Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ cad1e282

History | View | Annotate | Download (52.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static bool has_msr_star;
58
static bool has_msr_hsave_pa;
59
static int lm_capable_kernel;
60

    
61
#ifdef KVM_CAP_EXT_CPUID
62

    
63
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
64
{
65
    struct kvm_cpuid2 *cpuid;
66
    int r, size;
67

    
68
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
69
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
70
    cpuid->nent = max;
71
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
72
    if (r == 0 && cpuid->nent >= max) {
73
        r = -E2BIG;
74
    }
75
    if (r < 0) {
76
        if (r == -E2BIG) {
77
            qemu_free(cpuid);
78
            return NULL;
79
        } else {
80
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
81
                    strerror(-r));
82
            exit(1);
83
        }
84
    }
85
    return cpuid;
86
}
87

    
88
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
89
                                      uint32_t index, int reg)
90
{
91
    struct kvm_cpuid2 *cpuid;
92
    int i, max;
93
    uint32_t ret = 0;
94
    uint32_t cpuid_1_edx;
95

    
96
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
97
        return -1U;
98
    }
99

    
100
    max = 1;
101
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
102
        max *= 2;
103
    }
104

    
105
    for (i = 0; i < cpuid->nent; ++i) {
106
        if (cpuid->entries[i].function == function &&
107
            cpuid->entries[i].index == index) {
108
            switch (reg) {
109
            case R_EAX:
110
                ret = cpuid->entries[i].eax;
111
                break;
112
            case R_EBX:
113
                ret = cpuid->entries[i].ebx;
114
                break;
115
            case R_ECX:
116
                ret = cpuid->entries[i].ecx;
117
                break;
118
            case R_EDX:
119
                ret = cpuid->entries[i].edx;
120
                switch (function) {
121
                case 1:
122
                    /* KVM before 2.6.30 misreports the following features */
123
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124
                    break;
125
                case 0x80000001:
126
                    /* On Intel, kvm returns cpuid according to the Intel spec,
127
                     * so add missing bits according to the AMD spec:
128
                     */
129
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
130
                    ret |= cpuid_1_edx & 0x183f7ff;
131
                    break;
132
                }
133
                break;
134
            }
135
        }
136
    }
137

    
138
    qemu_free(cpuid);
139

    
140
    return ret;
141
}
142

    
143
#else
144

    
145
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
146
                                      uint32_t index, int reg)
147
{
148
    return -1U;
149
}
150

    
151
#endif
152

    
153
#ifdef CONFIG_KVM_PARA
154
struct kvm_para_features {
155
    int cap;
156
    int feature;
157
} para_features[] = {
158
#ifdef KVM_CAP_CLOCKSOURCE
159
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
160
#endif
161
#ifdef KVM_CAP_NOP_IO_DELAY
162
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
163
#endif
164
#ifdef KVM_CAP_PV_MMU
165
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
166
#endif
167
#ifdef KVM_CAP_ASYNC_PF
168
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
169
#endif
170
    { -1, -1 }
171
};
172

    
173
static int get_para_features(CPUState *env)
174
{
175
    int i, features = 0;
176

    
177
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
178
        if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
179
            features |= (1 << para_features[i].feature);
180
        }
181
    }
182
    return features;
183
}
184
#endif
185

    
186
#ifdef KVM_CAP_MCE
187
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
188
                                     int *max_banks)
189
{
190
    int r;
191

    
192
    r = kvm_check_extension(s, KVM_CAP_MCE);
193
    if (r > 0) {
194
        *max_banks = r;
195
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
196
    }
197
    return -ENOSYS;
198
}
199

    
200
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
201
{
202
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203
}
204

    
205
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
206
{
207
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208
}
209

    
210
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
211
{
212
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
213
    int r;
214

    
215
    kmsrs->nmsrs = n;
216
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
217
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
218
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
219
    free(kmsrs);
220
    return r;
221
}
222

    
223
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
224
static int kvm_mce_in_progress(CPUState *env)
225
{
226
    struct kvm_msr_entry msr_mcg_status = {
227
        .index = MSR_MCG_STATUS,
228
    };
229
    int r;
230

    
231
    r = kvm_get_msr(env, &msr_mcg_status, 1);
232
    if (r == -1 || r == 0) {
233
        fprintf(stderr, "Failed to get MCE status\n");
234
        return 0;
235
    }
236
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237
}
238

    
239
struct kvm_x86_mce_data
240
{
241
    CPUState *env;
242
    struct kvm_x86_mce *mce;
243
    int abort_on_error;
244
};
245

    
246
static void kvm_do_inject_x86_mce(void *_data)
247
{
248
    struct kvm_x86_mce_data *data = _data;
249
    int r;
250

    
251
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
252
    if ((data->env->mcg_cap & MCG_SER_P) &&
253
        !(data->mce->status & MCI_STATUS_AR)) {
254
        if (kvm_mce_in_progress(data->env)) {
255
            return;
256
        }
257
    }
258

    
259
    r = kvm_set_mce(data->env, data->mce);
260
    if (r < 0) {
261
        perror("kvm_set_mce FAILED");
262
        if (data->abort_on_error) {
263
            abort();
264
        }
265
    }
266
}
267

    
268
static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
269
                                  int flag)
270
{
271
    struct kvm_x86_mce_data data = {
272
        .env = env,
273
        .mce = mce,
274
        .abort_on_error = (flag & ABORT_ON_ERROR),
275
    };
276

    
277
    if (!env->mcg_cap) {
278
        fprintf(stderr, "MCE support is not enabled!\n");
279
        return;
280
    }
281

    
282
    run_on_cpu(env, kvm_do_inject_x86_mce, &data);
283
}
284

    
285
static void kvm_mce_broadcast_rest(CPUState *env);
286
#endif
287

    
288
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
289
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
290
                        int flag)
291
{
292
#ifdef KVM_CAP_MCE
293
    struct kvm_x86_mce mce = {
294
        .bank = bank,
295
        .status = status,
296
        .mcg_status = mcg_status,
297
        .addr = addr,
298
        .misc = misc,
299
    };
300

    
301
    if (flag & MCE_BROADCAST) {
302
        kvm_mce_broadcast_rest(cenv);
303
    }
304

    
305
    kvm_inject_x86_mce_on(cenv, &mce, flag);
306
#else
307
    if (flag & ABORT_ON_ERROR) {
308
        abort();
309
    }
310
#endif
311
}
312

    
313
int kvm_arch_init_vcpu(CPUState *env)
314
{
315
    struct {
316
        struct kvm_cpuid2 cpuid;
317
        struct kvm_cpuid_entry2 entries[100];
318
    } __attribute__((packed)) cpuid_data;
319
    uint32_t limit, i, j, cpuid_i;
320
    uint32_t unused;
321
    struct kvm_cpuid_entry2 *c;
322
#ifdef CONFIG_KVM_PARA
323
    uint32_t signature[3];
324
#endif
325

    
326
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
327

    
328
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330
    env->cpuid_ext_features |= i;
331

    
332
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333
                                                             0, R_EDX);
334
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335
                                                             0, R_ECX);
336
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337
                                                             0, R_EDX);
338

    
339

    
340
    cpuid_i = 0;
341

    
342
#ifdef CONFIG_KVM_PARA
343
    /* Paravirtualization CPUIDs */
344
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345
    c = &cpuid_data.entries[cpuid_i++];
346
    memset(c, 0, sizeof(*c));
347
    c->function = KVM_CPUID_SIGNATURE;
348
    c->eax = 0;
349
    c->ebx = signature[0];
350
    c->ecx = signature[1];
351
    c->edx = signature[2];
352

    
353
    c = &cpuid_data.entries[cpuid_i++];
354
    memset(c, 0, sizeof(*c));
355
    c->function = KVM_CPUID_FEATURES;
356
    c->eax = env->cpuid_kvm_features & get_para_features(env);
357
#endif
358

    
359
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
360

    
361
    for (i = 0; i <= limit; i++) {
362
        c = &cpuid_data.entries[cpuid_i++];
363

    
364
        switch (i) {
365
        case 2: {
366
            /* Keep reading function 2 till all the input is received */
367
            int times;
368

    
369
            c->function = i;
370
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
372
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373
            times = c->eax & 0xff;
374

    
375
            for (j = 1; j < times; ++j) {
376
                c = &cpuid_data.entries[cpuid_i++];
377
                c->function = i;
378
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380
            }
381
            break;
382
        }
383
        case 4:
384
        case 0xb:
385
        case 0xd:
386
            for (j = 0; ; j++) {
387
                c->function = i;
388
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389
                c->index = j;
390
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
391

    
392
                if (i == 4 && c->eax == 0) {
393
                    break;
394
                }
395
                if (i == 0xb && !(c->ecx & 0xff00)) {
396
                    break;
397
                }
398
                if (i == 0xd && c->eax == 0) {
399
                    break;
400
                }
401
                c = &cpuid_data.entries[cpuid_i++];
402
            }
403
            break;
404
        default:
405
            c->function = i;
406
            c->flags = 0;
407
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408
            break;
409
        }
410
    }
411
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
412

    
413
    for (i = 0x80000000; i <= limit; i++) {
414
        c = &cpuid_data.entries[cpuid_i++];
415

    
416
        c->function = i;
417
        c->flags = 0;
418
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419
    }
420

    
421
    cpuid_data.cpuid.nent = cpuid_i;
422

    
423
#ifdef KVM_CAP_MCE
424
    if (((env->cpuid_version >> 8)&0xF) >= 6
425
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427
        uint64_t mcg_cap;
428
        int banks;
429

    
430
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
431
            perror("kvm_get_mce_cap_supported FAILED");
432
        } else {
433
            if (banks > MCE_BANKS_DEF)
434
                banks = MCE_BANKS_DEF;
435
            mcg_cap &= MCE_CAP_DEF;
436
            mcg_cap |= banks;
437
            if (kvm_setup_mce(env, &mcg_cap)) {
438
                perror("kvm_setup_mce FAILED");
439
            } else {
440
                env->mcg_cap = mcg_cap;
441
            }
442
        }
443
    }
444
#endif
445

    
446
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
447
}
448

    
449
void kvm_arch_reset_vcpu(CPUState *env)
450
{
451
    env->exception_injected = -1;
452
    env->interrupt_injected = -1;
453
    env->nmi_injected = 0;
454
    env->nmi_pending = 0;
455
    env->xcr0 = 1;
456
    if (kvm_irqchip_in_kernel()) {
457
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
458
                                          KVM_MP_STATE_UNINITIALIZED;
459
    } else {
460
        env->mp_state = KVM_MP_STATE_RUNNABLE;
461
    }
462
}
463

    
464
static int kvm_get_supported_msrs(KVMState *s)
465
{
466
    static int kvm_supported_msrs;
467
    int ret = 0;
468

    
469
    /* first time */
470
    if (kvm_supported_msrs == 0) {
471
        struct kvm_msr_list msr_list, *kvm_msr_list;
472

    
473
        kvm_supported_msrs = -1;
474

    
475
        /* Obtain MSR list from KVM.  These are the MSRs that we must
476
         * save/restore */
477
        msr_list.nmsrs = 0;
478
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
479
        if (ret < 0 && ret != -E2BIG) {
480
            return ret;
481
        }
482
        /* Old kernel modules had a bug and could write beyond the provided
483
           memory. Allocate at least a safe amount of 1K. */
484
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485
                                              msr_list.nmsrs *
486
                                              sizeof(msr_list.indices[0])));
487

    
488
        kvm_msr_list->nmsrs = msr_list.nmsrs;
489
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490
        if (ret >= 0) {
491
            int i;
492

    
493
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494
                if (kvm_msr_list->indices[i] == MSR_STAR) {
495
                    has_msr_star = true;
496
                    continue;
497
                }
498
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499
                    has_msr_hsave_pa = true;
500
                    continue;
501
                }
502
            }
503
        }
504

    
505
        free(kvm_msr_list);
506
    }
507

    
508
    return ret;
509
}
510

    
511
static int kvm_init_identity_map_page(KVMState *s)
512
{
513
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
514
    int ret;
515
    uint64_t addr = 0xfffbc000;
516

    
517
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
518
        return 0;
519
    }
520

    
521
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
522
    if (ret < 0) {
523
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
524
        return ret;
525
    }
526
#endif
527
    return 0;
528
}
529

    
530
int kvm_arch_init(KVMState *s)
531
{
532
    int ret;
533
    struct utsname utsname;
534

    
535
    ret = kvm_get_supported_msrs(s);
536
    if (ret < 0) {
537
        return ret;
538
    }
539

    
540
    uname(&utsname);
541
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
542

    
543
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
544
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
545
     * must be part of guest physical memory, we need to allocate it.  Older
546
     * versions of KVM just assumed that it would be at the end of physical
547
     * memory but that doesn't work with more than 4GB of memory.  We simply
548
     * refuse to work with those older versions of KVM. */
549
    ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
550
    if (ret <= 0) {
551
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
552
        return ret;
553
    }
554

    
555
    /* this address is 3 pages before the bios, and the bios should present
556
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
557
     * this?
558
     */
559
    /*
560
     * Tell fw_cfg to notify the BIOS to reserve the range.
561
     */
562
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
563
        perror("e820_add_entry() table is full");
564
        exit(1);
565
    }
566
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
567
    if (ret < 0) {
568
        return ret;
569
    }
570

    
571
    return kvm_init_identity_map_page(s);
572
}
573

    
574
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
575
{
576
    lhs->selector = rhs->selector;
577
    lhs->base = rhs->base;
578
    lhs->limit = rhs->limit;
579
    lhs->type = 3;
580
    lhs->present = 1;
581
    lhs->dpl = 3;
582
    lhs->db = 0;
583
    lhs->s = 1;
584
    lhs->l = 0;
585
    lhs->g = 0;
586
    lhs->avl = 0;
587
    lhs->unusable = 0;
588
}
589

    
590
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
591
{
592
    unsigned flags = rhs->flags;
593
    lhs->selector = rhs->selector;
594
    lhs->base = rhs->base;
595
    lhs->limit = rhs->limit;
596
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
597
    lhs->present = (flags & DESC_P_MASK) != 0;
598
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
599
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
600
    lhs->s = (flags & DESC_S_MASK) != 0;
601
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
602
    lhs->g = (flags & DESC_G_MASK) != 0;
603
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
604
    lhs->unusable = 0;
605
}
606

    
607
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
608
{
609
    lhs->selector = rhs->selector;
610
    lhs->base = rhs->base;
611
    lhs->limit = rhs->limit;
612
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
613
                 (rhs->present * DESC_P_MASK) |
614
                 (rhs->dpl << DESC_DPL_SHIFT) |
615
                 (rhs->db << DESC_B_SHIFT) |
616
                 (rhs->s * DESC_S_MASK) |
617
                 (rhs->l << DESC_L_SHIFT) |
618
                 (rhs->g * DESC_G_MASK) |
619
                 (rhs->avl * DESC_AVL_MASK);
620
}
621

    
622
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
623
{
624
    if (set) {
625
        *kvm_reg = *qemu_reg;
626
    } else {
627
        *qemu_reg = *kvm_reg;
628
    }
629
}
630

    
631
static int kvm_getput_regs(CPUState *env, int set)
632
{
633
    struct kvm_regs regs;
634
    int ret = 0;
635

    
636
    if (!set) {
637
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
638
        if (ret < 0) {
639
            return ret;
640
        }
641
    }
642

    
643
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
644
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
645
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
646
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
647
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
648
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
649
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
650
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
651
#ifdef TARGET_X86_64
652
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
653
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
654
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
655
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
656
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
657
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
658
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
659
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
660
#endif
661

    
662
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
663
    kvm_getput_reg(&regs.rip, &env->eip, set);
664

    
665
    if (set) {
666
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
667
    }
668

    
669
    return ret;
670
}
671

    
672
static int kvm_put_fpu(CPUState *env)
673
{
674
    struct kvm_fpu fpu;
675
    int i;
676

    
677
    memset(&fpu, 0, sizeof fpu);
678
    fpu.fsw = env->fpus & ~(7 << 11);
679
    fpu.fsw |= (env->fpstt & 7) << 11;
680
    fpu.fcw = env->fpuc;
681
    for (i = 0; i < 8; ++i) {
682
        fpu.ftwx |= (!env->fptags[i]) << i;
683
    }
684
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
685
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
686
    fpu.mxcsr = env->mxcsr;
687

    
688
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
689
}
690

    
691
#ifdef KVM_CAP_XSAVE
692
#define XSAVE_CWD_RIP     2
693
#define XSAVE_CWD_RDP     4
694
#define XSAVE_MXCSR       6
695
#define XSAVE_ST_SPACE    8
696
#define XSAVE_XMM_SPACE   40
697
#define XSAVE_XSTATE_BV   128
698
#define XSAVE_YMMH_SPACE  144
699
#endif
700

    
701
static int kvm_put_xsave(CPUState *env)
702
{
703
#ifdef KVM_CAP_XSAVE
704
    int i, r;
705
    struct kvm_xsave* xsave;
706
    uint16_t cwd, swd, twd, fop;
707

    
708
    if (!kvm_has_xsave()) {
709
        return kvm_put_fpu(env);
710
    }
711

    
712
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
713
    memset(xsave, 0, sizeof(struct kvm_xsave));
714
    cwd = swd = twd = fop = 0;
715
    swd = env->fpus & ~(7 << 11);
716
    swd |= (env->fpstt & 7) << 11;
717
    cwd = env->fpuc;
718
    for (i = 0; i < 8; ++i) {
719
        twd |= (!env->fptags[i]) << i;
720
    }
721
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
722
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
723
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
724
            sizeof env->fpregs);
725
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
726
            sizeof env->xmm_regs);
727
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
728
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
729
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
730
            sizeof env->ymmh_regs);
731
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
732
    qemu_free(xsave);
733
    return r;
734
#else
735
    return kvm_put_fpu(env);
736
#endif
737
}
738

    
739
static int kvm_put_xcrs(CPUState *env)
740
{
741
#ifdef KVM_CAP_XCRS
742
    struct kvm_xcrs xcrs;
743

    
744
    if (!kvm_has_xcrs()) {
745
        return 0;
746
    }
747

    
748
    xcrs.nr_xcrs = 1;
749
    xcrs.flags = 0;
750
    xcrs.xcrs[0].xcr = 0;
751
    xcrs.xcrs[0].value = env->xcr0;
752
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
753
#else
754
    return 0;
755
#endif
756
}
757

    
758
static int kvm_put_sregs(CPUState *env)
759
{
760
    struct kvm_sregs sregs;
761

    
762
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
763
    if (env->interrupt_injected >= 0) {
764
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
765
                (uint64_t)1 << (env->interrupt_injected % 64);
766
    }
767

    
768
    if ((env->eflags & VM_MASK)) {
769
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
770
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
771
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
772
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
773
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
774
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
775
    } else {
776
        set_seg(&sregs.cs, &env->segs[R_CS]);
777
        set_seg(&sregs.ds, &env->segs[R_DS]);
778
        set_seg(&sregs.es, &env->segs[R_ES]);
779
        set_seg(&sregs.fs, &env->segs[R_FS]);
780
        set_seg(&sregs.gs, &env->segs[R_GS]);
781
        set_seg(&sregs.ss, &env->segs[R_SS]);
782
    }
783

    
784
    set_seg(&sregs.tr, &env->tr);
785
    set_seg(&sregs.ldt, &env->ldt);
786

    
787
    sregs.idt.limit = env->idt.limit;
788
    sregs.idt.base = env->idt.base;
789
    sregs.gdt.limit = env->gdt.limit;
790
    sregs.gdt.base = env->gdt.base;
791

    
792
    sregs.cr0 = env->cr[0];
793
    sregs.cr2 = env->cr[2];
794
    sregs.cr3 = env->cr[3];
795
    sregs.cr4 = env->cr[4];
796

    
797
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
799

    
800
    sregs.efer = env->efer;
801

    
802
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
803
}
804

    
805
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806
                              uint32_t index, uint64_t value)
807
{
808
    entry->index = index;
809
    entry->data = value;
810
}
811

    
812
static int kvm_put_msrs(CPUState *env, int level)
813
{
814
    struct {
815
        struct kvm_msrs info;
816
        struct kvm_msr_entry entries[100];
817
    } msr_data;
818
    struct kvm_msr_entry *msrs = msr_data.entries;
819
    int n = 0;
820

    
821
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824
    if (has_msr_star) {
825
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
826
    }
827
    if (has_msr_hsave_pa) {
828
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
829
    }
830
#ifdef TARGET_X86_64
831
    if (lm_capable_kernel) {
832
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
833
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
834
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
835
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
836
    }
837
#endif
838
    if (level == KVM_PUT_FULL_STATE) {
839
        /*
840
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
841
         * writeback. Until this is fixed, we only write the offset to SMP
842
         * guests after migration, desynchronizing the VCPUs, but avoiding
843
         * huge jump-backs that would occur without any writeback at all.
844
         */
845
        if (smp_cpus == 1 || env->tsc != 0) {
846
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
847
        }
848
    }
849
    /*
850
     * The following paravirtual MSRs have side effects on the guest or are
851
     * too heavy for normal writeback. Limit them to reset or full state
852
     * updates.
853
     */
854
    if (level >= KVM_PUT_RESET_STATE) {
855
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
856
                          env->system_time_msr);
857
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
858
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
859
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
860
#endif
861
    }
862
#ifdef KVM_CAP_MCE
863
    if (env->mcg_cap) {
864
        int i;
865

    
866
        if (level == KVM_PUT_RESET_STATE) {
867
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
868
        } else if (level == KVM_PUT_FULL_STATE) {
869
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
871
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
872
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
873
            }
874
        }
875
    }
876
#endif
877

    
878
    msr_data.info.nmsrs = n;
879

    
880
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
881

    
882
}
883

    
884

    
885
static int kvm_get_fpu(CPUState *env)
886
{
887
    struct kvm_fpu fpu;
888
    int i, ret;
889

    
890
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
891
    if (ret < 0) {
892
        return ret;
893
    }
894

    
895
    env->fpstt = (fpu.fsw >> 11) & 7;
896
    env->fpus = fpu.fsw;
897
    env->fpuc = fpu.fcw;
898
    for (i = 0; i < 8; ++i) {
899
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
900
    }
901
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
902
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
903
    env->mxcsr = fpu.mxcsr;
904

    
905
    return 0;
906
}
907

    
908
static int kvm_get_xsave(CPUState *env)
909
{
910
#ifdef KVM_CAP_XSAVE
911
    struct kvm_xsave* xsave;
912
    int ret, i;
913
    uint16_t cwd, swd, twd, fop;
914

    
915
    if (!kvm_has_xsave()) {
916
        return kvm_get_fpu(env);
917
    }
918

    
919
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
920
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
921
    if (ret < 0) {
922
        qemu_free(xsave);
923
        return ret;
924
    }
925

    
926
    cwd = (uint16_t)xsave->region[0];
927
    swd = (uint16_t)(xsave->region[0] >> 16);
928
    twd = (uint16_t)xsave->region[1];
929
    fop = (uint16_t)(xsave->region[1] >> 16);
930
    env->fpstt = (swd >> 11) & 7;
931
    env->fpus = swd;
932
    env->fpuc = cwd;
933
    for (i = 0; i < 8; ++i) {
934
        env->fptags[i] = !((twd >> i) & 1);
935
    }
936
    env->mxcsr = xsave->region[XSAVE_MXCSR];
937
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
938
            sizeof env->fpregs);
939
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
940
            sizeof env->xmm_regs);
941
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
942
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
943
            sizeof env->ymmh_regs);
944
    qemu_free(xsave);
945
    return 0;
946
#else
947
    return kvm_get_fpu(env);
948
#endif
949
}
950

    
951
static int kvm_get_xcrs(CPUState *env)
952
{
953
#ifdef KVM_CAP_XCRS
954
    int i, ret;
955
    struct kvm_xcrs xcrs;
956

    
957
    if (!kvm_has_xcrs()) {
958
        return 0;
959
    }
960

    
961
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
962
    if (ret < 0) {
963
        return ret;
964
    }
965

    
966
    for (i = 0; i < xcrs.nr_xcrs; i++) {
967
        /* Only support xcr0 now */
968
        if (xcrs.xcrs[0].xcr == 0) {
969
            env->xcr0 = xcrs.xcrs[0].value;
970
            break;
971
        }
972
    }
973
    return 0;
974
#else
975
    return 0;
976
#endif
977
}
978

    
979
static int kvm_get_sregs(CPUState *env)
980
{
981
    struct kvm_sregs sregs;
982
    uint32_t hflags;
983
    int bit, i, ret;
984

    
985
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
986
    if (ret < 0) {
987
        return ret;
988
    }
989

    
990
    /* There can only be one pending IRQ set in the bitmap at a time, so try
991
       to find it and save its number instead (-1 for none). */
992
    env->interrupt_injected = -1;
993
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
994
        if (sregs.interrupt_bitmap[i]) {
995
            bit = ctz64(sregs.interrupt_bitmap[i]);
996
            env->interrupt_injected = i * 64 + bit;
997
            break;
998
        }
999
    }
1000

    
1001
    get_seg(&env->segs[R_CS], &sregs.cs);
1002
    get_seg(&env->segs[R_DS], &sregs.ds);
1003
    get_seg(&env->segs[R_ES], &sregs.es);
1004
    get_seg(&env->segs[R_FS], &sregs.fs);
1005
    get_seg(&env->segs[R_GS], &sregs.gs);
1006
    get_seg(&env->segs[R_SS], &sregs.ss);
1007

    
1008
    get_seg(&env->tr, &sregs.tr);
1009
    get_seg(&env->ldt, &sregs.ldt);
1010

    
1011
    env->idt.limit = sregs.idt.limit;
1012
    env->idt.base = sregs.idt.base;
1013
    env->gdt.limit = sregs.gdt.limit;
1014
    env->gdt.base = sregs.gdt.base;
1015

    
1016
    env->cr[0] = sregs.cr0;
1017
    env->cr[2] = sregs.cr2;
1018
    env->cr[3] = sregs.cr3;
1019
    env->cr[4] = sregs.cr4;
1020

    
1021
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1022

    
1023
    env->efer = sregs.efer;
1024
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1025

    
1026
#define HFLAG_COPY_MASK \
1027
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1028
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1029
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1030
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1031

    
1032
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1033
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1034
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1035
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1036
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1037
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1038
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1039

    
1040
    if (env->efer & MSR_EFER_LMA) {
1041
        hflags |= HF_LMA_MASK;
1042
    }
1043

    
1044
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1045
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1046
    } else {
1047
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1048
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1049
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1050
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1051
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1052
            !(hflags & HF_CS32_MASK)) {
1053
            hflags |= HF_ADDSEG_MASK;
1054
        } else {
1055
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1056
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1057
        }
1058
    }
1059
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1060

    
1061
    return 0;
1062
}
1063

    
1064
static int kvm_get_msrs(CPUState *env)
1065
{
1066
    struct {
1067
        struct kvm_msrs info;
1068
        struct kvm_msr_entry entries[100];
1069
    } msr_data;
1070
    struct kvm_msr_entry *msrs = msr_data.entries;
1071
    int ret, i, n;
1072

    
1073
    n = 0;
1074
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1075
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1076
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1077
    if (has_msr_star) {
1078
        msrs[n++].index = MSR_STAR;
1079
    }
1080
    if (has_msr_hsave_pa) {
1081
        msrs[n++].index = MSR_VM_HSAVE_PA;
1082
    }
1083
    msrs[n++].index = MSR_IA32_TSC;
1084
#ifdef TARGET_X86_64
1085
    if (lm_capable_kernel) {
1086
        msrs[n++].index = MSR_CSTAR;
1087
        msrs[n++].index = MSR_KERNELGSBASE;
1088
        msrs[n++].index = MSR_FMASK;
1089
        msrs[n++].index = MSR_LSTAR;
1090
    }
1091
#endif
1092
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1093
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1094
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1095
    msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1096
#endif
1097

    
1098
#ifdef KVM_CAP_MCE
1099
    if (env->mcg_cap) {
1100
        msrs[n++].index = MSR_MCG_STATUS;
1101
        msrs[n++].index = MSR_MCG_CTL;
1102
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1103
            msrs[n++].index = MSR_MC0_CTL + i;
1104
        }
1105
    }
1106
#endif
1107

    
1108
    msr_data.info.nmsrs = n;
1109
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1110
    if (ret < 0) {
1111
        return ret;
1112
    }
1113

    
1114
    for (i = 0; i < ret; i++) {
1115
        switch (msrs[i].index) {
1116
        case MSR_IA32_SYSENTER_CS:
1117
            env->sysenter_cs = msrs[i].data;
1118
            break;
1119
        case MSR_IA32_SYSENTER_ESP:
1120
            env->sysenter_esp = msrs[i].data;
1121
            break;
1122
        case MSR_IA32_SYSENTER_EIP:
1123
            env->sysenter_eip = msrs[i].data;
1124
            break;
1125
        case MSR_STAR:
1126
            env->star = msrs[i].data;
1127
            break;
1128
#ifdef TARGET_X86_64
1129
        case MSR_CSTAR:
1130
            env->cstar = msrs[i].data;
1131
            break;
1132
        case MSR_KERNELGSBASE:
1133
            env->kernelgsbase = msrs[i].data;
1134
            break;
1135
        case MSR_FMASK:
1136
            env->fmask = msrs[i].data;
1137
            break;
1138
        case MSR_LSTAR:
1139
            env->lstar = msrs[i].data;
1140
            break;
1141
#endif
1142
        case MSR_IA32_TSC:
1143
            env->tsc = msrs[i].data;
1144
            break;
1145
        case MSR_VM_HSAVE_PA:
1146
            env->vm_hsave = msrs[i].data;
1147
            break;
1148
        case MSR_KVM_SYSTEM_TIME:
1149
            env->system_time_msr = msrs[i].data;
1150
            break;
1151
        case MSR_KVM_WALL_CLOCK:
1152
            env->wall_clock_msr = msrs[i].data;
1153
            break;
1154
#ifdef KVM_CAP_MCE
1155
        case MSR_MCG_STATUS:
1156
            env->mcg_status = msrs[i].data;
1157
            break;
1158
        case MSR_MCG_CTL:
1159
            env->mcg_ctl = msrs[i].data;
1160
            break;
1161
#endif
1162
        default:
1163
#ifdef KVM_CAP_MCE
1164
            if (msrs[i].index >= MSR_MC0_CTL &&
1165
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1166
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1167
            }
1168
#endif
1169
            break;
1170
#if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1171
        case MSR_KVM_ASYNC_PF_EN:
1172
            env->async_pf_en_msr = msrs[i].data;
1173
            break;
1174
#endif
1175
        }
1176
    }
1177

    
1178
    return 0;
1179
}
1180

    
1181
static int kvm_put_mp_state(CPUState *env)
1182
{
1183
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1184

    
1185
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1186
}
1187

    
1188
static int kvm_get_mp_state(CPUState *env)
1189
{
1190
    struct kvm_mp_state mp_state;
1191
    int ret;
1192

    
1193
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1194
    if (ret < 0) {
1195
        return ret;
1196
    }
1197
    env->mp_state = mp_state.mp_state;
1198
    if (kvm_irqchip_in_kernel()) {
1199
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1200
    }
1201
    return 0;
1202
}
1203

    
1204
static int kvm_put_vcpu_events(CPUState *env, int level)
1205
{
1206
#ifdef KVM_CAP_VCPU_EVENTS
1207
    struct kvm_vcpu_events events;
1208

    
1209
    if (!kvm_has_vcpu_events()) {
1210
        return 0;
1211
    }
1212

    
1213
    events.exception.injected = (env->exception_injected >= 0);
1214
    events.exception.nr = env->exception_injected;
1215
    events.exception.has_error_code = env->has_error_code;
1216
    events.exception.error_code = env->error_code;
1217

    
1218
    events.interrupt.injected = (env->interrupt_injected >= 0);
1219
    events.interrupt.nr = env->interrupt_injected;
1220
    events.interrupt.soft = env->soft_interrupt;
1221

    
1222
    events.nmi.injected = env->nmi_injected;
1223
    events.nmi.pending = env->nmi_pending;
1224
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1225

    
1226
    events.sipi_vector = env->sipi_vector;
1227

    
1228
    events.flags = 0;
1229
    if (level >= KVM_PUT_RESET_STATE) {
1230
        events.flags |=
1231
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1232
    }
1233

    
1234
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1235
#else
1236
    return 0;
1237
#endif
1238
}
1239

    
1240
static int kvm_get_vcpu_events(CPUState *env)
1241
{
1242
#ifdef KVM_CAP_VCPU_EVENTS
1243
    struct kvm_vcpu_events events;
1244
    int ret;
1245

    
1246
    if (!kvm_has_vcpu_events()) {
1247
        return 0;
1248
    }
1249

    
1250
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1251
    if (ret < 0) {
1252
       return ret;
1253
    }
1254
    env->exception_injected =
1255
       events.exception.injected ? events.exception.nr : -1;
1256
    env->has_error_code = events.exception.has_error_code;
1257
    env->error_code = events.exception.error_code;
1258

    
1259
    env->interrupt_injected =
1260
        events.interrupt.injected ? events.interrupt.nr : -1;
1261
    env->soft_interrupt = events.interrupt.soft;
1262

    
1263
    env->nmi_injected = events.nmi.injected;
1264
    env->nmi_pending = events.nmi.pending;
1265
    if (events.nmi.masked) {
1266
        env->hflags2 |= HF2_NMI_MASK;
1267
    } else {
1268
        env->hflags2 &= ~HF2_NMI_MASK;
1269
    }
1270

    
1271
    env->sipi_vector = events.sipi_vector;
1272
#endif
1273

    
1274
    return 0;
1275
}
1276

    
1277
static int kvm_guest_debug_workarounds(CPUState *env)
1278
{
1279
    int ret = 0;
1280
#ifdef KVM_CAP_SET_GUEST_DEBUG
1281
    unsigned long reinject_trap = 0;
1282

    
1283
    if (!kvm_has_vcpu_events()) {
1284
        if (env->exception_injected == 1) {
1285
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1286
        } else if (env->exception_injected == 3) {
1287
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1288
        }
1289
        env->exception_injected = -1;
1290
    }
1291

    
1292
    /*
1293
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1294
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1295
     * by updating the debug state once again if single-stepping is on.
1296
     * Another reason to call kvm_update_guest_debug here is a pending debug
1297
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1298
     * reinject them via SET_GUEST_DEBUG.
1299
     */
1300
    if (reinject_trap ||
1301
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1302
        ret = kvm_update_guest_debug(env, reinject_trap);
1303
    }
1304
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1305
    return ret;
1306
}
1307

    
1308
static int kvm_put_debugregs(CPUState *env)
1309
{
1310
#ifdef KVM_CAP_DEBUGREGS
1311
    struct kvm_debugregs dbgregs;
1312
    int i;
1313

    
1314
    if (!kvm_has_debugregs()) {
1315
        return 0;
1316
    }
1317

    
1318
    for (i = 0; i < 4; i++) {
1319
        dbgregs.db[i] = env->dr[i];
1320
    }
1321
    dbgregs.dr6 = env->dr[6];
1322
    dbgregs.dr7 = env->dr[7];
1323
    dbgregs.flags = 0;
1324

    
1325
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1326
#else
1327
    return 0;
1328
#endif
1329
}
1330

    
1331
static int kvm_get_debugregs(CPUState *env)
1332
{
1333
#ifdef KVM_CAP_DEBUGREGS
1334
    struct kvm_debugregs dbgregs;
1335
    int i, ret;
1336

    
1337
    if (!kvm_has_debugregs()) {
1338
        return 0;
1339
    }
1340

    
1341
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1342
    if (ret < 0) {
1343
        return ret;
1344
    }
1345
    for (i = 0; i < 4; i++) {
1346
        env->dr[i] = dbgregs.db[i];
1347
    }
1348
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1349
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1350
#endif
1351

    
1352
    return 0;
1353
}
1354

    
1355
int kvm_arch_put_registers(CPUState *env, int level)
1356
{
1357
    int ret;
1358

    
1359
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1360

    
1361
    ret = kvm_getput_regs(env, 1);
1362
    if (ret < 0) {
1363
        return ret;
1364
    }
1365
    ret = kvm_put_xsave(env);
1366
    if (ret < 0) {
1367
        return ret;
1368
    }
1369
    ret = kvm_put_xcrs(env);
1370
    if (ret < 0) {
1371
        return ret;
1372
    }
1373
    ret = kvm_put_sregs(env);
1374
    if (ret < 0) {
1375
        return ret;
1376
    }
1377
    ret = kvm_put_msrs(env, level);
1378
    if (ret < 0) {
1379
        return ret;
1380
    }
1381
    if (level >= KVM_PUT_RESET_STATE) {
1382
        ret = kvm_put_mp_state(env);
1383
        if (ret < 0) {
1384
            return ret;
1385
        }
1386
    }
1387
    ret = kvm_put_vcpu_events(env, level);
1388
    if (ret < 0) {
1389
        return ret;
1390
    }
1391
    ret = kvm_put_debugregs(env);
1392
    if (ret < 0) {
1393
        return ret;
1394
    }
1395
    /* must be last */
1396
    ret = kvm_guest_debug_workarounds(env);
1397
    if (ret < 0) {
1398
        return ret;
1399
    }
1400
    return 0;
1401
}
1402

    
1403
int kvm_arch_get_registers(CPUState *env)
1404
{
1405
    int ret;
1406

    
1407
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1408

    
1409
    ret = kvm_getput_regs(env, 0);
1410
    if (ret < 0) {
1411
        return ret;
1412
    }
1413
    ret = kvm_get_xsave(env);
1414
    if (ret < 0) {
1415
        return ret;
1416
    }
1417
    ret = kvm_get_xcrs(env);
1418
    if (ret < 0) {
1419
        return ret;
1420
    }
1421
    ret = kvm_get_sregs(env);
1422
    if (ret < 0) {
1423
        return ret;
1424
    }
1425
    ret = kvm_get_msrs(env);
1426
    if (ret < 0) {
1427
        return ret;
1428
    }
1429
    ret = kvm_get_mp_state(env);
1430
    if (ret < 0) {
1431
        return ret;
1432
    }
1433
    ret = kvm_get_vcpu_events(env);
1434
    if (ret < 0) {
1435
        return ret;
1436
    }
1437
    ret = kvm_get_debugregs(env);
1438
    if (ret < 0) {
1439
        return ret;
1440
    }
1441
    return 0;
1442
}
1443

    
1444
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1445
{
1446
    /* Inject NMI */
1447
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1448
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1449
        DPRINTF("injected NMI\n");
1450
        kvm_vcpu_ioctl(env, KVM_NMI);
1451
    }
1452

    
1453
    /* Try to inject an interrupt if the guest can accept it */
1454
    if (run->ready_for_interrupt_injection &&
1455
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1456
        (env->eflags & IF_MASK)) {
1457
        int irq;
1458

    
1459
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1460
        irq = cpu_get_pic_interrupt(env);
1461
        if (irq >= 0) {
1462
            struct kvm_interrupt intr;
1463
            intr.irq = irq;
1464
            /* FIXME: errors */
1465
            DPRINTF("injected interrupt %d\n", irq);
1466
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1467
        }
1468
    }
1469

    
1470
    /* If we have an interrupt but the guest is not ready to receive an
1471
     * interrupt, request an interrupt window exit.  This will
1472
     * cause a return to userspace as soon as the guest is ready to
1473
     * receive interrupts. */
1474
    if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1475
        run->request_interrupt_window = 1;
1476
    } else {
1477
        run->request_interrupt_window = 0;
1478
    }
1479

    
1480
    DPRINTF("setting tpr\n");
1481
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1482

    
1483
    return 0;
1484
}
1485

    
1486
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1487
{
1488
    if (run->if_flag) {
1489
        env->eflags |= IF_MASK;
1490
    } else {
1491
        env->eflags &= ~IF_MASK;
1492
    }
1493
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1494
    cpu_set_apic_base(env->apic_state, run->apic_base);
1495

    
1496
    return 0;
1497
}
1498

    
1499
int kvm_arch_process_irqchip_events(CPUState *env)
1500
{
1501
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1502
        kvm_cpu_synchronize_state(env);
1503
        do_cpu_init(env);
1504
        env->exception_index = EXCP_HALTED;
1505
    }
1506

    
1507
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1508
        kvm_cpu_synchronize_state(env);
1509
        do_cpu_sipi(env);
1510
    }
1511

    
1512
    return env->halted;
1513
}
1514

    
1515
static int kvm_handle_halt(CPUState *env)
1516
{
1517
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1518
          (env->eflags & IF_MASK)) &&
1519
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1520
        env->halted = 1;
1521
        env->exception_index = EXCP_HLT;
1522
        return 0;
1523
    }
1524

    
1525
    return 1;
1526
}
1527

    
1528
static bool host_supports_vmx(void)
1529
{
1530
    uint32_t ecx, unused;
1531

    
1532
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1533
    return ecx & CPUID_EXT_VMX;
1534
}
1535

    
1536
#define VMX_INVALID_GUEST_STATE 0x80000021
1537

    
1538
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1539
{
1540
    uint64_t code;
1541
    int ret = 0;
1542

    
1543
    switch (run->exit_reason) {
1544
    case KVM_EXIT_HLT:
1545
        DPRINTF("handle_hlt\n");
1546
        ret = kvm_handle_halt(env);
1547
        break;
1548
    case KVM_EXIT_SET_TPR:
1549
        ret = 1;
1550
        break;
1551
    case KVM_EXIT_FAIL_ENTRY:
1552
        code = run->fail_entry.hardware_entry_failure_reason;
1553
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1554
                code);
1555
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1556
            fprintf(stderr,
1557
                    "\nIf you're runnning a guest on an Intel machine without "
1558
                        "unrestricted mode\n"
1559
                    "support, the failure can be most likely due to the guest "
1560
                        "entering an invalid\n"
1561
                    "state for Intel VT. For example, the guest maybe running "
1562
                        "in big real mode\n"
1563
                    "which is not supported on less recent Intel processors."
1564
                        "\n\n");
1565
        }
1566
        ret = -1;
1567
        break;
1568
    case KVM_EXIT_EXCEPTION:
1569
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1570
                run->ex.exception, run->ex.error_code);
1571
        ret = -1;
1572
        break;
1573
    default:
1574
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1575
        ret = -1;
1576
        break;
1577
    }
1578

    
1579
    return ret;
1580
}
1581

    
1582
#ifdef KVM_CAP_SET_GUEST_DEBUG
1583
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1584
{
1585
    static const uint8_t int3 = 0xcc;
1586

    
1587
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1588
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1589
        return -EINVAL;
1590
    }
1591
    return 0;
1592
}
1593

    
1594
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1595
{
1596
    uint8_t int3;
1597

    
1598
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1599
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1600
        return -EINVAL;
1601
    }
1602
    return 0;
1603
}
1604

    
1605
static struct {
1606
    target_ulong addr;
1607
    int len;
1608
    int type;
1609
} hw_breakpoint[4];
1610

    
1611
static int nb_hw_breakpoint;
1612

    
1613
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1614
{
1615
    int n;
1616

    
1617
    for (n = 0; n < nb_hw_breakpoint; n++) {
1618
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1619
            (hw_breakpoint[n].len == len || len == -1)) {
1620
            return n;
1621
        }
1622
    }
1623
    return -1;
1624
}
1625

    
1626
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1627
                                  target_ulong len, int type)
1628
{
1629
    switch (type) {
1630
    case GDB_BREAKPOINT_HW:
1631
        len = 1;
1632
        break;
1633
    case GDB_WATCHPOINT_WRITE:
1634
    case GDB_WATCHPOINT_ACCESS:
1635
        switch (len) {
1636
        case 1:
1637
            break;
1638
        case 2:
1639
        case 4:
1640
        case 8:
1641
            if (addr & (len - 1)) {
1642
                return -EINVAL;
1643
            }
1644
            break;
1645
        default:
1646
            return -EINVAL;
1647
        }
1648
        break;
1649
    default:
1650
        return -ENOSYS;
1651
    }
1652

    
1653
    if (nb_hw_breakpoint == 4) {
1654
        return -ENOBUFS;
1655
    }
1656
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1657
        return -EEXIST;
1658
    }
1659
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1660
    hw_breakpoint[nb_hw_breakpoint].len = len;
1661
    hw_breakpoint[nb_hw_breakpoint].type = type;
1662
    nb_hw_breakpoint++;
1663

    
1664
    return 0;
1665
}
1666

    
1667
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1668
                                  target_ulong len, int type)
1669
{
1670
    int n;
1671

    
1672
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1673
    if (n < 0) {
1674
        return -ENOENT;
1675
    }
1676
    nb_hw_breakpoint--;
1677
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1678

    
1679
    return 0;
1680
}
1681

    
1682
void kvm_arch_remove_all_hw_breakpoints(void)
1683
{
1684
    nb_hw_breakpoint = 0;
1685
}
1686

    
1687
static CPUWatchpoint hw_watchpoint;
1688

    
1689
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1690
{
1691
    int handle = 0;
1692
    int n;
1693

    
1694
    if (arch_info->exception == 1) {
1695
        if (arch_info->dr6 & (1 << 14)) {
1696
            if (cpu_single_env->singlestep_enabled) {
1697
                handle = 1;
1698
            }
1699
        } else {
1700
            for (n = 0; n < 4; n++) {
1701
                if (arch_info->dr6 & (1 << n)) {
1702
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1703
                    case 0x0:
1704
                        handle = 1;
1705
                        break;
1706
                    case 0x1:
1707
                        handle = 1;
1708
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1709
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1710
                        hw_watchpoint.flags = BP_MEM_WRITE;
1711
                        break;
1712
                    case 0x3:
1713
                        handle = 1;
1714
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1715
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1716
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1717
                        break;
1718
                    }
1719
                }
1720
            }
1721
        }
1722
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1723
        handle = 1;
1724
    }
1725
    if (!handle) {
1726
        cpu_synchronize_state(cpu_single_env);
1727
        assert(cpu_single_env->exception_injected == -1);
1728

    
1729
        cpu_single_env->exception_injected = arch_info->exception;
1730
        cpu_single_env->has_error_code = 0;
1731
    }
1732

    
1733
    return handle;
1734
}
1735

    
1736
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1737
{
1738
    const uint8_t type_code[] = {
1739
        [GDB_BREAKPOINT_HW] = 0x0,
1740
        [GDB_WATCHPOINT_WRITE] = 0x1,
1741
        [GDB_WATCHPOINT_ACCESS] = 0x3
1742
    };
1743
    const uint8_t len_code[] = {
1744
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1745
    };
1746
    int n;
1747

    
1748
    if (kvm_sw_breakpoints_active(env)) {
1749
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1750
    }
1751
    if (nb_hw_breakpoint > 0) {
1752
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1753
        dbg->arch.debugreg[7] = 0x0600;
1754
        for (n = 0; n < nb_hw_breakpoint; n++) {
1755
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1756
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1757
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1758
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1759
        }
1760
    }
1761
}
1762
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1763

    
1764
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1765
{
1766
    return !(env->cr[0] & CR0_PE_MASK) ||
1767
           ((env->segs[R_CS].selector  & 3) != 3);
1768
}
1769

    
1770
static void hardware_memory_error(void)
1771
{
1772
    fprintf(stderr, "Hardware memory error!\n");
1773
    exit(1);
1774
}
1775

    
1776
#ifdef KVM_CAP_MCE
1777
static void kvm_mce_broadcast_rest(CPUState *env)
1778
{
1779
    struct kvm_x86_mce mce = {
1780
        .bank = 1,
1781
        .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1782
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1783
        .addr = 0,
1784
        .misc = 0,
1785
    };
1786
    CPUState *cenv;
1787

    
1788
    /* Broadcast MCA signal for processor version 06H_EH and above */
1789
    if (cpu_x86_support_mca_broadcast(env)) {
1790
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1791
            if (cenv == env) {
1792
                continue;
1793
            }
1794
            kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1795
        }
1796
    }
1797
}
1798

    
1799
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1800
{
1801
    struct kvm_x86_mce mce = {
1802
        .bank = 9,
1803
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1804
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1805
                  | MCI_STATUS_AR | 0x134,
1806
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1807
        .addr = paddr,
1808
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1809
    };
1810
    int r;
1811

    
1812
    r = kvm_set_mce(env, &mce);
1813
    if (r < 0) {
1814
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1815
        abort();
1816
    }
1817
    kvm_mce_broadcast_rest(env);
1818
}
1819

    
1820
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1821
{
1822
    struct kvm_x86_mce mce = {
1823
        .bank = 9,
1824
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1825
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1826
                  | 0xc0,
1827
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1828
        .addr = paddr,
1829
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1830
    };
1831
    int r;
1832

    
1833
    r = kvm_set_mce(env, &mce);
1834
    if (r < 0) {
1835
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1836
        abort();
1837
    }
1838
    kvm_mce_broadcast_rest(env);
1839
}
1840

    
1841
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1842
{
1843
    struct kvm_x86_mce mce = {
1844
        .bank = 9,
1845
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1846
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1847
                  | 0xc0,
1848
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1849
        .addr = paddr,
1850
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1851
    };
1852

    
1853
    kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1854
    kvm_mce_broadcast_rest(env);
1855
}
1856

    
1857
#endif
1858

    
1859
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1860
{
1861
#if defined(KVM_CAP_MCE)
1862
    void *vaddr;
1863
    ram_addr_t ram_addr;
1864
    target_phys_addr_t paddr;
1865

    
1866
    if ((env->mcg_cap & MCG_SER_P) && addr
1867
        && (code == BUS_MCEERR_AR
1868
            || code == BUS_MCEERR_AO)) {
1869
        vaddr = (void *)addr;
1870
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1871
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1872
            fprintf(stderr, "Hardware memory error for memory used by "
1873
                    "QEMU itself instead of guest system!\n");
1874
            /* Hope we are lucky for AO MCE */
1875
            if (code == BUS_MCEERR_AO) {
1876
                return 0;
1877
            } else {
1878
                hardware_memory_error();
1879
            }
1880
        }
1881

    
1882
        if (code == BUS_MCEERR_AR) {
1883
            /* Fake an Intel architectural Data Load SRAR UCR */
1884
            kvm_mce_inj_srar_dataload(env, paddr);
1885
        } else {
1886
            /*
1887
             * If there is an MCE excpetion being processed, ignore
1888
             * this SRAO MCE
1889
             */
1890
            if (!kvm_mce_in_progress(env)) {
1891
                /* Fake an Intel architectural Memory scrubbing UCR */
1892
                kvm_mce_inj_srao_memscrub(env, paddr);
1893
            }
1894
        }
1895
    } else
1896
#endif
1897
    {
1898
        if (code == BUS_MCEERR_AO) {
1899
            return 0;
1900
        } else if (code == BUS_MCEERR_AR) {
1901
            hardware_memory_error();
1902
        } else {
1903
            return 1;
1904
        }
1905
    }
1906
    return 0;
1907
}
1908

    
1909
int kvm_on_sigbus(int code, void *addr)
1910
{
1911
#if defined(KVM_CAP_MCE)
1912
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1913
        void *vaddr;
1914
        ram_addr_t ram_addr;
1915
        target_phys_addr_t paddr;
1916

    
1917
        /* Hope we are lucky for AO MCE */
1918
        vaddr = addr;
1919
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1920
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1921
            fprintf(stderr, "Hardware memory error for memory used by "
1922
                    "QEMU itself instead of guest system!: %p\n", addr);
1923
            return 0;
1924
        }
1925
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1926
    } else
1927
#endif
1928
    {
1929
        if (code == BUS_MCEERR_AO) {
1930
            return 0;
1931
        } else if (code == BUS_MCEERR_AR) {
1932
            hardware_memory_error();
1933
        } else {
1934
            return 1;
1935
        }
1936
    }
1937
    return 0;
1938
}