Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ cf7a2fe2

History | View | Annotate | Download (31.1 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "pc.h"
27
#include "fdc.h"
28
#include "net.h"
29
#include "boards.h"
30
#include "smbus.h"
31
#include "block.h"
32
#include "flash.h"
33
#include "mips.h"
34
#include "pci.h"
35
#include "qemu-char.h"
36
#include "sysemu.h"
37
#include "audio/audio.h"
38
#include "boards.h"
39

    
40
//#define DEBUG_BOARD_INIT
41

    
42
#ifdef TARGET_WORDS_BIGENDIAN
43
#define BIOS_FILENAME "mips_bios.bin"
44
#else
45
#define BIOS_FILENAME "mipsel_bios.bin"
46
#endif
47

    
48
#ifdef TARGET_MIPS64
49
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffULL)
50
#else
51
#define PHYS_TO_VIRT(x) ((x) | ~0x7fffffffU)
52
#endif
53

    
54
#define ENVP_ADDR (int32_t)0x80002000
55
#define VIRT_TO_PHYS_ADDEND (-((int64_t)(int32_t)0x80000000))
56

    
57
#define ENVP_NB_ENTRIES                 16
58
#define ENVP_ENTRY_SIZE                 256
59

    
60
#define MAX_IDE_BUS 2
61

    
62
extern FILE *logfile;
63

    
64
typedef struct {
65
    uint32_t leds;
66
    uint32_t brk;
67
    uint32_t gpout;
68
    uint32_t i2cin;
69
    uint32_t i2coe;
70
    uint32_t i2cout;
71
    uint32_t i2csel;
72
    CharDriverState *display;
73
    char display_text[9];
74
    SerialState *uart;
75
} MaltaFPGAState;
76

    
77
static PITState *pit;
78

    
79
static struct _loaderparams {
80
    int ram_size;
81
    const char *kernel_filename;
82
    const char *kernel_cmdline;
83
    const char *initrd_filename;
84
} loaderparams;
85

    
86
/* Malta FPGA */
87
static void malta_fpga_update_display(void *opaque)
88
{
89
    char leds_text[9];
90
    int i;
91
    MaltaFPGAState *s = opaque;
92

    
93
    for (i = 7 ; i >= 0 ; i--) {
94
        if (s->leds & (1 << i))
95
            leds_text[i] = '#';
96
        else
97
            leds_text[i] = ' ';
98
    }
99
    leds_text[8] = '\0';
100

    
101
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
102
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
103
}
104

    
105
/*
106
 * EEPROM 24C01 / 24C02 emulation.
107
 *
108
 * Emulation for serial EEPROMs:
109
 * 24C01 - 1024 bit (128 x 8)
110
 * 24C02 - 2048 bit (256 x 8)
111
 *
112
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
113
 */
114

    
115
//~ #define DEBUG
116

    
117
#if defined(DEBUG)
118
#  define logout(fmt, args...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ##args)
119
#else
120
#  define logout(fmt, args...) ((void)0)
121
#endif
122

    
123
struct _eeprom24c0x_t {
124
  uint8_t tick;
125
  uint8_t address;
126
  uint8_t command;
127
  uint8_t ack;
128
  uint8_t scl;
129
  uint8_t sda;
130
  uint8_t data;
131
  //~ uint16_t size;
132
  uint8_t contents[256];
133
};
134

    
135
typedef struct _eeprom24c0x_t eeprom24c0x_t;
136

    
137
static eeprom24c0x_t eeprom = {
138
    contents: {
139
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
140
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
141
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
142
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
143
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
144
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
147
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
153
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
154
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
155
    },
156
};
157

    
158
static uint8_t eeprom24c0x_read()
159
{
160
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
161
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
162
    return eeprom.sda;
163
}
164

    
165
static void eeprom24c0x_write(int scl, int sda)
166
{
167
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
168
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
169
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
170
        if (!sda) {
171
            eeprom.tick = 1;
172
            eeprom.command = 0;
173
        }
174
    } else if (eeprom.tick == 0 && !eeprom.ack) {
175
        /* Waiting for start. */
176
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
177
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
178
    } else if (!eeprom.scl && scl) {
179
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
180
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
181
        if (eeprom.ack) {
182
            logout("\ti2c ack bit = 0\n");
183
            sda = 0;
184
            eeprom.ack = 0;
185
        } else if (eeprom.sda == sda) {
186
            uint8_t bit = (sda != 0);
187
            logout("\ti2c bit = %d\n", bit);
188
            if (eeprom.tick < 9) {
189
                eeprom.command <<= 1;
190
                eeprom.command += bit;
191
                eeprom.tick++;
192
                if (eeprom.tick == 9) {
193
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
194
                    eeprom.ack = 1;
195
                }
196
            } else if (eeprom.tick < 17) {
197
                if (eeprom.command & 1) {
198
                    sda = ((eeprom.data & 0x80) != 0);
199
                }
200
                eeprom.address <<= 1;
201
                eeprom.address += bit;
202
                eeprom.tick++;
203
                eeprom.data <<= 1;
204
                if (eeprom.tick == 17) {
205
                    eeprom.data = eeprom.contents[eeprom.address];
206
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
207
                    eeprom.ack = 1;
208
                    eeprom.tick = 0;
209
                }
210
            } else if (eeprom.tick >= 17) {
211
                sda = 0;
212
            }
213
        } else {
214
            logout("\tsda changed with raising scl\n");
215
        }
216
    } else {
217
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
218
    }
219
    eeprom.scl = scl;
220
    eeprom.sda = sda;
221
}
222

    
223
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
224
{
225
    MaltaFPGAState *s = opaque;
226
    uint32_t val = 0;
227
    uint32_t saddr;
228

    
229
    saddr = (addr & 0xfffff);
230

    
231
    switch (saddr) {
232

    
233
    /* SWITCH Register */
234
    case 0x00200:
235
        val = 0x00000000;                /* All switches closed */
236
        break;
237

    
238
    /* STATUS Register */
239
    case 0x00208:
240
#ifdef TARGET_WORDS_BIGENDIAN
241
        val = 0x00000012;
242
#else
243
        val = 0x00000010;
244
#endif
245
        break;
246

    
247
    /* JMPRS Register */
248
    case 0x00210:
249
        val = 0x00;
250
        break;
251

    
252
    /* LEDBAR Register */
253
    case 0x00408:
254
        val = s->leds;
255
        break;
256

    
257
    /* BRKRES Register */
258
    case 0x00508:
259
        val = s->brk;
260
        break;
261

    
262
    /* UART Registers are handled directly by the serial device */
263

    
264
    /* GPOUT Register */
265
    case 0x00a00:
266
        val = s->gpout;
267
        break;
268

    
269
    /* XXX: implement a real I2C controller */
270

    
271
    /* GPINP Register */
272
    case 0x00a08:
273
        /* IN = OUT until a real I2C control is implemented */
274
        if (s->i2csel)
275
            val = s->i2cout;
276
        else
277
            val = 0x00;
278
        break;
279

    
280
    /* I2CINP Register */
281
    case 0x00b00:
282
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
283
        break;
284

    
285
    /* I2COE Register */
286
    case 0x00b08:
287
        val = s->i2coe;
288
        break;
289

    
290
    /* I2COUT Register */
291
    case 0x00b10:
292
        val = s->i2cout;
293
        break;
294

    
295
    /* I2CSEL Register */
296
    case 0x00b18:
297
        val = s->i2csel;
298
        break;
299

    
300
    default:
301
#if 0
302
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
303
                addr);
304
#endif
305
        break;
306
    }
307
    return val;
308
}
309

    
310
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
311
                              uint32_t val)
312
{
313
    MaltaFPGAState *s = opaque;
314
    uint32_t saddr;
315

    
316
    saddr = (addr & 0xfffff);
317

    
318
    switch (saddr) {
319

    
320
    /* SWITCH Register */
321
    case 0x00200:
322
        break;
323

    
324
    /* JMPRS Register */
325
    case 0x00210:
326
        break;
327

    
328
    /* LEDBAR Register */
329
    /* XXX: implement a 8-LED array */
330
    case 0x00408:
331
        s->leds = val & 0xff;
332
        break;
333

    
334
    /* ASCIIWORD Register */
335
    case 0x00410:
336
        snprintf(s->display_text, 9, "%08X", val);
337
        malta_fpga_update_display(s);
338
        break;
339

    
340
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
341
    case 0x00418:
342
    case 0x00420:
343
    case 0x00428:
344
    case 0x00430:
345
    case 0x00438:
346
    case 0x00440:
347
    case 0x00448:
348
    case 0x00450:
349
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
350
        malta_fpga_update_display(s);
351
        break;
352

    
353
    /* SOFTRES Register */
354
    case 0x00500:
355
        if (val == 0x42)
356
            qemu_system_reset_request ();
357
        break;
358

    
359
    /* BRKRES Register */
360
    case 0x00508:
361
        s->brk = val & 0xff;
362
        break;
363

    
364
    /* UART Registers are handled directly by the serial device */
365

    
366
    /* GPOUT Register */
367
    case 0x00a00:
368
        s->gpout = val & 0xff;
369
        break;
370

    
371
    /* I2COE Register */
372
    case 0x00b08:
373
        s->i2coe = val & 0x03;
374
        break;
375

    
376
    /* I2COUT Register */
377
    case 0x00b10:
378
        eeprom24c0x_write(val & 0x02, val & 0x01);
379
        s->i2cout = val;
380
        break;
381

    
382
    /* I2CSEL Register */
383
    case 0x00b18:
384
        s->i2csel = val & 0x01;
385
        break;
386

    
387
    default:
388
#if 0
389
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
390
                addr);
391
#endif
392
        break;
393
    }
394
}
395

    
396
static CPUReadMemoryFunc *malta_fpga_read[] = {
397
   malta_fpga_readl,
398
   malta_fpga_readl,
399
   malta_fpga_readl
400
};
401

    
402
static CPUWriteMemoryFunc *malta_fpga_write[] = {
403
   malta_fpga_writel,
404
   malta_fpga_writel,
405
   malta_fpga_writel
406
};
407

    
408
static void malta_fpga_reset(void *opaque)
409
{
410
    MaltaFPGAState *s = opaque;
411

    
412
    s->leds   = 0x00;
413
    s->brk    = 0x0a;
414
    s->gpout  = 0x00;
415
    s->i2cin  = 0x3;
416
    s->i2coe  = 0x0;
417
    s->i2cout = 0x3;
418
    s->i2csel = 0x1;
419

    
420
    s->display_text[8] = '\0';
421
    snprintf(s->display_text, 9, "        ");
422
    malta_fpga_update_display(s);
423
}
424

    
425
static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, CPUState *env)
426
{
427
    MaltaFPGAState *s;
428
    CharDriverState *uart_chr;
429
    int malta;
430

    
431
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
432

    
433
    malta = cpu_register_io_memory(0, malta_fpga_read,
434
                                   malta_fpga_write, s);
435

    
436
    cpu_register_physical_memory(base, 0x900, malta);
437
    cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
438

    
439
    s->display = qemu_chr_open("vc");
440
    qemu_chr_printf(s->display, "\e[HMalta LEDBAR\r\n");
441
    qemu_chr_printf(s->display, "+--------+\r\n");
442
    qemu_chr_printf(s->display, "+        +\r\n");
443
    qemu_chr_printf(s->display, "+--------+\r\n");
444
    qemu_chr_printf(s->display, "\n");
445
    qemu_chr_printf(s->display, "Malta ASCII\r\n");
446
    qemu_chr_printf(s->display, "+--------+\r\n");
447
    qemu_chr_printf(s->display, "+        +\r\n");
448
    qemu_chr_printf(s->display, "+--------+\r\n");
449

    
450
    uart_chr = qemu_chr_open("vc");
451
    qemu_chr_printf(uart_chr, "CBUS UART\r\n");
452
    s->uart = serial_mm_init(base + 0x900, 3, env->irq[2], uart_chr, 1);
453

    
454
    malta_fpga_reset(s);
455
    qemu_register_reset(malta_fpga_reset, s);
456

    
457
    return s;
458
}
459

    
460
/* Audio support */
461
#ifdef HAS_AUDIO
462
static void audio_init (PCIBus *pci_bus)
463
{
464
    struct soundhw *c;
465
    int audio_enabled = 0;
466

    
467
    for (c = soundhw; !audio_enabled && c->name; ++c) {
468
        audio_enabled = c->enabled;
469
    }
470

    
471
    if (audio_enabled) {
472
        AudioState *s;
473

    
474
        s = AUD_init ();
475
        if (s) {
476
            for (c = soundhw; c->name; ++c) {
477
                if (c->enabled)
478
                    c->init.init_pci (pci_bus, s);
479
            }
480
        }
481
    }
482
}
483
#endif
484

    
485
/* Network support */
486
static void network_init (PCIBus *pci_bus)
487
{
488
    int i;
489
    NICInfo *nd;
490

    
491
    for(i = 0; i < nb_nics; i++) {
492
        nd = &nd_table[i];
493
        if (!nd->model) {
494
            nd->model = "pcnet";
495
        }
496
        if (i == 0  && strcmp(nd->model, "pcnet") == 0) {
497
            /* The malta board has a PCNet card using PCI SLOT 11 */
498
            pci_nic_init(pci_bus, nd, 88);
499
        } else {
500
            pci_nic_init(pci_bus, nd, -1);
501
        }
502
    }
503
}
504

    
505
/* ROM and pseudo bootloader
506

507
   The following code implements a very very simple bootloader. It first
508
   loads the registers a0 to a3 to the values expected by the OS, and
509
   then jump at the kernel address.
510

511
   The bootloader should pass the locations of the kernel arguments and
512
   environment variables tables. Those tables contain the 32-bit address
513
   of NULL terminated strings. The environment variables table should be
514
   terminated by a NULL address.
515

516
   For a simpler implementation, the number of kernel arguments is fixed
517
   to two (the name of the kernel and the command line), and the two
518
   tables are actually the same one.
519

520
   The registers a0 to a3 should contain the following values:
521
     a0 - number of kernel arguments
522
     a1 - 32-bit address of the kernel arguments table
523
     a2 - 32-bit address of the environment variables table
524
     a3 - RAM size in bytes
525
*/
526

    
527
static void write_bootloader (CPUState *env, unsigned long bios_offset, int64_t kernel_entry)
528
{
529
    uint32_t *p;
530

    
531
    /* Small bootloader */
532
    p = (uint32_t *) (phys_ram_base + bios_offset);
533
    stl_raw(p++, 0x0bf00160);                                      /* j 0x1fc00580 */
534
    stl_raw(p++, 0x00000000);                                      /* nop */
535

    
536
    /* YAMON service vector */
537
    stl_raw(phys_ram_base + bios_offset + 0x500, 0xbfc00580);      /* start: */
538
    stl_raw(phys_ram_base + bios_offset + 0x504, 0xbfc0083c);      /* print_count: */
539
    stl_raw(phys_ram_base + bios_offset + 0x520, 0xbfc00580);      /* start: */
540
    stl_raw(phys_ram_base + bios_offset + 0x52c, 0xbfc00800);      /* flush_cache: */
541
    stl_raw(phys_ram_base + bios_offset + 0x534, 0xbfc00808);      /* print: */
542
    stl_raw(phys_ram_base + bios_offset + 0x538, 0xbfc00800);      /* reg_cpu_isr: */
543
    stl_raw(phys_ram_base + bios_offset + 0x53c, 0xbfc00800);      /* unred_cpu_isr: */
544
    stl_raw(phys_ram_base + bios_offset + 0x540, 0xbfc00800);      /* reg_ic_isr: */
545
    stl_raw(phys_ram_base + bios_offset + 0x544, 0xbfc00800);      /* unred_ic_isr: */
546
    stl_raw(phys_ram_base + bios_offset + 0x548, 0xbfc00800);      /* reg_esr: */
547
    stl_raw(phys_ram_base + bios_offset + 0x54c, 0xbfc00800);      /* unreg_esr: */
548
    stl_raw(phys_ram_base + bios_offset + 0x550, 0xbfc00800);      /* getchar: */
549
    stl_raw(phys_ram_base + bios_offset + 0x554, 0xbfc00800);      /* syscon_read: */
550

    
551

    
552
    /* Second part of the bootloader */
553
    p = (uint32_t *) (phys_ram_base + bios_offset + 0x580);
554
    stl_raw(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
555
    stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
556
    stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
557
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
558
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
559
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
560
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
561
    stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
562
    stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */
563

    
564
    /* Load BAR registers as done by YAMON */
565
    stl_raw(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
566

    
567
#ifdef TARGET_WORDS_BIGENDIAN
568
    stl_raw(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
569
#else
570
    stl_raw(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
571
#endif
572
    stl_raw(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
573

    
574
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
575

    
576
#ifdef TARGET_WORDS_BIGENDIAN
577
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
578
#else
579
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
580
#endif
581
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
582
#ifdef TARGET_WORDS_BIGENDIAN
583
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
584
#else
585
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
586
#endif
587
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
588

    
589
#ifdef TARGET_WORDS_BIGENDIAN
590
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
591
#else
592
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
593
#endif
594
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
595
#ifdef TARGET_WORDS_BIGENDIAN
596
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
597
#else
598
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
599
#endif
600
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
601

    
602
#ifdef TARGET_WORDS_BIGENDIAN
603
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
604
#else
605
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
606
#endif
607
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
608
#ifdef TARGET_WORDS_BIGENDIAN
609
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
610
#else
611
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
612
#endif
613
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
614

    
615
    /* Jump to kernel code */
616
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
617
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
618
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
619
    stl_raw(p++, 0x00000000);                                      /* nop */
620

    
621
    /* YAMON subroutines */
622
    p = (uint32_t *) (phys_ram_base + bios_offset + 0x800);
623
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
624
    stl_raw(p++, 0x24020000);                                     /* li v0,0 */
625
   /* 808 YAMON print */
626
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
627
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
628
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
629
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
630
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
631
    stl_raw(p++, 0x10800005);                                     /* beqz a0,834 */
632
    stl_raw(p++, 0x00000000);                                     /* nop */
633
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
634
    stl_raw(p++, 0x00000000);                                     /* nop */
635
    stl_raw(p++, 0x08000205);                                     /* j 814 */
636
    stl_raw(p++, 0x00000000);                                     /* nop */
637
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
638
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
639
    /* 0x83c YAMON print_count */
640
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
641
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
642
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
643
    stl_raw(p++, 0x00c06021);                                     /* move t4,a2 */
644
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
645
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
646
    stl_raw(p++, 0x00000000);                                     /* nop */
647
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
648
    stl_raw(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
649
    stl_raw(p++, 0x1580fffa);                                     /* bnez t4,84c */
650
    stl_raw(p++, 0x00000000);                                     /* nop */
651
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
652
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
653
    /* 0x870 */
654
    stl_raw(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
655
    stl_raw(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
656
    stl_raw(p++, 0x91090005);                                     /* lbu t1,5(t0) */
657
    stl_raw(p++, 0x00000000);                                     /* nop */
658
    stl_raw(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
659
    stl_raw(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
660
    stl_raw(p++, 0x00000000);                                     /* nop */
661
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
662
    stl_raw(p++, 0xa1040000);                                     /* sb a0,0(t0) */
663

    
664
}
665

    
666
static void prom_set(int index, const char *string, ...)
667
{
668
    va_list ap;
669
    int32_t *p;
670
    int32_t table_addr;
671
    char *s;
672

    
673
    if (index >= ENVP_NB_ENTRIES)
674
        return;
675

    
676
    p = (int32_t *) (phys_ram_base + ENVP_ADDR + VIRT_TO_PHYS_ADDEND);
677
    p += index;
678

    
679
    if (string == NULL) {
680
        stl_raw(p, 0);
681
        return;
682
    }
683

    
684
    table_addr = ENVP_ADDR + sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
685
    s = (char *) (phys_ram_base + VIRT_TO_PHYS_ADDEND + table_addr);
686

    
687
    stl_raw(p, table_addr);
688

    
689
    va_start(ap, string);
690
    vsnprintf (s, ENVP_ENTRY_SIZE, string, ap);
691
    va_end(ap);
692
}
693

    
694
/* Kernel */
695
static int64_t load_kernel (CPUState *env)
696
{
697
    int64_t kernel_entry, kernel_low, kernel_high;
698
    int index = 0;
699
    long initrd_size;
700
    ram_addr_t initrd_offset;
701

    
702
    if (load_elf(loaderparams.kernel_filename, VIRT_TO_PHYS_ADDEND,
703
                 &kernel_entry, &kernel_low, &kernel_high) < 0) {
704
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
705
                loaderparams.kernel_filename);
706
        exit(1);
707
    }
708

    
709
    /* load initrd */
710
    initrd_size = 0;
711
    initrd_offset = 0;
712
    if (loaderparams.initrd_filename) {
713
        initrd_size = get_image_size (loaderparams.initrd_filename);
714
        if (initrd_size > 0) {
715
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
716
            if (initrd_offset + initrd_size > ram_size) {
717
                fprintf(stderr,
718
                        "qemu: memory too small for initial ram disk '%s'\n",
719
                        loaderparams.initrd_filename);
720
                exit(1);
721
            }
722
            initrd_size = load_image(loaderparams.initrd_filename,
723
                                     phys_ram_base + initrd_offset);
724
        }
725
        if (initrd_size == (target_ulong) -1) {
726
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
727
                    loaderparams.initrd_filename);
728
            exit(1);
729
        }
730
    }
731

    
732
    /* Store command line.  */
733
    prom_set(index++, loaderparams.kernel_filename);
734
    if (initrd_size > 0)
735
        prom_set(index++, "rd_start=0x" TARGET_FMT_lx " rd_size=%li %s",
736
                 PHYS_TO_VIRT(initrd_offset), initrd_size,
737
                 loaderparams.kernel_cmdline);
738
    else
739
        prom_set(index++, loaderparams.kernel_cmdline);
740

    
741
    /* Setup minimum environment variables */
742
    prom_set(index++, "memsize");
743
    prom_set(index++, "%i", loaderparams.ram_size);
744
    prom_set(index++, "modetty0");
745
    prom_set(index++, "38400n8r");
746
    prom_set(index++, NULL);
747

    
748
    return kernel_entry;
749
}
750

    
751
static void main_cpu_reset(void *opaque)
752
{
753
    CPUState *env = opaque;
754
    cpu_reset(env);
755

    
756
    /* The bootload does not need to be rewritten as it is located in a
757
       read only location. The kernel location and the arguments table
758
       location does not change. */
759
    if (loaderparams.kernel_filename) {
760
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
761
        load_kernel (env);
762
    }
763
}
764

    
765
static
766
void mips_malta_init (int ram_size, int vga_ram_size,
767
                      const char *boot_device, DisplayState *ds,
768
                      const char *kernel_filename, const char *kernel_cmdline,
769
                      const char *initrd_filename, const char *cpu_model)
770
{
771
    char buf[1024];
772
    unsigned long bios_offset;
773
    target_long bios_size;
774
    int64_t kernel_entry;
775
    PCIBus *pci_bus;
776
    CPUState *env;
777
    RTCState *rtc_state;
778
    fdctrl_t *floppy_controller;
779
    MaltaFPGAState *malta_fpga;
780
    qemu_irq *i8259;
781
    int piix4_devfn;
782
    uint8_t *eeprom_buf;
783
    i2c_bus *smbus;
784
    int i;
785
    int index;
786
    BlockDriverState *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
787
    BlockDriverState *fd[MAX_FD];
788
    int fl_idx = 0;
789
    int fl_sectors = 0;
790

    
791
    /* init CPUs */
792
    if (cpu_model == NULL) {
793
#ifdef TARGET_MIPS64
794
        cpu_model = "20Kc";
795
#else
796
        cpu_model = "24Kf";
797
#endif
798
    }
799
    env = cpu_init(cpu_model);
800
    if (!env) {
801
        fprintf(stderr, "Unable to find CPU definition\n");
802
        exit(1);
803
    }
804
    register_savevm("cpu", 0, 3, cpu_save, cpu_load, env);
805
    qemu_register_reset(main_cpu_reset, env);
806

    
807
    /* allocate RAM */
808
    cpu_register_physical_memory(0, ram_size, IO_MEM_RAM);
809

    
810
    /* Map the bios at two physical locations, as on the real board. */
811
    bios_offset = ram_size + vga_ram_size;
812
    cpu_register_physical_memory(0x1e000000LL,
813
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
814
    cpu_register_physical_memory(0x1fc00000LL,
815
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
816

    
817
    /* FPGA */
818
    malta_fpga = malta_fpga_init(0x1f000000LL, env);
819

    
820
    /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
821
    if (kernel_filename) {
822
        /* Write a small bootloader to the flash location. */
823
        loaderparams.ram_size = ram_size;
824
        loaderparams.kernel_filename = kernel_filename;
825
        loaderparams.kernel_cmdline = kernel_cmdline;
826
        loaderparams.initrd_filename = initrd_filename;
827
        kernel_entry = load_kernel(env);
828
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
829
        write_bootloader(env, bios_offset, kernel_entry);
830
    } else {
831
        index = drive_get_index(IF_PFLASH, 0, fl_idx);
832
        if (index != -1) {
833
            /* Load firmware from flash. */
834
            bios_size = 0x400000;
835
            fl_sectors = bios_size >> 16;
836
#ifdef DEBUG_BOARD_INIT
837
            printf("Register parallel flash %d size " TARGET_FMT_lx " at "
838
                   "offset %08lx addr %08llx '%s' %x\n",
839
                   fl_idx, bios_size, bios_offset, 0x1e000000LL,
840
                   bdrv_get_device_name(drives_table[index].bdrv), fl_sectors);
841
#endif
842
            pflash_cfi01_register(0x1e000000LL, bios_offset,
843
                                  drives_table[index].bdrv, 65536, fl_sectors,
844
                                  4, 0x0000, 0x0000, 0x0000, 0x0000);
845
            fl_idx++;
846
        } else {
847
            /* Load a BIOS image. */
848
            if (bios_name == NULL)
849
                bios_name = BIOS_FILENAME;
850
            snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name);
851
            bios_size = load_image(buf, phys_ram_base + bios_offset);
852
            if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
853
                fprintf(stderr,
854
                        "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
855
                        buf);
856
                exit(1);
857
            }
858
        }
859
        /* In little endian mode the 32bit words in the bios are swapped,
860
           a neat trick which allows bi-endian firmware. */
861
#ifndef TARGET_WORDS_BIGENDIAN
862
        {
863
            uint32_t *addr;
864
            for (addr = (uint32_t *)(phys_ram_base + bios_offset);
865
                 addr < (uint32_t *)(phys_ram_base + bios_offset + bios_size);
866
                 addr++) {
867
                *addr = bswap32(*addr);
868
            }
869
        }
870
#endif
871
    }
872

    
873
    /* Board ID = 0x420 (Malta Board with CoreLV)
874
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
875
       map to the board ID. */
876
    stl_raw(phys_ram_base + bios_offset + 0x10, 0x00000420);
877

    
878
    /* Init internal devices */
879
    cpu_mips_irq_init_cpu(env);
880
    cpu_mips_clock_init(env);
881
    cpu_mips_irqctrl_init();
882

    
883
    /* Interrupt controller */
884
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
885
    i8259 = i8259_init(env->irq[2]);
886

    
887
    /* Northbridge */
888
    pci_bus = pci_gt64120_init(i8259);
889

    
890
    /* Southbridge */
891

    
892
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
893
        fprintf(stderr, "qemu: too many IDE bus\n");
894
        exit(1);
895
    }
896

    
897
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
898
        index = drive_get_index(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
899
        if (index != -1)
900
            hd[i] = drives_table[index].bdrv;
901
        else
902
            hd[i] = NULL;
903
    }
904

    
905
    piix4_devfn = piix4_init(pci_bus, 80);
906
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1, i8259);
907
    usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
908
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, i8259[9]);
909
    eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
910
    for (i = 0; i < 8; i++) {
911
        /* TODO: Populate SPD eeprom data.  */
912
        smbus_eeprom_device_init(smbus, 0x50 + i, eeprom_buf + (i * 256));
913
    }
914
    pit = pit_init(0x40, i8259[0]);
915
    DMA_init(0);
916

    
917
    /* Super I/O */
918
    i8042_init(i8259[1], i8259[12], 0x60);
919
    rtc_state = rtc_init(0x70, i8259[8]);
920
    if (serial_hds[0])
921
        serial_init(0x3f8, i8259[4], serial_hds[0]);
922
    if (serial_hds[1])
923
        serial_init(0x2f8, i8259[3], serial_hds[1]);
924
    if (parallel_hds[0])
925
        parallel_init(0x378, i8259[7], parallel_hds[0]);
926
    for(i = 0; i < MAX_FD; i++) {
927
        index = drive_get_index(IF_FLOPPY, 0, i);
928
       if (index != -1)
929
           fd[i] = drives_table[index].bdrv;
930
       else
931
           fd[i] = NULL;
932
    }
933
    floppy_controller = fdctrl_init(i8259[6], 2, 0, 0x3f0, fd);
934

    
935
    /* Sound card */
936
#ifdef HAS_AUDIO
937
    audio_init(pci_bus);
938
#endif
939

    
940
    /* Network card */
941
    network_init(pci_bus);
942

    
943
    /* Optional PCI video card */
944
    pci_cirrus_vga_init(pci_bus, ds, phys_ram_base + ram_size,
945
                        ram_size, vga_ram_size);
946
}
947

    
948
QEMUMachine mips_malta_machine = {
949
    "malta",
950
    "MIPS Malta Core LV",
951
    mips_malta_init,
952
};