Statistics
| Branch: | Revision:

root / exec-all.h @ d2856f1a

History | View | Annotate | Download (17.7 kB)

1
/*
2
 * internal execution defines for qemu
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20

    
21
/* allow to see translation results - the slowdown should be negligible, so we leave it */
22
#define DEBUG_DISAS
23

    
24
/* is_jmp field values */
25
#define DISAS_NEXT    0 /* next instruction can be analyzed */
26
#define DISAS_JUMP    1 /* only pc was modified dynamically */
27
#define DISAS_UPDATE  2 /* cpu state was modified dynamically */
28
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
29

    
30
struct TranslationBlock;
31

    
32
/* XXX: make safe guess about sizes */
33
#define MAX_OP_PER_INSTR 32
34
/* A Call op needs up to 6 + 2N parameters (N = number of arguments).  */
35
#define MAX_OPC_PARAM 10
36
#define OPC_BUF_SIZE 512
37
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
38

    
39
/* Maximum size a TCG op can expand to.  This is complicated because a
40
   single op may require several host instructions and regirster reloads.
41
   For now take a wild guess at 128 bytes, which should allow at least
42
   a couple of fixup instructions per argument.  */
43
#define TCG_MAX_OP_SIZE 128
44

    
45
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
46

    
47
extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
48
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
49
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
50
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
51
extern target_ulong gen_opc_jump_pc[2];
52
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
53

    
54
typedef void (GenOpFunc)(void);
55
typedef void (GenOpFunc1)(long);
56
typedef void (GenOpFunc2)(long, long);
57
typedef void (GenOpFunc3)(long, long, long);
58

    
59
#if defined(TARGET_I386)
60

    
61
void optimize_flags_init(void);
62

    
63
#endif
64

    
65
extern FILE *logfile;
66
extern int loglevel;
67

    
68
int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
69
int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
70
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
71
                 unsigned long searched_pc, int pc_pos, void *puc);
72

    
73
unsigned long code_gen_max_block_size(void);
74
void cpu_gen_init(void);
75
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
76
                 int *gen_code_size_ptr);
77
int cpu_restore_state(struct TranslationBlock *tb,
78
                      CPUState *env, unsigned long searched_pc,
79
                      void *puc);
80
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
81
                      int max_code_size, int *gen_code_size_ptr);
82
int cpu_restore_state_copy(struct TranslationBlock *tb,
83
                           CPUState *env, unsigned long searched_pc,
84
                           void *puc);
85
void cpu_resume_from_signal(CPUState *env1, void *puc);
86
void cpu_exec_init(CPUState *env);
87
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
88
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
89
                                   int is_cpu_write_access);
90
void tb_invalidate_page_range(target_ulong start, target_ulong end);
91
void tlb_flush_page(CPUState *env, target_ulong addr);
92
void tlb_flush(CPUState *env, int flush_global);
93
int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
94
                      target_phys_addr_t paddr, int prot,
95
                      int mmu_idx, int is_softmmu);
96
static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
97
                               target_phys_addr_t paddr, int prot,
98
                               int mmu_idx, int is_softmmu)
99
{
100
    if (prot & PAGE_READ)
101
        prot |= PAGE_EXEC;
102
    return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
103
}
104

    
105
#define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
106

    
107
#define CODE_GEN_PHYS_HASH_BITS     15
108
#define CODE_GEN_PHYS_HASH_SIZE     (1 << CODE_GEN_PHYS_HASH_BITS)
109

    
110
/* maximum total translate dcode allocated */
111

    
112
/* NOTE: the translated code area cannot be too big because on some
113
   archs the range of "fast" function calls is limited. Here is a
114
   summary of the ranges:
115

116
   i386  : signed 32 bits
117
   arm   : signed 26 bits
118
   ppc   : signed 24 bits
119
   sparc : signed 32 bits
120
   alpha : signed 23 bits
121
*/
122

    
123
#if defined(__alpha__)
124
#define CODE_GEN_BUFFER_SIZE     (2 * 1024 * 1024)
125
#elif defined(__ia64)
126
#define CODE_GEN_BUFFER_SIZE     (4 * 1024 * 1024)        /* range of addl */
127
#elif defined(__powerpc__)
128
#define CODE_GEN_BUFFER_SIZE     (6 * 1024 * 1024)
129
#else
130
/* XXX: make it dynamic on x86 */
131
#define CODE_GEN_BUFFER_SIZE     (16 * 1024 * 1024)
132
#endif
133

    
134
//#define CODE_GEN_BUFFER_SIZE     (128 * 1024)
135

    
136
/* estimated block size for TB allocation */
137
/* XXX: use a per code average code fragment size and modulate it
138
   according to the host CPU */
139
#if defined(CONFIG_SOFTMMU)
140
#define CODE_GEN_AVG_BLOCK_SIZE 128
141
#else
142
#define CODE_GEN_AVG_BLOCK_SIZE 64
143
#endif
144

    
145
#define CODE_GEN_MAX_BLOCKS    (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
146

    
147
#if defined(__powerpc__) || defined(__x86_64__)
148
#define USE_DIRECT_JUMP
149
#endif
150
#if defined(__i386__) && !defined(_WIN32)
151
#define USE_DIRECT_JUMP
152
#endif
153

    
154
typedef struct TranslationBlock {
155
    target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
156
    target_ulong cs_base; /* CS base for this block */
157
    uint64_t flags; /* flags defining in which context the code was generated */
158
    uint16_t size;      /* size of target code for this block (1 <=
159
                           size <= TARGET_PAGE_SIZE) */
160
    uint16_t cflags;    /* compile flags */
161
#define CF_CODE_COPY   0x0001 /* block was generated in code copy mode */
162
#define CF_TB_FP_USED  0x0002 /* fp ops are used in the TB */
163
#define CF_FP_USED     0x0004 /* fp ops are used in the TB or in a chained TB */
164
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
165

    
166
    uint8_t *tc_ptr;    /* pointer to the translated code */
167
    /* next matching tb for physical address. */
168
    struct TranslationBlock *phys_hash_next;
169
    /* first and second physical page containing code. The lower bit
170
       of the pointer tells the index in page_next[] */
171
    struct TranslationBlock *page_next[2];
172
    target_ulong page_addr[2];
173

    
174
    /* the following data are used to directly call another TB from
175
       the code of this one. */
176
    uint16_t tb_next_offset[2]; /* offset of original jump target */
177
#ifdef USE_DIRECT_JUMP
178
    uint16_t tb_jmp_offset[4]; /* offset of jump instruction */
179
#else
180
    unsigned long tb_next[2]; /* address of jump generated code */
181
#endif
182
    /* list of TBs jumping to this one. This is a circular list using
183
       the two least significant bits of the pointers to tell what is
184
       the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
185
       jmp_first */
186
    struct TranslationBlock *jmp_next[2];
187
    struct TranslationBlock *jmp_first;
188
} TranslationBlock;
189

    
190
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
191
{
192
    target_ulong tmp;
193
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
194
    return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
195
}
196

    
197
static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
198
{
199
    target_ulong tmp;
200
    tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
201
    return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
202
            (tmp & TB_JMP_ADDR_MASK));
203
}
204

    
205
static inline unsigned int tb_phys_hash_func(unsigned long pc)
206
{
207
    return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
208
}
209

    
210
TranslationBlock *tb_alloc(target_ulong pc);
211
void tb_flush(CPUState *env);
212
void tb_link_phys(TranslationBlock *tb,
213
                  target_ulong phys_pc, target_ulong phys_page2);
214

    
215
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
216

    
217
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
218
extern uint8_t *code_gen_ptr;
219

    
220
#if defined(USE_DIRECT_JUMP)
221

    
222
#if defined(__powerpc__)
223
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
224
{
225
    uint32_t val, *ptr;
226

    
227
    /* patch the branch destination */
228
    ptr = (uint32_t *)jmp_addr;
229
    val = *ptr;
230
    val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
231
    *ptr = val;
232
    /* flush icache */
233
    asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
234
    asm volatile ("sync" : : : "memory");
235
    asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
236
    asm volatile ("sync" : : : "memory");
237
    asm volatile ("isync" : : : "memory");
238
}
239
#elif defined(__i386__) || defined(__x86_64__)
240
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
241
{
242
    /* patch the branch destination */
243
    *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
244
    /* no need to flush icache explicitely */
245
}
246
#endif
247

    
248
static inline void tb_set_jmp_target(TranslationBlock *tb,
249
                                     int n, unsigned long addr)
250
{
251
    unsigned long offset;
252

    
253
    offset = tb->tb_jmp_offset[n];
254
    tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
255
    offset = tb->tb_jmp_offset[n + 2];
256
    if (offset != 0xffff)
257
        tb_set_jmp_target1((unsigned long)(tb->tc_ptr + offset), addr);
258
}
259

    
260
#else
261

    
262
/* set the jump target */
263
static inline void tb_set_jmp_target(TranslationBlock *tb,
264
                                     int n, unsigned long addr)
265
{
266
    tb->tb_next[n] = addr;
267
}
268

    
269
#endif
270

    
271
static inline void tb_add_jump(TranslationBlock *tb, int n,
272
                               TranslationBlock *tb_next)
273
{
274
    /* NOTE: this test is only needed for thread safety */
275
    if (!tb->jmp_next[n]) {
276
        /* patch the native jump address */
277
        tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
278

    
279
        /* add in TB jmp circular list */
280
        tb->jmp_next[n] = tb_next->jmp_first;
281
        tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
282
    }
283
}
284

    
285
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
286

    
287
#ifndef offsetof
288
#define offsetof(type, field) ((size_t) &((type *)0)->field)
289
#endif
290

    
291
#if defined(_WIN32)
292
#define ASM_DATA_SECTION ".section \".data\"\n"
293
#define ASM_PREVIOUS_SECTION ".section .text\n"
294
#elif defined(__APPLE__)
295
#define ASM_DATA_SECTION ".data\n"
296
#define ASM_PREVIOUS_SECTION ".text\n"
297
#else
298
#define ASM_DATA_SECTION ".section \".data\"\n"
299
#define ASM_PREVIOUS_SECTION ".previous\n"
300
#endif
301

    
302
#define ASM_OP_LABEL_NAME(n, opname) \
303
    ASM_NAME(__op_label) #n "." ASM_NAME(opname)
304

    
305
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
306
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
307
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
308

    
309
#if defined(__hppa__)
310

    
311
typedef int spinlock_t[4];
312

    
313
#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
314

    
315
static inline void resetlock (spinlock_t *p)
316
{
317
    (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
318
}
319

    
320
#else
321

    
322
typedef int spinlock_t;
323

    
324
#define SPIN_LOCK_UNLOCKED 0
325

    
326
static inline void resetlock (spinlock_t *p)
327
{
328
    *p = SPIN_LOCK_UNLOCKED;
329
}
330

    
331
#endif
332

    
333
#if defined(__powerpc__)
334
static inline int testandset (int *p)
335
{
336
    int ret;
337
    __asm__ __volatile__ (
338
                          "0:    lwarx %0,0,%1\n"
339
                          "      xor. %0,%3,%0\n"
340
                          "      bne 1f\n"
341
                          "      stwcx. %2,0,%1\n"
342
                          "      bne- 0b\n"
343
                          "1:    "
344
                          : "=&r" (ret)
345
                          : "r" (p), "r" (1), "r" (0)
346
                          : "cr0", "memory");
347
    return ret;
348
}
349
#elif defined(__i386__)
350
static inline int testandset (int *p)
351
{
352
    long int readval = 0;
353

    
354
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
355
                          : "+m" (*p), "+a" (readval)
356
                          : "r" (1)
357
                          : "cc");
358
    return readval;
359
}
360
#elif defined(__x86_64__)
361
static inline int testandset (int *p)
362
{
363
    long int readval = 0;
364

    
365
    __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
366
                          : "+m" (*p), "+a" (readval)
367
                          : "r" (1)
368
                          : "cc");
369
    return readval;
370
}
371
#elif defined(__s390__)
372
static inline int testandset (int *p)
373
{
374
    int ret;
375

    
376
    __asm__ __volatile__ ("0: cs    %0,%1,0(%2)\n"
377
                          "   jl    0b"
378
                          : "=&d" (ret)
379
                          : "r" (1), "a" (p), "0" (*p)
380
                          : "cc", "memory" );
381
    return ret;
382
}
383
#elif defined(__alpha__)
384
static inline int testandset (int *p)
385
{
386
    int ret;
387
    unsigned long one;
388

    
389
    __asm__ __volatile__ ("0:        mov 1,%2\n"
390
                          "        ldl_l %0,%1\n"
391
                          "        stl_c %2,%1\n"
392
                          "        beq %2,1f\n"
393
                          ".subsection 2\n"
394
                          "1:        br 0b\n"
395
                          ".previous"
396
                          : "=r" (ret), "=m" (*p), "=r" (one)
397
                          : "m" (*p));
398
    return ret;
399
}
400
#elif defined(__sparc__)
401
static inline int testandset (int *p)
402
{
403
        int ret;
404

    
405
        __asm__ __volatile__("ldstub        [%1], %0"
406
                             : "=r" (ret)
407
                             : "r" (p)
408
                             : "memory");
409

    
410
        return (ret ? 1 : 0);
411
}
412
#elif defined(__arm__)
413
static inline int testandset (int *spinlock)
414
{
415
    register unsigned int ret;
416
    __asm__ __volatile__("swp %0, %1, [%2]"
417
                         : "=r"(ret)
418
                         : "0"(1), "r"(spinlock));
419

    
420
    return ret;
421
}
422
#elif defined(__mc68000)
423
static inline int testandset (int *p)
424
{
425
    char ret;
426
    __asm__ __volatile__("tas %1; sne %0"
427
                         : "=r" (ret)
428
                         : "m" (p)
429
                         : "cc","memory");
430
    return ret;
431
}
432
#elif defined(__hppa__)
433

    
434
/* Because malloc only guarantees 8-byte alignment for malloc'd data,
435
   and GCC only guarantees 8-byte alignment for stack locals, we can't
436
   be assured of 16-byte alignment for atomic lock data even if we
437
   specify "__attribute ((aligned(16)))" in the type declaration.  So,
438
   we use a struct containing an array of four ints for the atomic lock
439
   type and dynamically select the 16-byte aligned int from the array
440
   for the semaphore.  */
441
#define __PA_LDCW_ALIGNMENT 16
442
static inline void *ldcw_align (void *p) {
443
    unsigned long a = (unsigned long)p;
444
    a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
445
    return (void *)a;
446
}
447

    
448
static inline int testandset (spinlock_t *p)
449
{
450
    unsigned int ret;
451
    p = ldcw_align(p);
452
    __asm__ __volatile__("ldcw 0(%1),%0"
453
                         : "=r" (ret)
454
                         : "r" (p)
455
                         : "memory" );
456
    return !ret;
457
}
458

    
459
#elif defined(__ia64)
460

    
461
#include <ia64intrin.h>
462

    
463
static inline int testandset (int *p)
464
{
465
    return __sync_lock_test_and_set (p, 1);
466
}
467
#elif defined(__mips__)
468
static inline int testandset (int *p)
469
{
470
    int ret;
471

    
472
    __asm__ __volatile__ (
473
        "        .set push                \n"
474
        "        .set noat                \n"
475
        "        .set mips2                \n"
476
        "1:        li        $1, 1                \n"
477
        "        ll        %0, %1                \n"
478
        "        sc        $1, %1                \n"
479
        "        beqz        $1, 1b                \n"
480
        "        .set pop                "
481
        : "=r" (ret), "+R" (*p)
482
        :
483
        : "memory");
484

    
485
    return ret;
486
}
487
#else
488
#error unimplemented CPU support
489
#endif
490

    
491
#if defined(CONFIG_USER_ONLY)
492
static inline void spin_lock(spinlock_t *lock)
493
{
494
    while (testandset(lock));
495
}
496

    
497
static inline void spin_unlock(spinlock_t *lock)
498
{
499
    resetlock(lock);
500
}
501

    
502
static inline int spin_trylock(spinlock_t *lock)
503
{
504
    return !testandset(lock);
505
}
506
#else
507
static inline void spin_lock(spinlock_t *lock)
508
{
509
}
510

    
511
static inline void spin_unlock(spinlock_t *lock)
512
{
513
}
514

    
515
static inline int spin_trylock(spinlock_t *lock)
516
{
517
    return 1;
518
}
519
#endif
520

    
521
extern spinlock_t tb_lock;
522

    
523
extern int tb_invalidated_flag;
524

    
525
#if !defined(CONFIG_USER_ONLY)
526

    
527
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
528
              void *retaddr);
529

    
530
#define ACCESS_TYPE (NB_MMU_MODES + 1)
531
#define MEMSUFFIX _code
532
#define env cpu_single_env
533

    
534
#define DATA_SIZE 1
535
#include "softmmu_header.h"
536

    
537
#define DATA_SIZE 2
538
#include "softmmu_header.h"
539

    
540
#define DATA_SIZE 4
541
#include "softmmu_header.h"
542

    
543
#define DATA_SIZE 8
544
#include "softmmu_header.h"
545

    
546
#undef ACCESS_TYPE
547
#undef MEMSUFFIX
548
#undef env
549

    
550
#endif
551

    
552
#if defined(CONFIG_USER_ONLY)
553
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
554
{
555
    return addr;
556
}
557
#else
558
/* NOTE: this function can trigger an exception */
559
/* NOTE2: the returned address is not exactly the physical address: it
560
   is the offset relative to phys_ram_base */
561
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
562
{
563
    int mmu_idx, index, pd;
564

    
565
    index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
566
    mmu_idx = cpu_mmu_index(env);
567
    if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
568
                         (addr & TARGET_PAGE_MASK), 0)) {
569
        ldub_code(addr);
570
    }
571
    pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
572
    if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
573
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
574
        do_unassigned_access(addr, 0, 1, 0);
575
#else
576
        cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
577
#endif
578
    }
579
    return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
580
}
581
#endif
582

    
583
#ifdef USE_KQEMU
584
#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
585

    
586
int kqemu_init(CPUState *env);
587
int kqemu_cpu_exec(CPUState *env);
588
void kqemu_flush_page(CPUState *env, target_ulong addr);
589
void kqemu_flush(CPUState *env, int global);
590
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
591
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
592
void kqemu_cpu_interrupt(CPUState *env);
593
void kqemu_record_dump(void);
594

    
595
static inline int kqemu_is_ok(CPUState *env)
596
{
597
    return(env->kqemu_enabled &&
598
           (env->cr[0] & CR0_PE_MASK) &&
599
           !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
600
           (env->eflags & IF_MASK) &&
601
           !(env->eflags & VM_MASK) &&
602
           (env->kqemu_enabled == 2 ||
603
            ((env->hflags & HF_CPL_MASK) == 3 &&
604
             (env->eflags & IOPL_MASK) != IOPL_MASK)));
605
}
606

    
607
#endif