Statistics
| Branch: | Revision:

root / target-arm / cpu.h @ ce5232c5

History | View | Annotate | Download (12.9 kB)

1
/*
2
 * ARM virtual CPU header
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ARM_H
21
#define CPU_ARM_H
22

    
23
#define TARGET_LONG_BITS 32
24

    
25
#define ELF_MACHINE        EM_ARM
26

    
27
#include "cpu-defs.h"
28

    
29
#include "softfloat.h"
30

    
31
#define TARGET_HAS_ICE 1
32

    
33
#define EXCP_UDEF            1   /* undefined instruction */
34
#define EXCP_SWI             2   /* software interrupt */
35
#define EXCP_PREFETCH_ABORT  3
36
#define EXCP_DATA_ABORT      4
37
#define EXCP_IRQ             5
38
#define EXCP_FIQ             6
39
#define EXCP_BKPT            7
40
#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
41

    
42
#define ARMV7M_EXCP_RESET   1
43
#define ARMV7M_EXCP_NMI     2
44
#define ARMV7M_EXCP_HARD    3
45
#define ARMV7M_EXCP_MEM     4
46
#define ARMV7M_EXCP_BUS     5
47
#define ARMV7M_EXCP_USAGE   6
48
#define ARMV7M_EXCP_SVC     11
49
#define ARMV7M_EXCP_DEBUG   12
50
#define ARMV7M_EXCP_PENDSV  14
51
#define ARMV7M_EXCP_SYSTICK 15
52

    
53
typedef void ARMWriteCPFunc(void *opaque, int cp_info,
54
                            int srcreg, int operand, uint32_t value);
55
typedef uint32_t ARMReadCPFunc(void *opaque, int cp_info,
56
                               int dstreg, int operand);
57

    
58
struct arm_boot_info;
59

    
60
#define NB_MMU_MODES 2
61

    
62
/* We currently assume float and double are IEEE single and double
63
   precision respectively.
64
   Doing runtime conversions is tricky because VFP registers may contain
65
   integer values (eg. as the result of a FTOSI instruction).
66
   s<2n> maps to the least significant half of d<n>
67
   s<2n+1> maps to the most significant half of d<n>
68
 */
69

    
70
typedef struct CPUARMState {
71
    /* Regs for current mode.  */
72
    uint32_t regs[16];
73
    /* Frequently accessed CPSR bits are stored separately for efficiently.
74
       This contains all the other bits.  Use cpsr_{read,write} to access
75
       the whole CPSR.  */
76
    uint32_t uncached_cpsr;
77
    uint32_t spsr;
78

    
79
    /* Banked registers.  */
80
    uint32_t banked_spsr[6];
81
    uint32_t banked_r13[6];
82
    uint32_t banked_r14[6];
83

    
84
    /* These hold r8-r12.  */
85
    uint32_t usr_regs[5];
86
    uint32_t fiq_regs[5];
87

    
88
    /* cpsr flag cache for faster execution */
89
    uint32_t CF; /* 0 or 1 */
90
    uint32_t VF; /* V is the bit 31. All other bits are undefined */
91
    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
92
    uint32_t ZF; /* Z set if zero.  */
93
    uint32_t QF; /* 0 or 1 */
94
    uint32_t GE; /* cpsr[19:16] */
95
    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
96
    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
97

    
98
    /* System control coprocessor (cp15) */
99
    struct {
100
        uint32_t c0_cpuid;
101
        uint32_t c0_cachetype;
102
        uint32_t c0_c1[8]; /* Feature registers.  */
103
        uint32_t c0_c2[8]; /* Instruction set registers.  */
104
        uint32_t c1_sys; /* System control register.  */
105
        uint32_t c1_coproc; /* Coprocessor access register.  */
106
        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
107
        uint32_t c2_base0; /* MMU translation table base 0.  */
108
        uint32_t c2_base1; /* MMU translation table base 1.  */
109
        uint32_t c2_mask; /* MMU translation table base mask.  */
110
        uint32_t c2_data; /* MPU data cachable bits.  */
111
        uint32_t c2_insn; /* MPU instruction cachable bits.  */
112
        uint32_t c3; /* MMU domain access control register
113
                        MPU write buffer control.  */
114
        uint32_t c5_insn; /* Fault status registers.  */
115
        uint32_t c5_data;
116
        uint32_t c6_region[8]; /* MPU base/size registers.  */
117
        uint32_t c6_insn; /* Fault address registers.  */
118
        uint32_t c6_data;
119
        uint32_t c9_insn; /* Cache lockdown registers.  */
120
        uint32_t c9_data;
121
        uint32_t c13_fcse; /* FCSE PID.  */
122
        uint32_t c13_context; /* Context ID.  */
123
        uint32_t c13_tls1; /* User RW Thread register.  */
124
        uint32_t c13_tls2; /* User RO Thread register.  */
125
        uint32_t c13_tls3; /* Privileged Thread register.  */
126
        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
127
        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
128
        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
129
        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
130
        uint32_t c15_threadid; /* TI debugger thread-ID.  */
131
    } cp15;
132

    
133
    struct {
134
        uint32_t other_sp;
135
        uint32_t vecbase;
136
        uint32_t basepri;
137
        uint32_t control;
138
        int current_sp;
139
        int exception;
140
        int pending_exception;
141
        void *nvic;
142
    } v7m;
143

    
144
    /* Coprocessor IO used by peripherals */
145
    struct {
146
        ARMReadCPFunc *cp_read;
147
        ARMWriteCPFunc *cp_write;
148
        void *opaque;
149
    } cp[15];
150

    
151
    /* Internal CPU feature flags.  */
152
    uint32_t features;
153

    
154
    /* Callback for vectored interrupt controller.  */
155
    int (*get_irq_vector)(struct CPUARMState *);
156
    void *irq_opaque;
157

    
158
    /* exception/interrupt handling */
159
    jmp_buf jmp_env;
160
    int exception_index;
161
    int interrupt_request;
162
    int user_mode_only;
163

    
164
    /* VFP coprocessor state.  */
165
    struct {
166
        float64 regs[32];
167

    
168
        uint32_t xregs[16];
169
        /* We store these fpcsr fields separately for convenience.  */
170
        int vec_len;
171
        int vec_stride;
172

    
173
        /* scratch space when Tn are not sufficient.  */
174
        uint32_t scratch[8];
175

    
176
        float_status fp_status;
177
    } vfp;
178
#if defined(CONFIG_USER_ONLY)
179
    struct mmon_state *mmon_entry;
180
#else
181
    uint32_t mmon_addr;
182
#endif
183

    
184
    /* iwMMXt coprocessor state.  */
185
    struct {
186
        uint64_t regs[16];
187
        uint64_t val;
188

    
189
        uint32_t cregs[16];
190
    } iwmmxt;
191

    
192
#if defined(CONFIG_USER_ONLY)
193
    /* For usermode syscall translation.  */
194
    int eabi;
195
#endif
196

    
197
    CPU_COMMON
198

    
199
    /* These fields after the common ones so they are preserved on reset.  */
200
    struct arm_boot_info *boot_info;
201
} CPUARMState;
202

    
203
CPUARMState *cpu_arm_init(const char *cpu_model);
204
void arm_translate_init(void);
205
int cpu_arm_exec(CPUARMState *s);
206
void cpu_arm_close(CPUARMState *s);
207
void do_interrupt(CPUARMState *);
208
void switch_mode(CPUARMState *, int);
209
uint32_t do_arm_semihosting(CPUARMState *env);
210

    
211
/* you can call this signal handler from your SIGBUS and SIGSEGV
212
   signal handlers to inform the virtual CPU of exceptions. non zero
213
   is returned if the signal was handled by the virtual CPU.  */
214
int cpu_arm_signal_handler(int host_signum, void *pinfo,
215
                           void *puc);
216

    
217
void cpu_lock(void);
218
void cpu_unlock(void);
219

    
220
#define CPSR_M (0x1f)
221
#define CPSR_T (1 << 5)
222
#define CPSR_F (1 << 6)
223
#define CPSR_I (1 << 7)
224
#define CPSR_A (1 << 8)
225
#define CPSR_E (1 << 9)
226
#define CPSR_IT_2_7 (0xfc00)
227
#define CPSR_GE (0xf << 16)
228
#define CPSR_RESERVED (0xf << 20)
229
#define CPSR_J (1 << 24)
230
#define CPSR_IT_0_1 (3 << 25)
231
#define CPSR_Q (1 << 27)
232
#define CPSR_V (1 << 28)
233
#define CPSR_C (1 << 29)
234
#define CPSR_Z (1 << 30)
235
#define CPSR_N (1 << 31)
236
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
237

    
238
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
239
#define CACHED_CPSR_BITS (CPSR_T | CPSR_GE | CPSR_IT | CPSR_Q | CPSR_NZCV)
240
/* Bits writable in user mode.  */
241
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
242
/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
243
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J)
244

    
245
/* Return the current CPSR value.  */
246
uint32_t cpsr_read(CPUARMState *env);
247
/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.  */
248
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask);
249

    
250
/* Return the current xPSR value.  */
251
static inline uint32_t xpsr_read(CPUARMState *env)
252
{
253
    int ZF;
254
    ZF = (env->ZF == 0);
255
    return (env->NF & 0x80000000) | (ZF << 30)
256
        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
257
        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
258
        | ((env->condexec_bits & 0xfc) << 8)
259
        | env->v7m.exception;
260
}
261

    
262
/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
263
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
264
{
265
    if (mask & CPSR_NZCV) {
266
        env->ZF = (~val) & CPSR_Z;
267
        env->NF = val;
268
        env->CF = (val >> 29) & 1;
269
        env->VF = (val << 3) & 0x80000000;
270
    }
271
    if (mask & CPSR_Q)
272
        env->QF = ((val & CPSR_Q) != 0);
273
    if (mask & (1 << 24))
274
        env->thumb = ((val & (1 << 24)) != 0);
275
    if (mask & CPSR_IT_0_1) {
276
        env->condexec_bits &= ~3;
277
        env->condexec_bits |= (val >> 25) & 3;
278
    }
279
    if (mask & CPSR_IT_2_7) {
280
        env->condexec_bits &= 3;
281
        env->condexec_bits |= (val >> 8) & 0xfc;
282
    }
283
    if (mask & 0x1ff) {
284
        env->v7m.exception = val & 0x1ff;
285
    }
286
}
287

    
288
enum arm_cpu_mode {
289
  ARM_CPU_MODE_USR = 0x10,
290
  ARM_CPU_MODE_FIQ = 0x11,
291
  ARM_CPU_MODE_IRQ = 0x12,
292
  ARM_CPU_MODE_SVC = 0x13,
293
  ARM_CPU_MODE_ABT = 0x17,
294
  ARM_CPU_MODE_UND = 0x1b,
295
  ARM_CPU_MODE_SYS = 0x1f
296
};
297

    
298
/* VFP system registers.  */
299
#define ARM_VFP_FPSID   0
300
#define ARM_VFP_FPSCR   1
301
#define ARM_VFP_MVFR1   6
302
#define ARM_VFP_MVFR0   7
303
#define ARM_VFP_FPEXC   8
304
#define ARM_VFP_FPINST  9
305
#define ARM_VFP_FPINST2 10
306

    
307
/* iwMMXt coprocessor control registers.  */
308
#define ARM_IWMMXT_wCID                0
309
#define ARM_IWMMXT_wCon                1
310
#define ARM_IWMMXT_wCSSF        2
311
#define ARM_IWMMXT_wCASF        3
312
#define ARM_IWMMXT_wCGR0        8
313
#define ARM_IWMMXT_wCGR1        9
314
#define ARM_IWMMXT_wCGR2        10
315
#define ARM_IWMMXT_wCGR3        11
316

    
317
enum arm_features {
318
    ARM_FEATURE_VFP,
319
    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
320
    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
321
    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
322
    ARM_FEATURE_V6,
323
    ARM_FEATURE_V6K,
324
    ARM_FEATURE_V7,
325
    ARM_FEATURE_THUMB2,
326
    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
327
    ARM_FEATURE_VFP3,
328
    ARM_FEATURE_NEON,
329
    ARM_FEATURE_DIV,
330
    ARM_FEATURE_M, /* Microcontroller profile.  */
331
    ARM_FEATURE_OMAPCP  /* OMAP specific CP15 ops handling.  */
332
};
333

    
334
static inline int arm_feature(CPUARMState *env, int feature)
335
{
336
    return (env->features & (1u << feature)) != 0;
337
}
338

    
339
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
340

    
341
/* Interface between CPU and Interrupt controller.  */
342
void armv7m_nvic_set_pending(void *opaque, int irq);
343
int armv7m_nvic_acknowledge_irq(void *opaque);
344
void armv7m_nvic_complete_irq(void *opaque, int irq);
345

    
346
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
347
                       ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
348
                       void *opaque);
349

    
350
/* Does the core conform to the the "MicroController" profile. e.g. Cortex-M3.
351
   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
352
   conventional cores (ie. Application or Realtime profile).  */
353

    
354
#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
355
#define ARM_CPUID(env) (env->cp15.c0_cpuid)
356

    
357
#define ARM_CPUID_ARM1026     0x4106a262
358
#define ARM_CPUID_ARM926      0x41069265
359
#define ARM_CPUID_ARM946      0x41059461
360
#define ARM_CPUID_TI915T      0x54029152
361
#define ARM_CPUID_TI925T      0x54029252
362
#define ARM_CPUID_PXA250      0x69052100
363
#define ARM_CPUID_PXA255      0x69052d00
364
#define ARM_CPUID_PXA260      0x69052903
365
#define ARM_CPUID_PXA261      0x69052d05
366
#define ARM_CPUID_PXA262      0x69052d06
367
#define ARM_CPUID_PXA270      0x69054110
368
#define ARM_CPUID_PXA270_A0   0x69054110
369
#define ARM_CPUID_PXA270_A1   0x69054111
370
#define ARM_CPUID_PXA270_B0   0x69054112
371
#define ARM_CPUID_PXA270_B1   0x69054113
372
#define ARM_CPUID_PXA270_C0   0x69054114
373
#define ARM_CPUID_PXA270_C5   0x69054117
374
#define ARM_CPUID_ARM1136     0x4117b363
375
#define ARM_CPUID_ARM1136_R2  0x4107b362
376
#define ARM_CPUID_ARM11MPCORE 0x410fb022
377
#define ARM_CPUID_CORTEXA8    0x410fc080
378
#define ARM_CPUID_CORTEXM3    0x410fc231
379
#define ARM_CPUID_ANY         0xffffffff
380

    
381
#if defined(CONFIG_USER_ONLY)
382
#define TARGET_PAGE_BITS 12
383
#else
384
/* The ARM MMU allows 1k pages.  */
385
/* ??? Linux doesn't actually use these, and they're deprecated in recent
386
   architecture revisions.  Maybe a configure option to disable them.  */
387
#define TARGET_PAGE_BITS 10
388
#endif
389

    
390
#define CPUState CPUARMState
391
#define cpu_init cpu_arm_init
392
#define cpu_exec cpu_arm_exec
393
#define cpu_gen_code cpu_arm_gen_code
394
#define cpu_signal_handler cpu_arm_signal_handler
395
#define cpu_list arm_cpu_list
396

    
397
#define ARM_CPU_SAVE_VERSION 1
398

    
399
/* MMU modes definitions */
400
#define MMU_MODE0_SUFFIX _kernel
401
#define MMU_MODE1_SUFFIX _user
402
#define MMU_USER_IDX 1
403
static inline int cpu_mmu_index (CPUState *env)
404
{
405
    return (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR ? 1 : 0;
406
}
407

    
408
#include "cpu-all.h"
409

    
410
#endif