Statistics
| Branch: | Revision:

root / hw / etraxfs_eth.c @ d297f464

History | View | Annotate | Download (13.1 kB)

1
/*
2
 * QEMU ETRAX Ethernet Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include <stdio.h>
26
#include "hw.h"
27
#include "net.h"
28

    
29
#include "etraxfs_dma.h"
30

    
31
#define D(x)
32

    
33
/* 
34
 * The MDIO extensions in the TDK PHY model were reversed engineered from the 
35
 * linux driver (PHYID and Diagnostics reg).
36
 * TODO: Add friendly names for the register nums.
37
 */
38
struct qemu_phy
39
{
40
        uint32_t regs[32];
41

    
42
        unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
43
        void (*write)(struct qemu_phy *phy, unsigned int req, 
44
                      unsigned int data);
45
};
46

    
47
static unsigned int tdk_read(struct qemu_phy *phy, unsigned int req)
48
{
49
        int regnum;
50
        unsigned r = 0;
51

    
52
        regnum = req & 0x1f;
53

    
54
        switch (regnum) {
55
                case 1:
56
                        /* MR1.         */
57
                        /* Speeds and modes.  */
58
                        r |= (1 << 13) | (1 << 14);
59
                        r |= (1 << 11) | (1 << 12);
60
                        r |= (1 << 5); /* Autoneg complete.  */
61
                        r |= (1 << 3); /* Autoneg able.         */
62
                        r |= (1 << 2); /* Link.         */
63
                        break;
64
                case 5:
65
                        /* Link partner ability.
66
                           We are kind; always agree with whatever best mode
67
                           the guest advertises.  */
68
                        r = 1 << 14; /* Success.  */
69
                        /* Copy advertised modes.  */
70
                        r |= phy->regs[4] & (15 << 5);
71
                        /* Autoneg support.  */
72
                        r |= 1;
73
                        break;
74
                case 18:
75
                {
76
                        /* Diagnostics reg.  */
77
                        int duplex = 0;
78
                        int speed_100 = 0;
79

    
80
                        /* Are we advertising 100 half or 100 duplex ? */
81
                        speed_100 = !!(phy->regs[4] & 0x180);
82
                        /* Are we advertising 10 duplex or 100 duplex ? */
83
                        duplex = !!(phy->regs[4] & 0x180);
84
                        r = (speed_100 << 10) | (duplex << 11);
85
                }
86
                break;
87

    
88
                default:
89
                        r = phy->regs[regnum];
90
                        break;
91
        }
92
        D(printf("\n%s %x = reg[%d]\n", __func__, r, regnum));
93
        return r;
94
}
95

    
96
static void 
97
tdk_write(struct qemu_phy *phy, unsigned int req, unsigned int data)
98
{
99
        int regnum;
100

    
101
        regnum = req & 0x1f;
102
        D(printf("%s reg[%d] = %x\n", __func__, regnum, data));
103
        switch (regnum) {
104
                default:
105
                        phy->regs[regnum] = data;
106
                        break;
107
        }
108
}
109

    
110
static void 
111
tdk_init(struct qemu_phy *phy)
112
{
113
        phy->regs[0] = 0x3100;
114
        /* PHY Id.  */
115
        phy->regs[2] = 0x0300;
116
        phy->regs[3] = 0xe400;
117
        /* Autonegotiation advertisement reg.  */
118
        phy->regs[4] = 0x01E1;
119

    
120
        phy->read = tdk_read;
121
        phy->write = tdk_write;
122
}
123

    
124
struct qemu_mdio
125
{
126
        /* bus.         */
127
        int mdc;
128
        int mdio;
129

    
130
        /* decoder.  */
131
        enum {
132
                PREAMBLE,
133
                SOF,
134
                OPC,
135
                ADDR,
136
                REQ,
137
                TURNAROUND,
138
                DATA
139
        } state;
140
        unsigned int drive;
141

    
142
        unsigned int cnt;
143
        unsigned int addr;
144
        unsigned int opc;
145
        unsigned int req;
146
        unsigned int data;
147

    
148
        struct qemu_phy *devs[32];
149
};
150

    
151
static void 
152
mdio_attach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
153
{
154
        bus->devs[addr & 0x1f] = phy;
155
}
156

    
157
#ifdef USE_THIS_DEAD_CODE
158
static void 
159
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
160
{
161
        bus->devs[addr & 0x1f] = NULL;        
162
}
163
#endif
164

    
165
static void mdio_read_req(struct qemu_mdio *bus)
166
{
167
        struct qemu_phy *phy;
168

    
169
        phy = bus->devs[bus->addr];
170
        if (phy && phy->read)
171
                bus->data = phy->read(phy, bus->req);
172
        else 
173
                bus->data = 0xffff;
174
}
175

    
176
static void mdio_write_req(struct qemu_mdio *bus)
177
{
178
        struct qemu_phy *phy;
179

    
180
        phy = bus->devs[bus->addr];
181
        if (phy && phy->write)
182
                phy->write(phy, bus->req, bus->data);
183
}
184

    
185
static void mdio_cycle(struct qemu_mdio *bus)
186
{
187
        bus->cnt++;
188

    
189
        D(printf("mdc=%d mdio=%d state=%d cnt=%d drv=%d\n",
190
                bus->mdc, bus->mdio, bus->state, bus->cnt, bus->drive));
191
#if 0
192
        if (bus->mdc)
193
                printf("%d", bus->mdio);
194
#endif
195
        switch (bus->state)
196
        {
197
                case PREAMBLE:
198
                        if (bus->mdc) {
199
                                if (bus->cnt >= (32 * 2) && !bus->mdio) {
200
                                        bus->cnt = 0;
201
                                        bus->state = SOF;
202
                                        bus->data = 0;
203
                                }
204
                        }
205
                        break;
206
                case SOF:
207
                        if (bus->mdc) {
208
                                if (bus->mdio != 1)
209
                                        printf("WARNING: no SOF\n");
210
                                if (bus->cnt == 1*2) {
211
                                        bus->cnt = 0;
212
                                        bus->opc = 0;
213
                                        bus->state = OPC;
214
                                }
215
                        }
216
                        break;
217
                case OPC:
218
                        if (bus->mdc) {
219
                                bus->opc <<= 1;
220
                                bus->opc |= bus->mdio & 1;
221
                                if (bus->cnt == 2*2) {
222
                                        bus->cnt = 0;
223
                                        bus->addr = 0;
224
                                        bus->state = ADDR;
225
                                }
226
                        }
227
                        break;
228
                case ADDR:
229
                        if (bus->mdc) {
230
                                bus->addr <<= 1;
231
                                bus->addr |= bus->mdio & 1;
232

    
233
                                if (bus->cnt == 5*2) {
234
                                        bus->cnt = 0;
235
                                        bus->req = 0;
236
                                        bus->state = REQ;
237
                                }
238
                        }
239
                        break;
240
                case REQ:
241
                        if (bus->mdc) {
242
                                bus->req <<= 1;
243
                                bus->req |= bus->mdio & 1;
244
                                if (bus->cnt == 5*2) {
245
                                        bus->cnt = 0;
246
                                        bus->state = TURNAROUND;
247
                                }
248
                        }
249
                        break;
250
                case TURNAROUND:
251
                        if (bus->mdc && bus->cnt == 2*2) {
252
                                bus->mdio = 0;
253
                                bus->cnt = 0;
254

    
255
                                if (bus->opc == 2) {
256
                                        bus->drive = 1;
257
                                        mdio_read_req(bus);
258
                                        bus->mdio = bus->data & 1;
259
                                }
260
                                bus->state = DATA;
261
                        }
262
                        break;
263
                case DATA:                        
264
                        if (!bus->mdc) {
265
                                if (bus->drive) {
266
                                        bus->mdio = !!(bus->data & (1 << 15));
267
                                        bus->data <<= 1;
268
                                }
269
                        } else {
270
                                if (!bus->drive) {
271
                                        bus->data <<= 1;
272
                                        bus->data |= bus->mdio;
273
                                }
274
                                if (bus->cnt == 16 * 2) {
275
                                        bus->cnt = 0;
276
                                        bus->state = PREAMBLE;
277
                                        if (!bus->drive)
278
                                                mdio_write_req(bus);
279
                                        bus->drive = 0;
280
                                }
281
                        }
282
                        break;
283
                default:
284
                        break;
285
        }
286
}
287

    
288
/* ETRAX-FS Ethernet MAC block starts here.  */
289

    
290
#define RW_MA0_LO          0x00
291
#define RW_MA0_HI          0x04
292
#define RW_MA1_LO          0x08
293
#define RW_MA1_HI          0x0c
294
#define RW_GA_LO          0x10
295
#define RW_GA_HI          0x14
296
#define RW_GEN_CTRL          0x18
297
#define RW_REC_CTRL          0x1c
298
#define RW_TR_CTRL          0x20
299
#define RW_CLR_ERR          0x24
300
#define RW_MGM_CTRL          0x28
301
#define R_STAT                  0x2c
302
#define FS_ETH_MAX_REGS          0x5c
303

    
304
struct fs_eth
305
{
306
        CPUState *env;
307
        qemu_irq *irq;
308
        target_phys_addr_t base;
309
        VLANClientState *vc;
310
        int ethregs;
311

    
312
        /* Two addrs in the filter.  */
313
        uint8_t macaddr[2][6];
314
        uint32_t regs[FS_ETH_MAX_REGS];
315

    
316
        unsigned char rx_fifo[1536];
317
        int rx_fifo_len;
318
        int rx_fifo_pos;
319

    
320
        struct etraxfs_dma_client *dma_out;
321
        struct etraxfs_dma_client *dma_in;
322

    
323
        /* MDIO bus.  */
324
        struct qemu_mdio mdio_bus;
325
        /* PHY.         */
326
        struct qemu_phy phy;
327
};
328

    
329
static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
330
{
331
        struct fs_eth *eth = opaque;
332
        CPUState *env = eth->env;
333
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx
334
                  " pc=%x.\n", addr, env->pc);
335
        return 0;
336
}
337

    
338
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
339
{
340
        struct fs_eth *eth = opaque;
341
        D(CPUState *env = eth->env);
342
        uint32_t r = 0;
343

    
344
        /* Make addr relative to this instances base.  */
345
        addr -= eth->base;
346
        switch (addr) {
347
                case R_STAT:
348
                        /* Attach an MDIO/PHY abstraction.  */
349
                        r = eth->mdio_bus.mdio & 1;
350
                        break;
351
        default:
352
                r = eth->regs[addr];
353
                D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
354
                break;
355
        }
356
        return r;
357
}
358

    
359
static void
360
eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
361
{
362
        struct fs_eth *eth = opaque;
363
        CPUState *env = eth->env;
364
        cpu_abort(env, "Unsupported short access. reg=" TARGET_FMT_plx
365
                  " pc=%x.\n", addr, env->pc);
366
}
367

    
368
static void eth_update_ma(struct fs_eth *eth, int ma)
369
{
370
        int reg;
371
        int i = 0;
372

    
373
        ma &= 1;
374

    
375
        reg = RW_MA0_LO;
376
        if (ma)
377
                reg = RW_MA1_LO;
378

    
379
        eth->macaddr[ma][i++] = eth->regs[reg];
380
        eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
381
        eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
382
        eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
383
        eth->macaddr[ma][i++] = eth->regs[reg + 4];
384
        eth->macaddr[ma][i++] = eth->regs[reg + 4] >> 8;
385

    
386
        D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
387
                 eth->macaddr[ma][0], eth->macaddr[ma][1],
388
                 eth->macaddr[ma][2], eth->macaddr[ma][3],
389
                 eth->macaddr[ma][4], eth->macaddr[ma][5]));
390
}
391

    
392
static void
393
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
394
{
395
        struct fs_eth *eth = opaque;
396

    
397
        /* Make addr relative to this instances base.  */
398
        addr -= eth->base;
399
        switch (addr)
400
        {
401
                case RW_MA0_LO:
402
                        eth->regs[addr] = value;
403
                        eth_update_ma(eth, 0);
404
                        break;
405
                case RW_MA0_HI:
406
                        eth->regs[addr] = value;
407
                        eth_update_ma(eth, 0);
408
                        break;
409
                case RW_MA1_LO:
410
                        eth->regs[addr] = value;
411
                        eth_update_ma(eth, 1);
412
                        break;
413
                case RW_MA1_HI:
414
                        eth->regs[addr] = value;
415
                        eth_update_ma(eth, 1);
416
                        break;
417

    
418
                case RW_MGM_CTRL:
419
                        /* Attach an MDIO/PHY abstraction.  */
420
                        if (value & 2)
421
                                eth->mdio_bus.mdio = value & 1;
422
                        if (eth->mdio_bus.mdc != (value & 4))
423
                                mdio_cycle(&eth->mdio_bus);
424
                        eth->mdio_bus.mdc = !!(value & 4);
425
                        break;
426

    
427
                default:
428
                        eth->regs[addr] = value;
429
                        D(printf ("%s %x %x\n",
430
                                  __func__, addr, value));
431
                        break;
432
        }
433
}
434

    
435
/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
436
   filter dropping group addresses we have not joined.        The filter has 64
437
   bits (m). The has function is a simple nible xor of the group addr.        */
438
static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
439
{
440
        unsigned int hsh;
441
        int m_individual = eth->regs[RW_REC_CTRL] & 4;
442
        int match;
443

    
444
        /* First bit on the wire of a MAC address signals multicast or
445
           physical address.  */
446
        if (!m_individual && !sa[0] & 1)
447
                return 0;
448

    
449
        /* Calculate the hash index for the GA registers. */
450
        hsh = 0;
451
        hsh ^= (*sa) & 0x3f;
452
        hsh ^= ((*sa) >> 6) & 0x03;
453
        ++sa;
454
        hsh ^= ((*sa) << 2) & 0x03c;
455
        hsh ^= ((*sa) >> 4) & 0xf;
456
        ++sa;
457
        hsh ^= ((*sa) << 4) & 0x30;
458
        hsh ^= ((*sa) >> 2) & 0x3f;
459
        ++sa;
460
        hsh ^= (*sa) & 0x3f;
461
        hsh ^= ((*sa) >> 6) & 0x03;
462
        ++sa;
463
        hsh ^= ((*sa) << 2) & 0x03c;
464
        hsh ^= ((*sa) >> 4) & 0xf;
465
        ++sa;
466
        hsh ^= ((*sa) << 4) & 0x30;
467
        hsh ^= ((*sa) >> 2) & 0x3f;
468

    
469
        hsh &= 63;
470
        if (hsh > 31)
471
                match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
472
        else
473
                match = eth->regs[RW_GA_LO] & (1 << hsh);
474
        D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
475
                 eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
476
        return match;
477
}
478

    
479
static int eth_can_receive(void *opaque)
480
{
481
        struct fs_eth *eth = opaque;
482
        int r;
483

    
484
        r = eth->rx_fifo_len == 0;
485
        if (!r) {
486
                /* TODO: signal fifo overrun.  */
487
                printf("PACKET LOSS!\n");
488
        }
489
        return r;
490
}
491

    
492
static void eth_receive(void *opaque, const uint8_t *buf, int size)
493
{
494
        unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
495
        struct fs_eth *eth = opaque;
496
        int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
497
        int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
498
        int r_bcast = eth->regs[RW_REC_CTRL] & 8;
499

    
500
        if (size < 12)
501
                return;
502

    
503
        D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
504
                 buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
505
                 use_ma0, use_ma1, r_bcast));
506
               
507
        /* Does the frame get through the address filters?  */
508
        if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
509
            && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
510
            && (!r_bcast || memcmp(buf, sa_bcast, 6))
511
            && !eth_match_groupaddr(eth, buf))
512
                return;
513

    
514
        if (size > sizeof(eth->rx_fifo)) {
515
                /* TODO: signal error.        */
516
        } else if (eth->rx_fifo_len) {
517
                /* FIFO overrun.  */
518
        } else {
519
                memcpy(eth->rx_fifo, buf, size);
520
                /* +4, HW passes the CRC to sw.         */
521
                eth->rx_fifo_len = size + 4;
522
                eth->rx_fifo_pos = 0;
523
        }
524
}
525

    
526
static void eth_rx_pull(void *opaque)
527
{
528
        struct fs_eth *eth = opaque;
529
        int len;
530
        if (eth->rx_fifo_len) {                
531
                D(printf("%s %d\n", __func__, eth->rx_fifo_len));
532
#if 0
533
                {
534
                        int i;
535
                        for (i = 0; i < 32; i++)
536
                                printf("%2.2x", eth->rx_fifo[i]);
537
                        printf("\n");
538
                }
539
#endif
540
                len = etraxfs_dmac_input(eth->dma_in,
541
                                         eth->rx_fifo + eth->rx_fifo_pos, 
542
                                         eth->rx_fifo_len, 1);
543
                eth->rx_fifo_len -= len;
544
                eth->rx_fifo_pos += len;
545
        }
546
}
547

    
548
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
549
{
550
        struct fs_eth *eth = opaque;
551

    
552
        D(printf("%s buf=%p len=%d\n", __func__, buf, len));
553
        qemu_send_packet(eth->vc, buf, len);
554
        return len;
555
}
556

    
557
static CPUReadMemoryFunc *eth_read[] = {
558
        &eth_rinvalid,
559
        &eth_rinvalid,
560
        &eth_readl,
561
};
562

    
563
static CPUWriteMemoryFunc *eth_write[] = {
564
        &eth_winvalid,
565
        &eth_winvalid,
566
        &eth_writel,
567
};
568

    
569
void *etraxfs_eth_init(NICInfo *nd, CPUState *env, 
570
                       qemu_irq *irq, target_phys_addr_t base)
571
{
572
        struct etraxfs_dma_client *dma = NULL;        
573
        struct fs_eth *eth = NULL;
574

    
575
        dma = qemu_mallocz(sizeof *dma * 2);
576
        if (!dma)
577
                return NULL;
578

    
579
        eth = qemu_mallocz(sizeof *eth);
580
        if (!eth)
581
                goto err;
582

    
583
        dma[0].client.push = eth_tx_push;
584
        dma[0].client.opaque = eth;
585
        dma[1].client.opaque = eth;
586
        dma[1].client.pull = eth_rx_pull;
587

    
588
        eth->env = env;
589
        eth->base = base;
590
        eth->irq = irq;
591
        eth->dma_out = dma;
592
        eth->dma_in = dma + 1;
593

    
594
        /* Connect the phy.  */
595
        tdk_init(&eth->phy);
596
        mdio_attach(&eth->mdio_bus, &eth->phy, 0x1);
597

    
598
        eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
599
        cpu_register_physical_memory (base, 0x5c, eth->ethregs);
600

    
601
        eth->vc = qemu_new_vlan_client(nd->vlan, 
602
                                       eth_receive, eth_can_receive, eth);
603

    
604
        return dma;
605
  err:
606
        qemu_free(eth);
607
        qemu_free(dma);
608
        return NULL;
609
}