Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ cb446eca

History | View | Annotate | Download (66.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu/sysemu.h"
25
#include "sysemu/kvm.h"
26
#include "kvm_i386.h"
27
#include "cpu.h"
28
#include "exec/gdbstub.h"
29
#include "qemu/host-utils.h"
30
#include "qemu/config-file.h"
31
#include "hw/i386/pc.h"
32
#include "hw/i386/apic.h"
33
#include "exec/ioport.h"
34
#include "hyperv.h"
35
#include "hw/pci/pci.h"
36

    
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58
    KVM_CAP_INFO(SET_TSS_ADDR),
59
    KVM_CAP_INFO(EXT_CPUID),
60
    KVM_CAP_INFO(MP_STATE),
61
    KVM_CAP_LAST_INFO
62
};
63

    
64
static bool has_msr_star;
65
static bool has_msr_hsave_pa;
66
static bool has_msr_tsc_adjust;
67
static bool has_msr_tsc_deadline;
68
static bool has_msr_async_pf_en;
69
static bool has_msr_pv_eoi_en;
70
static bool has_msr_misc_enable;
71
static bool has_msr_kvm_steal_time;
72
static int lm_capable_kernel;
73

    
74
bool kvm_allows_irq0_override(void)
75
{
76
    return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
77
}
78

    
79
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80
{
81
    struct kvm_cpuid2 *cpuid;
82
    int r, size;
83

    
84
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86
    cpuid->nent = max;
87
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88
    if (r == 0 && cpuid->nent >= max) {
89
        r = -E2BIG;
90
    }
91
    if (r < 0) {
92
        if (r == -E2BIG) {
93
            g_free(cpuid);
94
            return NULL;
95
        } else {
96
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97
                    strerror(-r));
98
            exit(1);
99
        }
100
    }
101
    return cpuid;
102
}
103

    
104
/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105
 * for all entries.
106
 */
107
static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108
{
109
    struct kvm_cpuid2 *cpuid;
110
    int max = 1;
111
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112
        max *= 2;
113
    }
114
    return cpuid;
115
}
116

    
117
struct kvm_para_features {
118
    int cap;
119
    int feature;
120
} para_features[] = {
121
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125
    { -1, -1 }
126
};
127

    
128
static int get_para_features(KVMState *s)
129
{
130
    int i, features = 0;
131

    
132
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133
        if (kvm_check_extension(s, para_features[i].cap)) {
134
            features |= (1 << para_features[i].feature);
135
        }
136
    }
137

    
138
    return features;
139
}
140

    
141

    
142
/* Returns the value for a specific register on the cpuid entry
143
 */
144
static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145
{
146
    uint32_t ret = 0;
147
    switch (reg) {
148
    case R_EAX:
149
        ret = entry->eax;
150
        break;
151
    case R_EBX:
152
        ret = entry->ebx;
153
        break;
154
    case R_ECX:
155
        ret = entry->ecx;
156
        break;
157
    case R_EDX:
158
        ret = entry->edx;
159
        break;
160
    }
161
    return ret;
162
}
163

    
164
/* Find matching entry for function/index on kvm_cpuid2 struct
165
 */
166
static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167
                                                 uint32_t function,
168
                                                 uint32_t index)
169
{
170
    int i;
171
    for (i = 0; i < cpuid->nent; ++i) {
172
        if (cpuid->entries[i].function == function &&
173
            cpuid->entries[i].index == index) {
174
            return &cpuid->entries[i];
175
        }
176
    }
177
    /* not found: */
178
    return NULL;
179
}
180

    
181
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182
                                      uint32_t index, int reg)
183
{
184
    struct kvm_cpuid2 *cpuid;
185
    uint32_t ret = 0;
186
    uint32_t cpuid_1_edx;
187
    bool found = false;
188

    
189
    cpuid = get_supported_cpuid(s);
190

    
191
    struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192
    if (entry) {
193
        found = true;
194
        ret = cpuid_entry_get_reg(entry, reg);
195
    }
196

    
197
    /* Fixups for the data returned by KVM, below */
198

    
199
    if (function == 1 && reg == R_EDX) {
200
        /* KVM before 2.6.30 misreports the following features */
201
        ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202
    } else if (function == 1 && reg == R_ECX) {
203
        /* We can set the hypervisor flag, even if KVM does not return it on
204
         * GET_SUPPORTED_CPUID
205
         */
206
        ret |= CPUID_EXT_HYPERVISOR;
207
        /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208
         * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209
         * and the irqchip is in the kernel.
210
         */
211
        if (kvm_irqchip_in_kernel() &&
212
                kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213
            ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
214
        }
215

    
216
        /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217
         * without the in-kernel irqchip
218
         */
219
        if (!kvm_irqchip_in_kernel()) {
220
            ret &= ~CPUID_EXT_X2APIC;
221
        }
222
    } else if (function == 0x80000001 && reg == R_EDX) {
223
        /* On Intel, kvm returns cpuid according to the Intel spec,
224
         * so add missing bits according to the AMD spec:
225
         */
226
        cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227
        ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
228
    }
229

    
230
    g_free(cpuid);
231

    
232
    /* fallback for older kernels */
233
    if ((function == KVM_CPUID_FEATURES) && !found) {
234
        ret = get_para_features(s);
235
    }
236

    
237
    return ret;
238
}
239

    
240
typedef struct HWPoisonPage {
241
    ram_addr_t ram_addr;
242
    QLIST_ENTRY(HWPoisonPage) list;
243
} HWPoisonPage;
244

    
245
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247

    
248
static void kvm_unpoison_all(void *param)
249
{
250
    HWPoisonPage *page, *next_page;
251

    
252
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253
        QLIST_REMOVE(page, list);
254
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255
        g_free(page);
256
    }
257
}
258

    
259
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260
{
261
    HWPoisonPage *page;
262

    
263
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
264
        if (page->ram_addr == ram_addr) {
265
            return;
266
        }
267
    }
268
    page = g_malloc(sizeof(HWPoisonPage));
269
    page->ram_addr = ram_addr;
270
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
271
}
272

    
273
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274
                                     int *max_banks)
275
{
276
    int r;
277

    
278
    r = kvm_check_extension(s, KVM_CAP_MCE);
279
    if (r > 0) {
280
        *max_banks = r;
281
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282
    }
283
    return -ENOSYS;
284
}
285

    
286
static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287
{
288
    CPUX86State *env = &cpu->env;
289
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291
    uint64_t mcg_status = MCG_STATUS_MCIP;
292

    
293
    if (code == BUS_MCEERR_AR) {
294
        status |= MCI_STATUS_AR | 0x134;
295
        mcg_status |= MCG_STATUS_EIPV;
296
    } else {
297
        status |= 0xc0;
298
        mcg_status |= MCG_STATUS_RIPV;
299
    }
300
    cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301
                       (MCM_ADDR_PHYS << 6) | 0xc,
302
                       cpu_x86_support_mca_broadcast(env) ?
303
                       MCE_INJECT_BROADCAST : 0);
304
}
305

    
306
static void hardware_memory_error(void)
307
{
308
    fprintf(stderr, "Hardware memory error!\n");
309
    exit(1);
310
}
311

    
312
int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313
{
314
    X86CPU *cpu = X86_CPU(c);
315
    CPUX86State *env = &cpu->env;
316
    ram_addr_t ram_addr;
317
    hwaddr paddr;
318

    
319
    if ((env->mcg_cap & MCG_SER_P) && addr
320
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
322
            !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323
            fprintf(stderr, "Hardware memory error for memory used by "
324
                    "QEMU itself instead of guest system!\n");
325
            /* Hope we are lucky for AO MCE */
326
            if (code == BUS_MCEERR_AO) {
327
                return 0;
328
            } else {
329
                hardware_memory_error();
330
            }
331
        }
332
        kvm_hwpoison_page_add(ram_addr);
333
        kvm_mce_inject(cpu, paddr, code);
334
    } else {
335
        if (code == BUS_MCEERR_AO) {
336
            return 0;
337
        } else if (code == BUS_MCEERR_AR) {
338
            hardware_memory_error();
339
        } else {
340
            return 1;
341
        }
342
    }
343
    return 0;
344
}
345

    
346
int kvm_arch_on_sigbus(int code, void *addr)
347
{
348
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
349
        ram_addr_t ram_addr;
350
        hwaddr paddr;
351

    
352
        /* Hope we are lucky for AO MCE */
353
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
354
            !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
355
                                                addr, &paddr)) {
356
            fprintf(stderr, "Hardware memory error for memory used by "
357
                    "QEMU itself instead of guest system!: %p\n", addr);
358
            return 0;
359
        }
360
        kvm_hwpoison_page_add(ram_addr);
361
        kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
362
    } else {
363
        if (code == BUS_MCEERR_AO) {
364
            return 0;
365
        } else if (code == BUS_MCEERR_AR) {
366
            hardware_memory_error();
367
        } else {
368
            return 1;
369
        }
370
    }
371
    return 0;
372
}
373

    
374
static int kvm_inject_mce_oldstyle(X86CPU *cpu)
375
{
376
    CPUX86State *env = &cpu->env;
377

    
378
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
379
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
380
        struct kvm_x86_mce mce;
381

    
382
        env->exception_injected = -1;
383

    
384
        /*
385
         * There must be at least one bank in use if an MCE is pending.
386
         * Find it and use its values for the event injection.
387
         */
388
        for (bank = 0; bank < bank_num; bank++) {
389
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
390
                break;
391
            }
392
        }
393
        assert(bank < bank_num);
394

    
395
        mce.bank = bank;
396
        mce.status = env->mce_banks[bank * 4 + 1];
397
        mce.mcg_status = env->mcg_status;
398
        mce.addr = env->mce_banks[bank * 4 + 2];
399
        mce.misc = env->mce_banks[bank * 4 + 3];
400

    
401
        return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
402
    }
403
    return 0;
404
}
405

    
406
static void cpu_update_state(void *opaque, int running, RunState state)
407
{
408
    CPUX86State *env = opaque;
409

    
410
    if (running) {
411
        env->tsc_valid = false;
412
    }
413
}
414

    
415
unsigned long kvm_arch_vcpu_id(CPUState *cs)
416
{
417
    X86CPU *cpu = X86_CPU(cs);
418
    return cpu->env.cpuid_apic_id;
419
}
420

    
421
#define KVM_MAX_CPUID_ENTRIES  100
422

    
423
int kvm_arch_init_vcpu(CPUState *cs)
424
{
425
    struct {
426
        struct kvm_cpuid2 cpuid;
427
        struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
428
    } QEMU_PACKED cpuid_data;
429
    X86CPU *cpu = X86_CPU(cs);
430
    CPUX86State *env = &cpu->env;
431
    uint32_t limit, i, j, cpuid_i;
432
    uint32_t unused;
433
    struct kvm_cpuid_entry2 *c;
434
    uint32_t signature[3];
435
    int r;
436

    
437
    cpuid_i = 0;
438

    
439
    /* Paravirtualization CPUIDs */
440
    c = &cpuid_data.entries[cpuid_i++];
441
    memset(c, 0, sizeof(*c));
442
    c->function = KVM_CPUID_SIGNATURE;
443
    if (!hyperv_enabled()) {
444
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
445
        c->eax = 0;
446
    } else {
447
        memcpy(signature, "Microsoft Hv", 12);
448
        c->eax = HYPERV_CPUID_MIN;
449
    }
450
    c->ebx = signature[0];
451
    c->ecx = signature[1];
452
    c->edx = signature[2];
453

    
454
    c = &cpuid_data.entries[cpuid_i++];
455
    memset(c, 0, sizeof(*c));
456
    c->function = KVM_CPUID_FEATURES;
457
    c->eax = env->features[FEAT_KVM];
458

    
459
    if (hyperv_enabled()) {
460
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
461
        c->eax = signature[0];
462

    
463
        c = &cpuid_data.entries[cpuid_i++];
464
        memset(c, 0, sizeof(*c));
465
        c->function = HYPERV_CPUID_VERSION;
466
        c->eax = 0x00001bbc;
467
        c->ebx = 0x00060001;
468

    
469
        c = &cpuid_data.entries[cpuid_i++];
470
        memset(c, 0, sizeof(*c));
471
        c->function = HYPERV_CPUID_FEATURES;
472
        if (hyperv_relaxed_timing_enabled()) {
473
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
474
        }
475
        if (hyperv_vapic_recommended()) {
476
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
477
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
478
        }
479

    
480
        c = &cpuid_data.entries[cpuid_i++];
481
        memset(c, 0, sizeof(*c));
482
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
483
        if (hyperv_relaxed_timing_enabled()) {
484
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
485
        }
486
        if (hyperv_vapic_recommended()) {
487
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
488
        }
489
        c->ebx = hyperv_get_spinlock_retries();
490

    
491
        c = &cpuid_data.entries[cpuid_i++];
492
        memset(c, 0, sizeof(*c));
493
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
494
        c->eax = 0x40;
495
        c->ebx = 0x40;
496

    
497
        c = &cpuid_data.entries[cpuid_i++];
498
        memset(c, 0, sizeof(*c));
499
        c->function = KVM_CPUID_SIGNATURE_NEXT;
500
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
501
        c->eax = 0;
502
        c->ebx = signature[0];
503
        c->ecx = signature[1];
504
        c->edx = signature[2];
505
    }
506

    
507
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
508

    
509
    has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
510

    
511
    has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
512

    
513
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
514

    
515
    for (i = 0; i <= limit; i++) {
516
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
517
            fprintf(stderr, "unsupported level value: 0x%x\n", limit);
518
            abort();
519
        }
520
        c = &cpuid_data.entries[cpuid_i++];
521

    
522
        switch (i) {
523
        case 2: {
524
            /* Keep reading function 2 till all the input is received */
525
            int times;
526

    
527
            c->function = i;
528
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
529
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
530
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
531
            times = c->eax & 0xff;
532

    
533
            for (j = 1; j < times; ++j) {
534
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
535
                    fprintf(stderr, "cpuid_data is full, no space for "
536
                            "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
537
                    abort();
538
                }
539
                c = &cpuid_data.entries[cpuid_i++];
540
                c->function = i;
541
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
542
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
543
            }
544
            break;
545
        }
546
        case 4:
547
        case 0xb:
548
        case 0xd:
549
            for (j = 0; ; j++) {
550
                if (i == 0xd && j == 64) {
551
                    break;
552
                }
553
                c->function = i;
554
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
555
                c->index = j;
556
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
557

    
558
                if (i == 4 && c->eax == 0) {
559
                    break;
560
                }
561
                if (i == 0xb && !(c->ecx & 0xff00)) {
562
                    break;
563
                }
564
                if (i == 0xd && c->eax == 0) {
565
                    continue;
566
                }
567
                if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
568
                    fprintf(stderr, "cpuid_data is full, no space for "
569
                            "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
570
                    abort();
571
                }
572
                c = &cpuid_data.entries[cpuid_i++];
573
            }
574
            break;
575
        default:
576
            c->function = i;
577
            c->flags = 0;
578
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
579
            break;
580
        }
581
    }
582
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
583

    
584
    for (i = 0x80000000; i <= limit; i++) {
585
        if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
586
            fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
587
            abort();
588
        }
589
        c = &cpuid_data.entries[cpuid_i++];
590

    
591
        c->function = i;
592
        c->flags = 0;
593
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
594
    }
595

    
596
    /* Call Centaur's CPUID instructions they are supported. */
597
    if (env->cpuid_xlevel2 > 0) {
598
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
599

    
600
        for (i = 0xC0000000; i <= limit; i++) {
601
            if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
602
                fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
603
                abort();
604
            }
605
            c = &cpuid_data.entries[cpuid_i++];
606

    
607
            c->function = i;
608
            c->flags = 0;
609
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
610
        }
611
    }
612

    
613
    cpuid_data.cpuid.nent = cpuid_i;
614

    
615
    if (((env->cpuid_version >> 8)&0xF) >= 6
616
        && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
617
           (CPUID_MCE | CPUID_MCA)
618
        && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
619
        uint64_t mcg_cap;
620
        int banks;
621
        int ret;
622

    
623
        ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
624
        if (ret < 0) {
625
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
626
            return ret;
627
        }
628

    
629
        if (banks > MCE_BANKS_DEF) {
630
            banks = MCE_BANKS_DEF;
631
        }
632
        mcg_cap &= MCE_CAP_DEF;
633
        mcg_cap |= banks;
634
        ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
635
        if (ret < 0) {
636
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
637
            return ret;
638
        }
639

    
640
        env->mcg_cap = mcg_cap;
641
    }
642

    
643
    qemu_add_vm_change_state_handler(cpu_update_state, env);
644

    
645
    cpuid_data.cpuid.padding = 0;
646
    r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
647
    if (r) {
648
        return r;
649
    }
650

    
651
    r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
652
    if (r && env->tsc_khz) {
653
        r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
654
        if (r < 0) {
655
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
656
            return r;
657
        }
658
    }
659

    
660
    if (kvm_has_xsave()) {
661
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
662
    }
663

    
664
    return 0;
665
}
666

    
667
void kvm_arch_reset_vcpu(CPUState *cs)
668
{
669
    X86CPU *cpu = X86_CPU(cs);
670
    CPUX86State *env = &cpu->env;
671

    
672
    env->exception_injected = -1;
673
    env->interrupt_injected = -1;
674
    env->xcr0 = 1;
675
    if (kvm_irqchip_in_kernel()) {
676
        env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
677
                                          KVM_MP_STATE_UNINITIALIZED;
678
    } else {
679
        env->mp_state = KVM_MP_STATE_RUNNABLE;
680
    }
681
}
682

    
683
static int kvm_get_supported_msrs(KVMState *s)
684
{
685
    static int kvm_supported_msrs;
686
    int ret = 0;
687

    
688
    /* first time */
689
    if (kvm_supported_msrs == 0) {
690
        struct kvm_msr_list msr_list, *kvm_msr_list;
691

    
692
        kvm_supported_msrs = -1;
693

    
694
        /* Obtain MSR list from KVM.  These are the MSRs that we must
695
         * save/restore */
696
        msr_list.nmsrs = 0;
697
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
698
        if (ret < 0 && ret != -E2BIG) {
699
            return ret;
700
        }
701
        /* Old kernel modules had a bug and could write beyond the provided
702
           memory. Allocate at least a safe amount of 1K. */
703
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
704
                                              msr_list.nmsrs *
705
                                              sizeof(msr_list.indices[0])));
706

    
707
        kvm_msr_list->nmsrs = msr_list.nmsrs;
708
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
709
        if (ret >= 0) {
710
            int i;
711

    
712
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
713
                if (kvm_msr_list->indices[i] == MSR_STAR) {
714
                    has_msr_star = true;
715
                    continue;
716
                }
717
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
718
                    has_msr_hsave_pa = true;
719
                    continue;
720
                }
721
                if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
722
                    has_msr_tsc_adjust = true;
723
                    continue;
724
                }
725
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
726
                    has_msr_tsc_deadline = true;
727
                    continue;
728
                }
729
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
730
                    has_msr_misc_enable = true;
731
                    continue;
732
                }
733
            }
734
        }
735

    
736
        g_free(kvm_msr_list);
737
    }
738

    
739
    return ret;
740
}
741

    
742
int kvm_arch_init(KVMState *s)
743
{
744
    QemuOptsList *list = qemu_find_opts("machine");
745
    uint64_t identity_base = 0xfffbc000;
746
    uint64_t shadow_mem;
747
    int ret;
748
    struct utsname utsname;
749

    
750
    ret = kvm_get_supported_msrs(s);
751
    if (ret < 0) {
752
        return ret;
753
    }
754

    
755
    uname(&utsname);
756
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
757

    
758
    /*
759
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
760
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
761
     * Since these must be part of guest physical memory, we need to allocate
762
     * them, both by setting their start addresses in the kernel and by
763
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
764
     *
765
     * Older KVM versions may not support setting the identity map base. In
766
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
767
     * size.
768
     */
769
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
770
        /* Allows up to 16M BIOSes. */
771
        identity_base = 0xfeffc000;
772

    
773
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
774
        if (ret < 0) {
775
            return ret;
776
        }
777
    }
778

    
779
    /* Set TSS base one page after EPT identity map. */
780
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
781
    if (ret < 0) {
782
        return ret;
783
    }
784

    
785
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
786
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
787
    if (ret < 0) {
788
        fprintf(stderr, "e820_add_entry() table is full\n");
789
        return ret;
790
    }
791
    qemu_register_reset(kvm_unpoison_all, NULL);
792

    
793
    if (!QTAILQ_EMPTY(&list->head)) {
794
        shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
795
                                       "kvm_shadow_mem", -1);
796
        if (shadow_mem != -1) {
797
            shadow_mem /= 4096;
798
            ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
799
            if (ret < 0) {
800
                return ret;
801
            }
802
        }
803
    }
804
    return 0;
805
}
806

    
807
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
808
{
809
    lhs->selector = rhs->selector;
810
    lhs->base = rhs->base;
811
    lhs->limit = rhs->limit;
812
    lhs->type = 3;
813
    lhs->present = 1;
814
    lhs->dpl = 3;
815
    lhs->db = 0;
816
    lhs->s = 1;
817
    lhs->l = 0;
818
    lhs->g = 0;
819
    lhs->avl = 0;
820
    lhs->unusable = 0;
821
}
822

    
823
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
824
{
825
    unsigned flags = rhs->flags;
826
    lhs->selector = rhs->selector;
827
    lhs->base = rhs->base;
828
    lhs->limit = rhs->limit;
829
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
830
    lhs->present = (flags & DESC_P_MASK) != 0;
831
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
832
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
833
    lhs->s = (flags & DESC_S_MASK) != 0;
834
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
835
    lhs->g = (flags & DESC_G_MASK) != 0;
836
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
837
    lhs->unusable = 0;
838
    lhs->padding = 0;
839
}
840

    
841
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
842
{
843
    lhs->selector = rhs->selector;
844
    lhs->base = rhs->base;
845
    lhs->limit = rhs->limit;
846
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
847
                 (rhs->present * DESC_P_MASK) |
848
                 (rhs->dpl << DESC_DPL_SHIFT) |
849
                 (rhs->db << DESC_B_SHIFT) |
850
                 (rhs->s * DESC_S_MASK) |
851
                 (rhs->l << DESC_L_SHIFT) |
852
                 (rhs->g * DESC_G_MASK) |
853
                 (rhs->avl * DESC_AVL_MASK);
854
}
855

    
856
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
857
{
858
    if (set) {
859
        *kvm_reg = *qemu_reg;
860
    } else {
861
        *qemu_reg = *kvm_reg;
862
    }
863
}
864

    
865
static int kvm_getput_regs(X86CPU *cpu, int set)
866
{
867
    CPUX86State *env = &cpu->env;
868
    struct kvm_regs regs;
869
    int ret = 0;
870

    
871
    if (!set) {
872
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
873
        if (ret < 0) {
874
            return ret;
875
        }
876
    }
877

    
878
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
879
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
880
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
881
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
882
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
883
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
884
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
885
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
886
#ifdef TARGET_X86_64
887
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
888
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
889
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
890
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
891
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
892
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
893
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
894
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
895
#endif
896

    
897
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
898
    kvm_getput_reg(&regs.rip, &env->eip, set);
899

    
900
    if (set) {
901
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
902
    }
903

    
904
    return ret;
905
}
906

    
907
static int kvm_put_fpu(X86CPU *cpu)
908
{
909
    CPUX86State *env = &cpu->env;
910
    struct kvm_fpu fpu;
911
    int i;
912

    
913
    memset(&fpu, 0, sizeof fpu);
914
    fpu.fsw = env->fpus & ~(7 << 11);
915
    fpu.fsw |= (env->fpstt & 7) << 11;
916
    fpu.fcw = env->fpuc;
917
    fpu.last_opcode = env->fpop;
918
    fpu.last_ip = env->fpip;
919
    fpu.last_dp = env->fpdp;
920
    for (i = 0; i < 8; ++i) {
921
        fpu.ftwx |= (!env->fptags[i]) << i;
922
    }
923
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
924
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
925
    fpu.mxcsr = env->mxcsr;
926

    
927
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
928
}
929

    
930
#define XSAVE_FCW_FSW     0
931
#define XSAVE_FTW_FOP     1
932
#define XSAVE_CWD_RIP     2
933
#define XSAVE_CWD_RDP     4
934
#define XSAVE_MXCSR       6
935
#define XSAVE_ST_SPACE    8
936
#define XSAVE_XMM_SPACE   40
937
#define XSAVE_XSTATE_BV   128
938
#define XSAVE_YMMH_SPACE  144
939

    
940
static int kvm_put_xsave(X86CPU *cpu)
941
{
942
    CPUX86State *env = &cpu->env;
943
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
944
    uint16_t cwd, swd, twd;
945
    int i, r;
946

    
947
    if (!kvm_has_xsave()) {
948
        return kvm_put_fpu(cpu);
949
    }
950

    
951
    memset(xsave, 0, sizeof(struct kvm_xsave));
952
    twd = 0;
953
    swd = env->fpus & ~(7 << 11);
954
    swd |= (env->fpstt & 7) << 11;
955
    cwd = env->fpuc;
956
    for (i = 0; i < 8; ++i) {
957
        twd |= (!env->fptags[i]) << i;
958
    }
959
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
960
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
961
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
962
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
963
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
964
            sizeof env->fpregs);
965
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
966
            sizeof env->xmm_regs);
967
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
968
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
969
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
970
            sizeof env->ymmh_regs);
971
    r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
972
    return r;
973
}
974

    
975
static int kvm_put_xcrs(X86CPU *cpu)
976
{
977
    CPUX86State *env = &cpu->env;
978
    struct kvm_xcrs xcrs;
979

    
980
    if (!kvm_has_xcrs()) {
981
        return 0;
982
    }
983

    
984
    xcrs.nr_xcrs = 1;
985
    xcrs.flags = 0;
986
    xcrs.xcrs[0].xcr = 0;
987
    xcrs.xcrs[0].value = env->xcr0;
988
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
989
}
990

    
991
static int kvm_put_sregs(X86CPU *cpu)
992
{
993
    CPUX86State *env = &cpu->env;
994
    struct kvm_sregs sregs;
995

    
996
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
997
    if (env->interrupt_injected >= 0) {
998
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
999
                (uint64_t)1 << (env->interrupt_injected % 64);
1000
    }
1001

    
1002
    if ((env->eflags & VM_MASK)) {
1003
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1004
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1005
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1006
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1007
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1008
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1009
    } else {
1010
        set_seg(&sregs.cs, &env->segs[R_CS]);
1011
        set_seg(&sregs.ds, &env->segs[R_DS]);
1012
        set_seg(&sregs.es, &env->segs[R_ES]);
1013
        set_seg(&sregs.fs, &env->segs[R_FS]);
1014
        set_seg(&sregs.gs, &env->segs[R_GS]);
1015
        set_seg(&sregs.ss, &env->segs[R_SS]);
1016
    }
1017

    
1018
    set_seg(&sregs.tr, &env->tr);
1019
    set_seg(&sregs.ldt, &env->ldt);
1020

    
1021
    sregs.idt.limit = env->idt.limit;
1022
    sregs.idt.base = env->idt.base;
1023
    memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1024
    sregs.gdt.limit = env->gdt.limit;
1025
    sregs.gdt.base = env->gdt.base;
1026
    memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1027

    
1028
    sregs.cr0 = env->cr[0];
1029
    sregs.cr2 = env->cr[2];
1030
    sregs.cr3 = env->cr[3];
1031
    sregs.cr4 = env->cr[4];
1032

    
1033
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1034
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
1035

    
1036
    sregs.efer = env->efer;
1037

    
1038
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1039
}
1040

    
1041
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1042
                              uint32_t index, uint64_t value)
1043
{
1044
    entry->index = index;
1045
    entry->data = value;
1046
}
1047

    
1048
static int kvm_put_msrs(X86CPU *cpu, int level)
1049
{
1050
    CPUX86State *env = &cpu->env;
1051
    struct {
1052
        struct kvm_msrs info;
1053
        struct kvm_msr_entry entries[100];
1054
    } msr_data;
1055
    struct kvm_msr_entry *msrs = msr_data.entries;
1056
    int n = 0;
1057

    
1058
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1059
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1060
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1061
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1062
    if (has_msr_star) {
1063
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1064
    }
1065
    if (has_msr_hsave_pa) {
1066
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1067
    }
1068
    if (has_msr_tsc_adjust) {
1069
        kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1070
    }
1071
    if (has_msr_tsc_deadline) {
1072
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1073
    }
1074
    if (has_msr_misc_enable) {
1075
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1076
                          env->msr_ia32_misc_enable);
1077
    }
1078
#ifdef TARGET_X86_64
1079
    if (lm_capable_kernel) {
1080
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1081
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1082
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1083
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1084
    }
1085
#endif
1086
    if (level == KVM_PUT_FULL_STATE) {
1087
        /*
1088
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1089
         * writeback. Until this is fixed, we only write the offset to SMP
1090
         * guests after migration, desynchronizing the VCPUs, but avoiding
1091
         * huge jump-backs that would occur without any writeback at all.
1092
         */
1093
        if (smp_cpus == 1 || env->tsc != 0) {
1094
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1095
        }
1096
    }
1097
    /*
1098
     * The following paravirtual MSRs have side effects on the guest or are
1099
     * too heavy for normal writeback. Limit them to reset or full state
1100
     * updates.
1101
     */
1102
    if (level >= KVM_PUT_RESET_STATE) {
1103
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1104
                          env->system_time_msr);
1105
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1106
        if (has_msr_async_pf_en) {
1107
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1108
                              env->async_pf_en_msr);
1109
        }
1110
        if (has_msr_pv_eoi_en) {
1111
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1112
                              env->pv_eoi_en_msr);
1113
        }
1114
        if (has_msr_kvm_steal_time) {
1115
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1116
                              env->steal_time_msr);
1117
        }
1118
        if (hyperv_hypercall_available()) {
1119
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1120
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1121
        }
1122
        if (hyperv_vapic_recommended()) {
1123
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1124
        }
1125
    }
1126
    if (env->mcg_cap) {
1127
        int i;
1128

    
1129
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1130
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1131
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1132
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1133
        }
1134
    }
1135

    
1136
    msr_data.info.nmsrs = n;
1137

    
1138
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1139

    
1140
}
1141

    
1142

    
1143
static int kvm_get_fpu(X86CPU *cpu)
1144
{
1145
    CPUX86State *env = &cpu->env;
1146
    struct kvm_fpu fpu;
1147
    int i, ret;
1148

    
1149
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1150
    if (ret < 0) {
1151
        return ret;
1152
    }
1153

    
1154
    env->fpstt = (fpu.fsw >> 11) & 7;
1155
    env->fpus = fpu.fsw;
1156
    env->fpuc = fpu.fcw;
1157
    env->fpop = fpu.last_opcode;
1158
    env->fpip = fpu.last_ip;
1159
    env->fpdp = fpu.last_dp;
1160
    for (i = 0; i < 8; ++i) {
1161
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1162
    }
1163
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1164
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1165
    env->mxcsr = fpu.mxcsr;
1166

    
1167
    return 0;
1168
}
1169

    
1170
static int kvm_get_xsave(X86CPU *cpu)
1171
{
1172
    CPUX86State *env = &cpu->env;
1173
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1174
    int ret, i;
1175
    uint16_t cwd, swd, twd;
1176

    
1177
    if (!kvm_has_xsave()) {
1178
        return kvm_get_fpu(cpu);
1179
    }
1180

    
1181
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1182
    if (ret < 0) {
1183
        return ret;
1184
    }
1185

    
1186
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1187
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1188
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1189
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1190
    env->fpstt = (swd >> 11) & 7;
1191
    env->fpus = swd;
1192
    env->fpuc = cwd;
1193
    for (i = 0; i < 8; ++i) {
1194
        env->fptags[i] = !((twd >> i) & 1);
1195
    }
1196
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1197
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1198
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1199
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1200
            sizeof env->fpregs);
1201
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1202
            sizeof env->xmm_regs);
1203
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1204
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1205
            sizeof env->ymmh_regs);
1206
    return 0;
1207
}
1208

    
1209
static int kvm_get_xcrs(X86CPU *cpu)
1210
{
1211
    CPUX86State *env = &cpu->env;
1212
    int i, ret;
1213
    struct kvm_xcrs xcrs;
1214

    
1215
    if (!kvm_has_xcrs()) {
1216
        return 0;
1217
    }
1218

    
1219
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1220
    if (ret < 0) {
1221
        return ret;
1222
    }
1223

    
1224
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1225
        /* Only support xcr0 now */
1226
        if (xcrs.xcrs[0].xcr == 0) {
1227
            env->xcr0 = xcrs.xcrs[0].value;
1228
            break;
1229
        }
1230
    }
1231
    return 0;
1232
}
1233

    
1234
static int kvm_get_sregs(X86CPU *cpu)
1235
{
1236
    CPUX86State *env = &cpu->env;
1237
    struct kvm_sregs sregs;
1238
    uint32_t hflags;
1239
    int bit, i, ret;
1240

    
1241
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1242
    if (ret < 0) {
1243
        return ret;
1244
    }
1245

    
1246
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1247
       to find it and save its number instead (-1 for none). */
1248
    env->interrupt_injected = -1;
1249
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1250
        if (sregs.interrupt_bitmap[i]) {
1251
            bit = ctz64(sregs.interrupt_bitmap[i]);
1252
            env->interrupt_injected = i * 64 + bit;
1253
            break;
1254
        }
1255
    }
1256

    
1257
    get_seg(&env->segs[R_CS], &sregs.cs);
1258
    get_seg(&env->segs[R_DS], &sregs.ds);
1259
    get_seg(&env->segs[R_ES], &sregs.es);
1260
    get_seg(&env->segs[R_FS], &sregs.fs);
1261
    get_seg(&env->segs[R_GS], &sregs.gs);
1262
    get_seg(&env->segs[R_SS], &sregs.ss);
1263

    
1264
    get_seg(&env->tr, &sregs.tr);
1265
    get_seg(&env->ldt, &sregs.ldt);
1266

    
1267
    env->idt.limit = sregs.idt.limit;
1268
    env->idt.base = sregs.idt.base;
1269
    env->gdt.limit = sregs.gdt.limit;
1270
    env->gdt.base = sregs.gdt.base;
1271

    
1272
    env->cr[0] = sregs.cr0;
1273
    env->cr[2] = sregs.cr2;
1274
    env->cr[3] = sregs.cr3;
1275
    env->cr[4] = sregs.cr4;
1276

    
1277
    env->efer = sregs.efer;
1278

    
1279
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1280

    
1281
#define HFLAG_COPY_MASK \
1282
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1283
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1284
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1285
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1286

    
1287
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1288
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1289
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1290
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1291
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1292
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1293
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1294

    
1295
    if (env->efer & MSR_EFER_LMA) {
1296
        hflags |= HF_LMA_MASK;
1297
    }
1298

    
1299
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1300
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1301
    } else {
1302
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1303
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1304
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1305
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1306
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1307
            !(hflags & HF_CS32_MASK)) {
1308
            hflags |= HF_ADDSEG_MASK;
1309
        } else {
1310
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1311
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1312
        }
1313
    }
1314
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1315

    
1316
    return 0;
1317
}
1318

    
1319
static int kvm_get_msrs(X86CPU *cpu)
1320
{
1321
    CPUX86State *env = &cpu->env;
1322
    struct {
1323
        struct kvm_msrs info;
1324
        struct kvm_msr_entry entries[100];
1325
    } msr_data;
1326
    struct kvm_msr_entry *msrs = msr_data.entries;
1327
    int ret, i, n;
1328

    
1329
    n = 0;
1330
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1331
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1332
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1333
    msrs[n++].index = MSR_PAT;
1334
    if (has_msr_star) {
1335
        msrs[n++].index = MSR_STAR;
1336
    }
1337
    if (has_msr_hsave_pa) {
1338
        msrs[n++].index = MSR_VM_HSAVE_PA;
1339
    }
1340
    if (has_msr_tsc_adjust) {
1341
        msrs[n++].index = MSR_TSC_ADJUST;
1342
    }
1343
    if (has_msr_tsc_deadline) {
1344
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1345
    }
1346
    if (has_msr_misc_enable) {
1347
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1348
    }
1349

    
1350
    if (!env->tsc_valid) {
1351
        msrs[n++].index = MSR_IA32_TSC;
1352
        env->tsc_valid = !runstate_is_running();
1353
    }
1354

    
1355
#ifdef TARGET_X86_64
1356
    if (lm_capable_kernel) {
1357
        msrs[n++].index = MSR_CSTAR;
1358
        msrs[n++].index = MSR_KERNELGSBASE;
1359
        msrs[n++].index = MSR_FMASK;
1360
        msrs[n++].index = MSR_LSTAR;
1361
    }
1362
#endif
1363
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1364
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1365
    if (has_msr_async_pf_en) {
1366
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1367
    }
1368
    if (has_msr_pv_eoi_en) {
1369
        msrs[n++].index = MSR_KVM_PV_EOI_EN;
1370
    }
1371
    if (has_msr_kvm_steal_time) {
1372
        msrs[n++].index = MSR_KVM_STEAL_TIME;
1373
    }
1374

    
1375
    if (env->mcg_cap) {
1376
        msrs[n++].index = MSR_MCG_STATUS;
1377
        msrs[n++].index = MSR_MCG_CTL;
1378
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1379
            msrs[n++].index = MSR_MC0_CTL + i;
1380
        }
1381
    }
1382

    
1383
    msr_data.info.nmsrs = n;
1384
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1385
    if (ret < 0) {
1386
        return ret;
1387
    }
1388

    
1389
    for (i = 0; i < ret; i++) {
1390
        switch (msrs[i].index) {
1391
        case MSR_IA32_SYSENTER_CS:
1392
            env->sysenter_cs = msrs[i].data;
1393
            break;
1394
        case MSR_IA32_SYSENTER_ESP:
1395
            env->sysenter_esp = msrs[i].data;
1396
            break;
1397
        case MSR_IA32_SYSENTER_EIP:
1398
            env->sysenter_eip = msrs[i].data;
1399
            break;
1400
        case MSR_PAT:
1401
            env->pat = msrs[i].data;
1402
            break;
1403
        case MSR_STAR:
1404
            env->star = msrs[i].data;
1405
            break;
1406
#ifdef TARGET_X86_64
1407
        case MSR_CSTAR:
1408
            env->cstar = msrs[i].data;
1409
            break;
1410
        case MSR_KERNELGSBASE:
1411
            env->kernelgsbase = msrs[i].data;
1412
            break;
1413
        case MSR_FMASK:
1414
            env->fmask = msrs[i].data;
1415
            break;
1416
        case MSR_LSTAR:
1417
            env->lstar = msrs[i].data;
1418
            break;
1419
#endif
1420
        case MSR_IA32_TSC:
1421
            env->tsc = msrs[i].data;
1422
            break;
1423
        case MSR_TSC_ADJUST:
1424
            env->tsc_adjust = msrs[i].data;
1425
            break;
1426
        case MSR_IA32_TSCDEADLINE:
1427
            env->tsc_deadline = msrs[i].data;
1428
            break;
1429
        case MSR_VM_HSAVE_PA:
1430
            env->vm_hsave = msrs[i].data;
1431
            break;
1432
        case MSR_KVM_SYSTEM_TIME:
1433
            env->system_time_msr = msrs[i].data;
1434
            break;
1435
        case MSR_KVM_WALL_CLOCK:
1436
            env->wall_clock_msr = msrs[i].data;
1437
            break;
1438
        case MSR_MCG_STATUS:
1439
            env->mcg_status = msrs[i].data;
1440
            break;
1441
        case MSR_MCG_CTL:
1442
            env->mcg_ctl = msrs[i].data;
1443
            break;
1444
        case MSR_IA32_MISC_ENABLE:
1445
            env->msr_ia32_misc_enable = msrs[i].data;
1446
            break;
1447
        default:
1448
            if (msrs[i].index >= MSR_MC0_CTL &&
1449
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1450
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1451
            }
1452
            break;
1453
        case MSR_KVM_ASYNC_PF_EN:
1454
            env->async_pf_en_msr = msrs[i].data;
1455
            break;
1456
        case MSR_KVM_PV_EOI_EN:
1457
            env->pv_eoi_en_msr = msrs[i].data;
1458
            break;
1459
        case MSR_KVM_STEAL_TIME:
1460
            env->steal_time_msr = msrs[i].data;
1461
            break;
1462
        }
1463
    }
1464

    
1465
    return 0;
1466
}
1467

    
1468
static int kvm_put_mp_state(X86CPU *cpu)
1469
{
1470
    struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1471

    
1472
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1473
}
1474

    
1475
static int kvm_get_mp_state(X86CPU *cpu)
1476
{
1477
    CPUState *cs = CPU(cpu);
1478
    CPUX86State *env = &cpu->env;
1479
    struct kvm_mp_state mp_state;
1480
    int ret;
1481

    
1482
    ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1483
    if (ret < 0) {
1484
        return ret;
1485
    }
1486
    env->mp_state = mp_state.mp_state;
1487
    if (kvm_irqchip_in_kernel()) {
1488
        cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1489
    }
1490
    return 0;
1491
}
1492

    
1493
static int kvm_get_apic(X86CPU *cpu)
1494
{
1495
    CPUX86State *env = &cpu->env;
1496
    DeviceState *apic = env->apic_state;
1497
    struct kvm_lapic_state kapic;
1498
    int ret;
1499

    
1500
    if (apic && kvm_irqchip_in_kernel()) {
1501
        ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1502
        if (ret < 0) {
1503
            return ret;
1504
        }
1505

    
1506
        kvm_get_apic_state(apic, &kapic);
1507
    }
1508
    return 0;
1509
}
1510

    
1511
static int kvm_put_apic(X86CPU *cpu)
1512
{
1513
    CPUX86State *env = &cpu->env;
1514
    DeviceState *apic = env->apic_state;
1515
    struct kvm_lapic_state kapic;
1516

    
1517
    if (apic && kvm_irqchip_in_kernel()) {
1518
        kvm_put_apic_state(apic, &kapic);
1519

    
1520
        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1521
    }
1522
    return 0;
1523
}
1524

    
1525
static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1526
{
1527
    CPUX86State *env = &cpu->env;
1528
    struct kvm_vcpu_events events;
1529

    
1530
    if (!kvm_has_vcpu_events()) {
1531
        return 0;
1532
    }
1533

    
1534
    events.exception.injected = (env->exception_injected >= 0);
1535
    events.exception.nr = env->exception_injected;
1536
    events.exception.has_error_code = env->has_error_code;
1537
    events.exception.error_code = env->error_code;
1538
    events.exception.pad = 0;
1539

    
1540
    events.interrupt.injected = (env->interrupt_injected >= 0);
1541
    events.interrupt.nr = env->interrupt_injected;
1542
    events.interrupt.soft = env->soft_interrupt;
1543

    
1544
    events.nmi.injected = env->nmi_injected;
1545
    events.nmi.pending = env->nmi_pending;
1546
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1547
    events.nmi.pad = 0;
1548

    
1549
    events.sipi_vector = env->sipi_vector;
1550

    
1551
    events.flags = 0;
1552
    if (level >= KVM_PUT_RESET_STATE) {
1553
        events.flags |=
1554
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1555
    }
1556

    
1557
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1558
}
1559

    
1560
static int kvm_get_vcpu_events(X86CPU *cpu)
1561
{
1562
    CPUX86State *env = &cpu->env;
1563
    struct kvm_vcpu_events events;
1564
    int ret;
1565

    
1566
    if (!kvm_has_vcpu_events()) {
1567
        return 0;
1568
    }
1569

    
1570
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1571
    if (ret < 0) {
1572
       return ret;
1573
    }
1574
    env->exception_injected =
1575
       events.exception.injected ? events.exception.nr : -1;
1576
    env->has_error_code = events.exception.has_error_code;
1577
    env->error_code = events.exception.error_code;
1578

    
1579
    env->interrupt_injected =
1580
        events.interrupt.injected ? events.interrupt.nr : -1;
1581
    env->soft_interrupt = events.interrupt.soft;
1582

    
1583
    env->nmi_injected = events.nmi.injected;
1584
    env->nmi_pending = events.nmi.pending;
1585
    if (events.nmi.masked) {
1586
        env->hflags2 |= HF2_NMI_MASK;
1587
    } else {
1588
        env->hflags2 &= ~HF2_NMI_MASK;
1589
    }
1590

    
1591
    env->sipi_vector = events.sipi_vector;
1592

    
1593
    return 0;
1594
}
1595

    
1596
static int kvm_guest_debug_workarounds(X86CPU *cpu)
1597
{
1598
    CPUX86State *env = &cpu->env;
1599
    int ret = 0;
1600
    unsigned long reinject_trap = 0;
1601

    
1602
    if (!kvm_has_vcpu_events()) {
1603
        if (env->exception_injected == 1) {
1604
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1605
        } else if (env->exception_injected == 3) {
1606
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1607
        }
1608
        env->exception_injected = -1;
1609
    }
1610

    
1611
    /*
1612
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1613
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1614
     * by updating the debug state once again if single-stepping is on.
1615
     * Another reason to call kvm_update_guest_debug here is a pending debug
1616
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1617
     * reinject them via SET_GUEST_DEBUG.
1618
     */
1619
    if (reinject_trap ||
1620
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1621
        ret = kvm_update_guest_debug(env, reinject_trap);
1622
    }
1623
    return ret;
1624
}
1625

    
1626
static int kvm_put_debugregs(X86CPU *cpu)
1627
{
1628
    CPUX86State *env = &cpu->env;
1629
    struct kvm_debugregs dbgregs;
1630
    int i;
1631

    
1632
    if (!kvm_has_debugregs()) {
1633
        return 0;
1634
    }
1635

    
1636
    for (i = 0; i < 4; i++) {
1637
        dbgregs.db[i] = env->dr[i];
1638
    }
1639
    dbgregs.dr6 = env->dr[6];
1640
    dbgregs.dr7 = env->dr[7];
1641
    dbgregs.flags = 0;
1642

    
1643
    return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1644
}
1645

    
1646
static int kvm_get_debugregs(X86CPU *cpu)
1647
{
1648
    CPUX86State *env = &cpu->env;
1649
    struct kvm_debugregs dbgregs;
1650
    int i, ret;
1651

    
1652
    if (!kvm_has_debugregs()) {
1653
        return 0;
1654
    }
1655

    
1656
    ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1657
    if (ret < 0) {
1658
        return ret;
1659
    }
1660
    for (i = 0; i < 4; i++) {
1661
        env->dr[i] = dbgregs.db[i];
1662
    }
1663
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1664
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1665

    
1666
    return 0;
1667
}
1668

    
1669
int kvm_arch_put_registers(CPUState *cpu, int level)
1670
{
1671
    X86CPU *x86_cpu = X86_CPU(cpu);
1672
    int ret;
1673

    
1674
    assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1675

    
1676
    ret = kvm_getput_regs(x86_cpu, 1);
1677
    if (ret < 0) {
1678
        return ret;
1679
    }
1680
    ret = kvm_put_xsave(x86_cpu);
1681
    if (ret < 0) {
1682
        return ret;
1683
    }
1684
    ret = kvm_put_xcrs(x86_cpu);
1685
    if (ret < 0) {
1686
        return ret;
1687
    }
1688
    ret = kvm_put_sregs(x86_cpu);
1689
    if (ret < 0) {
1690
        return ret;
1691
    }
1692
    /* must be before kvm_put_msrs */
1693
    ret = kvm_inject_mce_oldstyle(x86_cpu);
1694
    if (ret < 0) {
1695
        return ret;
1696
    }
1697
    ret = kvm_put_msrs(x86_cpu, level);
1698
    if (ret < 0) {
1699
        return ret;
1700
    }
1701
    if (level >= KVM_PUT_RESET_STATE) {
1702
        ret = kvm_put_mp_state(x86_cpu);
1703
        if (ret < 0) {
1704
            return ret;
1705
        }
1706
        ret = kvm_put_apic(x86_cpu);
1707
        if (ret < 0) {
1708
            return ret;
1709
        }
1710
    }
1711
    ret = kvm_put_vcpu_events(x86_cpu, level);
1712
    if (ret < 0) {
1713
        return ret;
1714
    }
1715
    ret = kvm_put_debugregs(x86_cpu);
1716
    if (ret < 0) {
1717
        return ret;
1718
    }
1719
    /* must be last */
1720
    ret = kvm_guest_debug_workarounds(x86_cpu);
1721
    if (ret < 0) {
1722
        return ret;
1723
    }
1724
    return 0;
1725
}
1726

    
1727
int kvm_arch_get_registers(CPUState *cs)
1728
{
1729
    X86CPU *cpu = X86_CPU(cs);
1730
    int ret;
1731

    
1732
    assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1733

    
1734
    ret = kvm_getput_regs(cpu, 0);
1735
    if (ret < 0) {
1736
        return ret;
1737
    }
1738
    ret = kvm_get_xsave(cpu);
1739
    if (ret < 0) {
1740
        return ret;
1741
    }
1742
    ret = kvm_get_xcrs(cpu);
1743
    if (ret < 0) {
1744
        return ret;
1745
    }
1746
    ret = kvm_get_sregs(cpu);
1747
    if (ret < 0) {
1748
        return ret;
1749
    }
1750
    ret = kvm_get_msrs(cpu);
1751
    if (ret < 0) {
1752
        return ret;
1753
    }
1754
    ret = kvm_get_mp_state(cpu);
1755
    if (ret < 0) {
1756
        return ret;
1757
    }
1758
    ret = kvm_get_apic(cpu);
1759
    if (ret < 0) {
1760
        return ret;
1761
    }
1762
    ret = kvm_get_vcpu_events(cpu);
1763
    if (ret < 0) {
1764
        return ret;
1765
    }
1766
    ret = kvm_get_debugregs(cpu);
1767
    if (ret < 0) {
1768
        return ret;
1769
    }
1770
    return 0;
1771
}
1772

    
1773
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1774
{
1775
    X86CPU *x86_cpu = X86_CPU(cpu);
1776
    CPUX86State *env = &x86_cpu->env;
1777
    int ret;
1778

    
1779
    /* Inject NMI */
1780
    if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1781
        cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1782
        DPRINTF("injected NMI\n");
1783
        ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1784
        if (ret < 0) {
1785
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1786
                    strerror(-ret));
1787
        }
1788
    }
1789

    
1790
    if (!kvm_irqchip_in_kernel()) {
1791
        /* Force the VCPU out of its inner loop to process any INIT requests
1792
         * or pending TPR access reports. */
1793
        if (cpu->interrupt_request &
1794
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1795
            cpu->exit_request = 1;
1796
        }
1797

    
1798
        /* Try to inject an interrupt if the guest can accept it */
1799
        if (run->ready_for_interrupt_injection &&
1800
            (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1801
            (env->eflags & IF_MASK)) {
1802
            int irq;
1803

    
1804
            cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1805
            irq = cpu_get_pic_interrupt(env);
1806
            if (irq >= 0) {
1807
                struct kvm_interrupt intr;
1808

    
1809
                intr.irq = irq;
1810
                DPRINTF("injected interrupt %d\n", irq);
1811
                ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1812
                if (ret < 0) {
1813
                    fprintf(stderr,
1814
                            "KVM: injection failed, interrupt lost (%s)\n",
1815
                            strerror(-ret));
1816
                }
1817
            }
1818
        }
1819

    
1820
        /* If we have an interrupt but the guest is not ready to receive an
1821
         * interrupt, request an interrupt window exit.  This will
1822
         * cause a return to userspace as soon as the guest is ready to
1823
         * receive interrupts. */
1824
        if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1825
            run->request_interrupt_window = 1;
1826
        } else {
1827
            run->request_interrupt_window = 0;
1828
        }
1829

    
1830
        DPRINTF("setting tpr\n");
1831
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1832
    }
1833
}
1834

    
1835
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1836
{
1837
    X86CPU *x86_cpu = X86_CPU(cpu);
1838
    CPUX86State *env = &x86_cpu->env;
1839

    
1840
    if (run->if_flag) {
1841
        env->eflags |= IF_MASK;
1842
    } else {
1843
        env->eflags &= ~IF_MASK;
1844
    }
1845
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1846
    cpu_set_apic_base(env->apic_state, run->apic_base);
1847
}
1848

    
1849
int kvm_arch_process_async_events(CPUState *cs)
1850
{
1851
    X86CPU *cpu = X86_CPU(cs);
1852
    CPUX86State *env = &cpu->env;
1853

    
1854
    if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1855
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1856
        assert(env->mcg_cap);
1857

    
1858
        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1859

    
1860
        kvm_cpu_synchronize_state(cs);
1861

    
1862
        if (env->exception_injected == EXCP08_DBLE) {
1863
            /* this means triple fault */
1864
            qemu_system_reset_request();
1865
            cs->exit_request = 1;
1866
            return 0;
1867
        }
1868
        env->exception_injected = EXCP12_MCHK;
1869
        env->has_error_code = 0;
1870

    
1871
        cs->halted = 0;
1872
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1873
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1874
        }
1875
    }
1876

    
1877
    if (kvm_irqchip_in_kernel()) {
1878
        return 0;
1879
    }
1880

    
1881
    if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1882
        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1883
        apic_poll_irq(env->apic_state);
1884
    }
1885
    if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1886
         (env->eflags & IF_MASK)) ||
1887
        (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1888
        cs->halted = 0;
1889
    }
1890
    if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1891
        kvm_cpu_synchronize_state(cs);
1892
        do_cpu_init(cpu);
1893
    }
1894
    if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1895
        kvm_cpu_synchronize_state(cs);
1896
        do_cpu_sipi(cpu);
1897
    }
1898
    if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1899
        cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1900
        kvm_cpu_synchronize_state(cs);
1901
        apic_handle_tpr_access_report(env->apic_state, env->eip,
1902
                                      env->tpr_access_type);
1903
    }
1904

    
1905
    return cs->halted;
1906
}
1907

    
1908
static int kvm_handle_halt(X86CPU *cpu)
1909
{
1910
    CPUState *cs = CPU(cpu);
1911
    CPUX86State *env = &cpu->env;
1912

    
1913
    if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1914
          (env->eflags & IF_MASK)) &&
1915
        !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1916
        cs->halted = 1;
1917
        return EXCP_HLT;
1918
    }
1919

    
1920
    return 0;
1921
}
1922

    
1923
static int kvm_handle_tpr_access(X86CPU *cpu)
1924
{
1925
    CPUX86State *env = &cpu->env;
1926
    CPUState *cs = CPU(cpu);
1927
    struct kvm_run *run = cs->kvm_run;
1928

    
1929
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1930
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
1931
                                                           : TPR_ACCESS_READ);
1932
    return 1;
1933
}
1934

    
1935
int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1936
{
1937
    CPUX86State *env = &X86_CPU(cpu)->env;
1938
    static const uint8_t int3 = 0xcc;
1939

    
1940
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1941
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1942
        return -EINVAL;
1943
    }
1944
    return 0;
1945
}
1946

    
1947
int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1948
{
1949
    CPUX86State *env = &X86_CPU(cpu)->env;
1950
    uint8_t int3;
1951

    
1952
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1953
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1954
        return -EINVAL;
1955
    }
1956
    return 0;
1957
}
1958

    
1959
static struct {
1960
    target_ulong addr;
1961
    int len;
1962
    int type;
1963
} hw_breakpoint[4];
1964

    
1965
static int nb_hw_breakpoint;
1966

    
1967
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1968
{
1969
    int n;
1970

    
1971
    for (n = 0; n < nb_hw_breakpoint; n++) {
1972
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1973
            (hw_breakpoint[n].len == len || len == -1)) {
1974
            return n;
1975
        }
1976
    }
1977
    return -1;
1978
}
1979

    
1980
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1981
                                  target_ulong len, int type)
1982
{
1983
    switch (type) {
1984
    case GDB_BREAKPOINT_HW:
1985
        len = 1;
1986
        break;
1987
    case GDB_WATCHPOINT_WRITE:
1988
    case GDB_WATCHPOINT_ACCESS:
1989
        switch (len) {
1990
        case 1:
1991
            break;
1992
        case 2:
1993
        case 4:
1994
        case 8:
1995
            if (addr & (len - 1)) {
1996
                return -EINVAL;
1997
            }
1998
            break;
1999
        default:
2000
            return -EINVAL;
2001
        }
2002
        break;
2003
    default:
2004
        return -ENOSYS;
2005
    }
2006

    
2007
    if (nb_hw_breakpoint == 4) {
2008
        return -ENOBUFS;
2009
    }
2010
    if (find_hw_breakpoint(addr, len, type) >= 0) {
2011
        return -EEXIST;
2012
    }
2013
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
2014
    hw_breakpoint[nb_hw_breakpoint].len = len;
2015
    hw_breakpoint[nb_hw_breakpoint].type = type;
2016
    nb_hw_breakpoint++;
2017

    
2018
    return 0;
2019
}
2020

    
2021
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2022
                                  target_ulong len, int type)
2023
{
2024
    int n;
2025

    
2026
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2027
    if (n < 0) {
2028
        return -ENOENT;
2029
    }
2030
    nb_hw_breakpoint--;
2031
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2032

    
2033
    return 0;
2034
}
2035

    
2036
void kvm_arch_remove_all_hw_breakpoints(void)
2037
{
2038
    nb_hw_breakpoint = 0;
2039
}
2040

    
2041
static CPUWatchpoint hw_watchpoint;
2042

    
2043
static int kvm_handle_debug(X86CPU *cpu,
2044
                            struct kvm_debug_exit_arch *arch_info)
2045
{
2046
    CPUX86State *env = &cpu->env;
2047
    int ret = 0;
2048
    int n;
2049

    
2050
    if (arch_info->exception == 1) {
2051
        if (arch_info->dr6 & (1 << 14)) {
2052
            if (env->singlestep_enabled) {
2053
                ret = EXCP_DEBUG;
2054
            }
2055
        } else {
2056
            for (n = 0; n < 4; n++) {
2057
                if (arch_info->dr6 & (1 << n)) {
2058
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2059
                    case 0x0:
2060
                        ret = EXCP_DEBUG;
2061
                        break;
2062
                    case 0x1:
2063
                        ret = EXCP_DEBUG;
2064
                        env->watchpoint_hit = &hw_watchpoint;
2065
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2066
                        hw_watchpoint.flags = BP_MEM_WRITE;
2067
                        break;
2068
                    case 0x3:
2069
                        ret = EXCP_DEBUG;
2070
                        env->watchpoint_hit = &hw_watchpoint;
2071
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2072
                        hw_watchpoint.flags = BP_MEM_ACCESS;
2073
                        break;
2074
                    }
2075
                }
2076
            }
2077
        }
2078
    } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2079
        ret = EXCP_DEBUG;
2080
    }
2081
    if (ret == 0) {
2082
        cpu_synchronize_state(CPU(cpu));
2083
        assert(env->exception_injected == -1);
2084

    
2085
        /* pass to guest */
2086
        env->exception_injected = arch_info->exception;
2087
        env->has_error_code = 0;
2088
    }
2089

    
2090
    return ret;
2091
}
2092

    
2093
void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2094
{
2095
    const uint8_t type_code[] = {
2096
        [GDB_BREAKPOINT_HW] = 0x0,
2097
        [GDB_WATCHPOINT_WRITE] = 0x1,
2098
        [GDB_WATCHPOINT_ACCESS] = 0x3
2099
    };
2100
    const uint8_t len_code[] = {
2101
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2102
    };
2103
    int n;
2104

    
2105
    if (kvm_sw_breakpoints_active(cpu)) {
2106
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2107
    }
2108
    if (nb_hw_breakpoint > 0) {
2109
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2110
        dbg->arch.debugreg[7] = 0x0600;
2111
        for (n = 0; n < nb_hw_breakpoint; n++) {
2112
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2113
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2114
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2115
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2116
        }
2117
    }
2118
}
2119

    
2120
static bool host_supports_vmx(void)
2121
{
2122
    uint32_t ecx, unused;
2123

    
2124
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2125
    return ecx & CPUID_EXT_VMX;
2126
}
2127

    
2128
#define VMX_INVALID_GUEST_STATE 0x80000021
2129

    
2130
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2131
{
2132
    X86CPU *cpu = X86_CPU(cs);
2133
    uint64_t code;
2134
    int ret;
2135

    
2136
    switch (run->exit_reason) {
2137
    case KVM_EXIT_HLT:
2138
        DPRINTF("handle_hlt\n");
2139
        ret = kvm_handle_halt(cpu);
2140
        break;
2141
    case KVM_EXIT_SET_TPR:
2142
        ret = 0;
2143
        break;
2144
    case KVM_EXIT_TPR_ACCESS:
2145
        ret = kvm_handle_tpr_access(cpu);
2146
        break;
2147
    case KVM_EXIT_FAIL_ENTRY:
2148
        code = run->fail_entry.hardware_entry_failure_reason;
2149
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2150
                code);
2151
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2152
            fprintf(stderr,
2153
                    "\nIf you're running a guest on an Intel machine without "
2154
                        "unrestricted mode\n"
2155
                    "support, the failure can be most likely due to the guest "
2156
                        "entering an invalid\n"
2157
                    "state for Intel VT. For example, the guest maybe running "
2158
                        "in big real mode\n"
2159
                    "which is not supported on less recent Intel processors."
2160
                        "\n\n");
2161
        }
2162
        ret = -1;
2163
        break;
2164
    case KVM_EXIT_EXCEPTION:
2165
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2166
                run->ex.exception, run->ex.error_code);
2167
        ret = -1;
2168
        break;
2169
    case KVM_EXIT_DEBUG:
2170
        DPRINTF("kvm_exit_debug\n");
2171
        ret = kvm_handle_debug(cpu, &run->debug.arch);
2172
        break;
2173
    default:
2174
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2175
        ret = -1;
2176
        break;
2177
    }
2178

    
2179
    return ret;
2180
}
2181

    
2182
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2183
{
2184
    X86CPU *cpu = X86_CPU(cs);
2185
    CPUX86State *env = &cpu->env;
2186

    
2187
    kvm_cpu_synchronize_state(cs);
2188
    return !(env->cr[0] & CR0_PE_MASK) ||
2189
           ((env->segs[R_CS].selector  & 3) != 3);
2190
}
2191

    
2192
void kvm_arch_init_irq_routing(KVMState *s)
2193
{
2194
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2195
        /* If kernel can't do irq routing, interrupt source
2196
         * override 0->2 cannot be set up as required by HPET.
2197
         * So we have to disable it.
2198
         */
2199
        no_hpet = 1;
2200
    }
2201
    /* We know at this point that we're using the in-kernel
2202
     * irqchip, so we can use irqfds, and on x86 we know
2203
     * we can use msi via irqfd and GSI routing.
2204
     */
2205
    kvm_irqfds_allowed = true;
2206
    kvm_msi_via_irqfd_allowed = true;
2207
    kvm_gsi_routing_allowed = true;
2208
}
2209

    
2210
/* Classic KVM device assignment interface. Will remain x86 only. */
2211
int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2212
                          uint32_t flags, uint32_t *dev_id)
2213
{
2214
    struct kvm_assigned_pci_dev dev_data = {
2215
        .segnr = dev_addr->domain,
2216
        .busnr = dev_addr->bus,
2217
        .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2218
        .flags = flags,
2219
    };
2220
    int ret;
2221

    
2222
    dev_data.assigned_dev_id =
2223
        (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2224

    
2225
    ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2226
    if (ret < 0) {
2227
        return ret;
2228
    }
2229

    
2230
    *dev_id = dev_data.assigned_dev_id;
2231

    
2232
    return 0;
2233
}
2234

    
2235
int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2236
{
2237
    struct kvm_assigned_pci_dev dev_data = {
2238
        .assigned_dev_id = dev_id,
2239
    };
2240

    
2241
    return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2242
}
2243

    
2244
static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2245
                                   uint32_t irq_type, uint32_t guest_irq)
2246
{
2247
    struct kvm_assigned_irq assigned_irq = {
2248
        .assigned_dev_id = dev_id,
2249
        .guest_irq = guest_irq,
2250
        .flags = irq_type,
2251
    };
2252

    
2253
    if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2254
        return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2255
    } else {
2256
        return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2257
    }
2258
}
2259

    
2260
int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2261
                           uint32_t guest_irq)
2262
{
2263
    uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2264
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2265

    
2266
    return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2267
}
2268

    
2269
int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2270
{
2271
    struct kvm_assigned_pci_dev dev_data = {
2272
        .assigned_dev_id = dev_id,
2273
        .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2274
    };
2275

    
2276
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2277
}
2278

    
2279
static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2280
                                     uint32_t type)
2281
{
2282
    struct kvm_assigned_irq assigned_irq = {
2283
        .assigned_dev_id = dev_id,
2284
        .flags = type,
2285
    };
2286

    
2287
    return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2288
}
2289

    
2290
int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2291
{
2292
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2293
        (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2294
}
2295

    
2296
int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2297
{
2298
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2299
                                              KVM_DEV_IRQ_GUEST_MSI, virq);
2300
}
2301

    
2302
int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2303
{
2304
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2305
                                                KVM_DEV_IRQ_HOST_MSI);
2306
}
2307

    
2308
bool kvm_device_msix_supported(KVMState *s)
2309
{
2310
    /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2311
     * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2312
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2313
}
2314

    
2315
int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2316
                                 uint32_t nr_vectors)
2317
{
2318
    struct kvm_assigned_msix_nr msix_nr = {
2319
        .assigned_dev_id = dev_id,
2320
        .entry_nr = nr_vectors,
2321
    };
2322

    
2323
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2324
}
2325

    
2326
int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2327
                               int virq)
2328
{
2329
    struct kvm_assigned_msix_entry msix_entry = {
2330
        .assigned_dev_id = dev_id,
2331
        .gsi = virq,
2332
        .entry = vector,
2333
    };
2334

    
2335
    return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2336
}
2337

    
2338
int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2339
{
2340
    return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2341
                                              KVM_DEV_IRQ_GUEST_MSIX, 0);
2342
}
2343

    
2344
int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2345
{
2346
    return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2347
                                                KVM_DEV_IRQ_HOST_MSIX);
2348
}