1099
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1100
            /* Try harder to find a CPU that currently sees the breakpoint. */
1101
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1102
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1103
                    break;
1104
            }
1105
        }
1106
    }
1107
    kvm_arch_remove_all_hw_breakpoints();
1108

    
1109
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1110
        kvm_update_guest_debug(env, 0);
1111
}
1112

    
1113
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1114

    
1115
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1116
{
1117
    return -EINVAL;
1118
}
1119

    
1120
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1121
                          target_ulong len, int type)
1122
{
1123
    return -EINVAL;
1124
}
1125

    
1126
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1127
                          target_ulong len, int type)
1128
{
1129
    return -EINVAL;
1130
}
1131

    
1132
void kvm_remove_all_breakpoints(CPUState *current_env)
1133
{
1134
}
1135
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1136

    
1137
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1138
{
1139
    struct kvm_signal_mask *sigmask;
1140
    int r;
1141

    
1142
    if (!sigset)
1143
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1144

    
1145
    sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1146

    
1147
    sigmask->len = 8;
1148
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1149
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1150
    free(sigmask);
1151

    
1152
    return r;
1153
}
1154

    
1155
#ifdef KVM_IOEVENTFD
1156
int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
1157
{
1158
    struct kvm_ioeventfd kick = {
1159
        .datamatch = val,
1160
        .addr = addr,
1161
        .len = 2,
1162
        .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
1163
        .fd = fd,
1164
    };
1165
    int r;
1166
    if (!kvm_enabled())
1167
        return -ENOSYS;
1168
    if (!assign)
1169
        kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
1170
    r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
1171
    if (r < 0)
1172
        return r;
1173
    return 0;
1174
}
1175
#endif