Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ d2bd525f

History | View | Annotate | Download (62.8 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 *
24
 * TODO:
25
 *  o Downstream port handoff
26
 */
27

    
28
#include "hw.h"
29
#include "qemu-timer.h"
30
#include "usb.h"
31
#include "pci.h"
32
#include "monitor.h"
33
#include "trace.h"
34

    
35
#define EHCI_DEBUG   0
36

    
37
#if EHCI_DEBUG
38
#define DPRINTF printf
39
#else
40
#define DPRINTF(...)
41
#endif
42

    
43
/* internal processing - reset HC to try and recover */
44
#define USB_RET_PROCERR   (-99)
45

    
46
#define MMIO_SIZE        0x1000
47

    
48
/* Capability Registers Base Address - section 2.2 */
49
#define CAPREGBASE       0x0000
50
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
51
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
52
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
53
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
54
#define EECP             HCCPARAMS + 1
55
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
56
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
57

    
58
#define OPREGBASE        0x0020        // Operational Registers Base Address
59

    
60
#define USBCMD           OPREGBASE + 0x0000
61
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
62
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
63
#define USBCMD_FLS       (3 << 2)      // Frame List Size
64
#define USBCMD_FLS_SH    2             // Frame List Size Shift
65
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
66
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
67
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
68
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
69
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
70
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
71
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
72
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
73

    
74
#define USBSTS           OPREGBASE + 0x0004
75
#define USBSTS_RO_MASK   0x0000003f
76
#define USBSTS_INT       (1 << 0)      // USB Interrupt
77
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
78
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
79
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
80
#define USBSTS_HSE       (1 << 4)      // Host System Error
81
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
82
#define USBSTS_HALT      (1 << 12)     // HC Halted
83
#define USBSTS_REC       (1 << 13)     // Reclamation
84
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
85
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
86

    
87
/*
88
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
89
 *  so no need to redefine here.
90
 */
91
#define USBINTR              OPREGBASE + 0x0008
92
#define USBINTR_MASK         0x0000003f
93

    
94
#define FRINDEX              OPREGBASE + 0x000c
95
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
96
#define PERIODICLISTBASE     OPREGBASE + 0x0014
97
#define ASYNCLISTADDR        OPREGBASE + 0x0018
98
#define ASYNCLISTADDR_MASK   0xffffffe0
99

    
100
#define CONFIGFLAG           OPREGBASE + 0x0040
101

    
102
#define PORTSC               (OPREGBASE + 0x0044)
103
#define PORTSC_BEGIN         PORTSC
104
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
105
/*
106
 * Bits that are reserverd or are read-only are masked out of values
107
 * written to us by software
108
 */
109
#define PORTSC_RO_MASK       0x007021c5
110
#define PORTSC_RWC_MASK      0x0000002a
111
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
112
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
113
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
114
#define PORTSC_PTC           (15 << 16)   // Port Test Control
115
#define PORTSC_PTC_SH        16           // Port Test Control shift
116
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
117
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
118
#define PORTSC_POWNER        (1 << 13)    // Port Owner
119
#define PORTSC_PPOWER        (1 << 12)    // Port Power
120
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
121
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
122
#define PORTSC_PRESET        (1 << 8)     // Port Reset
123
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
124
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
125
#define PORTSC_OCC           (1 << 5)     // Over Current Change
126
#define PORTSC_OCA           (1 << 4)     // Over Current Active
127
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
128
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
129
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
130
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
131

    
132
#define FRAME_TIMER_FREQ 1000
133
#define FRAME_TIMER_USEC (1000000 / FRAME_TIMER_FREQ)
134

    
135
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
136
#define NB_PORTS         4        // Number of downstream ports
137
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
138
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
139
#define MAX_QH           100      // Max allowable queue heads in a chain
140

    
141
/*  Internal periodic / asynchronous schedule state machine states
142
 */
143
typedef enum {
144
    EST_INACTIVE = 1000,
145
    EST_ACTIVE,
146
    EST_EXECUTING,
147
    EST_SLEEPING,
148
    /*  The following states are internal to the state machine function
149
    */
150
    EST_WAITLISTHEAD,
151
    EST_FETCHENTRY,
152
    EST_FETCHQH,
153
    EST_FETCHITD,
154
    EST_ADVANCEQUEUE,
155
    EST_FETCHQTD,
156
    EST_EXECUTE,
157
    EST_WRITEBACK,
158
    EST_HORIZONTALQH
159
} EHCI_STATES;
160

    
161
/* macros for accessing fields within next link pointer entry */
162
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
163
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
164
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
165

    
166
/* link pointer types */
167
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
168
#define NLPTR_TYPE_QH            1     // queue head
169
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
170
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
171

    
172

    
173
/*  EHCI spec version 1.0 Section 3.3
174
 */
175
typedef struct EHCIitd {
176
    uint32_t next;
177

    
178
    uint32_t transact[8];
179
#define ITD_XACT_ACTIVE          (1 << 31)
180
#define ITD_XACT_DBERROR         (1 << 30)
181
#define ITD_XACT_BABBLE          (1 << 29)
182
#define ITD_XACT_XACTERR         (1 << 28)
183
#define ITD_XACT_LENGTH_MASK     0x0fff0000
184
#define ITD_XACT_LENGTH_SH       16
185
#define ITD_XACT_IOC             (1 << 15)
186
#define ITD_XACT_PGSEL_MASK      0x00007000
187
#define ITD_XACT_PGSEL_SH        12
188
#define ITD_XACT_OFFSET_MASK     0x00000fff
189

    
190
    uint32_t bufptr[7];
191
#define ITD_BUFPTR_MASK          0xfffff000
192
#define ITD_BUFPTR_SH            12
193
#define ITD_BUFPTR_EP_MASK       0x00000f00
194
#define ITD_BUFPTR_EP_SH         8
195
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
196
#define ITD_BUFPTR_DEVADDR_SH    0
197
#define ITD_BUFPTR_DIRECTION     (1 << 11)
198
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
199
#define ITD_BUFPTR_MAXPKT_SH     0
200
#define ITD_BUFPTR_MULT_MASK     0x00000003
201
} EHCIitd;
202

    
203
/*  EHCI spec version 1.0 Section 3.4
204
 */
205
typedef struct EHCIsitd {
206
    uint32_t next;                  // Standard next link pointer
207
    uint32_t epchar;
208
#define SITD_EPCHAR_IO              (1 << 31)
209
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
210
#define SITD_EPCHAR_PORTNUM_SH      24
211
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
212
#define SITD_EPCHAR_HUBADDR_SH      16
213
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
214
#define SITD_EPCHAR_EPNUM_SH        8
215
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
216

    
217
    uint32_t uframe;
218
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
219
#define SITD_UFRAME_CMASK_SH        8
220
#define SITD_UFRAME_SMASK_MASK      0x000000ff
221

    
222
    uint32_t results;
223
#define SITD_RESULTS_IOC              (1 << 31)
224
#define SITD_RESULTS_PGSEL            (1 << 30)
225
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
226
#define SITD_RESULTS_TYBYTES_SH       16
227
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
228
#define SITD_RESULTS_CPROGMASK_SH     8
229
#define SITD_RESULTS_ACTIVE           (1 << 7)
230
#define SITD_RESULTS_ERR              (1 << 6)
231
#define SITD_RESULTS_DBERR            (1 << 5)
232
#define SITD_RESULTS_BABBLE           (1 << 4)
233
#define SITD_RESULTS_XACTERR          (1 << 3)
234
#define SITD_RESULTS_MISSEDUF         (1 << 2)
235
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
236

    
237
    uint32_t bufptr[2];
238
#define SITD_BUFPTR_MASK              0xfffff000
239
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
240
#define SITD_BUFPTR_TPOS_MASK         0x00000018
241
#define SITD_BUFPTR_TPOS_SH           3
242
#define SITD_BUFPTR_TCNT_MASK         0x00000007
243

    
244
    uint32_t backptr;                 // Standard next link pointer
245
} EHCIsitd;
246

    
247
/*  EHCI spec version 1.0 Section 3.5
248
 */
249
typedef struct EHCIqtd {
250
    uint32_t next;                    // Standard next link pointer
251
    uint32_t altnext;                 // Standard next link pointer
252
    uint32_t token;
253
#define QTD_TOKEN_DTOGGLE             (1 << 31)
254
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
255
#define QTD_TOKEN_TBYTES_SH           16
256
#define QTD_TOKEN_IOC                 (1 << 15)
257
#define QTD_TOKEN_CPAGE_MASK          0x00007000
258
#define QTD_TOKEN_CPAGE_SH            12
259
#define QTD_TOKEN_CERR_MASK           0x00000c00
260
#define QTD_TOKEN_CERR_SH             10
261
#define QTD_TOKEN_PID_MASK            0x00000300
262
#define QTD_TOKEN_PID_SH              8
263
#define QTD_TOKEN_ACTIVE              (1 << 7)
264
#define QTD_TOKEN_HALT                (1 << 6)
265
#define QTD_TOKEN_DBERR               (1 << 5)
266
#define QTD_TOKEN_BABBLE              (1 << 4)
267
#define QTD_TOKEN_XACTERR             (1 << 3)
268
#define QTD_TOKEN_MISSEDUF            (1 << 2)
269
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
270
#define QTD_TOKEN_PING                (1 << 0)
271

    
272
    uint32_t bufptr[5];               // Standard buffer pointer
273
#define QTD_BUFPTR_MASK               0xfffff000
274
} EHCIqtd;
275

    
276
/*  EHCI spec version 1.0 Section 3.6
277
 */
278
typedef struct EHCIqh {
279
    uint32_t next;                    // Standard next link pointer
280

    
281
    /* endpoint characteristics */
282
    uint32_t epchar;
283
#define QH_EPCHAR_RL_MASK             0xf0000000
284
#define QH_EPCHAR_RL_SH               28
285
#define QH_EPCHAR_C                   (1 << 27)
286
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
287
#define QH_EPCHAR_MPLEN_SH            16
288
#define QH_EPCHAR_H                   (1 << 15)
289
#define QH_EPCHAR_DTC                 (1 << 14)
290
#define QH_EPCHAR_EPS_MASK            0x00003000
291
#define QH_EPCHAR_EPS_SH              12
292
#define EHCI_QH_EPS_FULL              0
293
#define EHCI_QH_EPS_LOW               1
294
#define EHCI_QH_EPS_HIGH              2
295
#define EHCI_QH_EPS_RESERVED          3
296

    
297
#define QH_EPCHAR_EP_MASK             0x00000f00
298
#define QH_EPCHAR_EP_SH               8
299
#define QH_EPCHAR_I                   (1 << 7)
300
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
301
#define QH_EPCHAR_DEVADDR_SH          0
302

    
303
    /* endpoint capabilities */
304
    uint32_t epcap;
305
#define QH_EPCAP_MULT_MASK            0xc0000000
306
#define QH_EPCAP_MULT_SH              30
307
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
308
#define QH_EPCAP_PORTNUM_SH           23
309
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
310
#define QH_EPCAP_HUBADDR_SH           16
311
#define QH_EPCAP_CMASK_MASK           0x0000ff00
312
#define QH_EPCAP_CMASK_SH             8
313
#define QH_EPCAP_SMASK_MASK           0x000000ff
314
#define QH_EPCAP_SMASK_SH             0
315

    
316
    uint32_t current_qtd;             // Standard next link pointer
317
    uint32_t next_qtd;                // Standard next link pointer
318
    uint32_t altnext_qtd;
319
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
320
#define QH_ALTNEXT_NAKCNT_SH          1
321

    
322
    uint32_t token;                   // Same as QTD token
323
    uint32_t bufptr[5];               // Standard buffer pointer
324
#define BUFPTR_CPROGMASK_MASK         0x000000ff
325
#define BUFPTR_FRAMETAG_MASK          0x0000001f
326
#define BUFPTR_SBYTES_MASK            0x00000fe0
327
#define BUFPTR_SBYTES_SH              5
328
} EHCIqh;
329

    
330
/*  EHCI spec version 1.0 Section 3.7
331
 */
332
typedef struct EHCIfstn {
333
    uint32_t next;                    // Standard next link pointer
334
    uint32_t backptr;                 // Standard next link pointer
335
} EHCIfstn;
336

    
337
typedef struct EHCIQueue EHCIQueue;
338
typedef struct EHCIState EHCIState;
339

    
340
enum async_state {
341
    EHCI_ASYNC_NONE = 0,
342
    EHCI_ASYNC_INFLIGHT,
343
    EHCI_ASYNC_FINISHED,
344
};
345

    
346
struct EHCIQueue {
347
    EHCIState *ehci;
348
    QTAILQ_ENTRY(EHCIQueue) next;
349
    bool async_schedule;
350
    uint32_t seen, ts;
351

    
352
    /* cached data from guest - needs to be flushed
353
     * when guest removes an entry (doorbell, handshake sequence)
354
     */
355
    EHCIqh qh;             // copy of current QH (being worked on)
356
    uint32_t qhaddr;       // address QH read from
357
    EHCIqtd qtd;           // copy of current QTD (being worked on)
358
    uint32_t qtdaddr;      // address QTD read from
359

    
360
    USBPacket packet;
361
    uint8_t buffer[BUFF_SIZE];
362
    int pid;
363
    uint32_t tbytes;
364
    enum async_state async;
365
    int usb_status;
366
};
367

    
368
struct EHCIState {
369
    PCIDevice dev;
370
    USBBus bus;
371
    qemu_irq irq;
372
    target_phys_addr_t mem_base;
373
    int mem;
374
    int num_ports;
375
    /*
376
     *  EHCI spec version 1.0 Section 2.3
377
     *  Host Controller Operational Registers
378
     */
379
    union {
380
        uint8_t mmio[MMIO_SIZE];
381
        struct {
382
            uint8_t cap[OPREGBASE];
383
            uint32_t usbcmd;
384
            uint32_t usbsts;
385
            uint32_t usbintr;
386
            uint32_t frindex;
387
            uint32_t ctrldssegment;
388
            uint32_t periodiclistbase;
389
            uint32_t asynclistaddr;
390
            uint32_t notused[9];
391
            uint32_t configflag;
392
            uint32_t portsc[NB_PORTS];
393
        };
394
    };
395

    
396
    /*
397
     *  Internal states, shadow registers, etc
398
     */
399
    uint32_t sofv;
400
    QEMUTimer *frame_timer;
401
    int attach_poll_counter;
402
    int astate;                        // Current state in asynchronous schedule
403
    int pstate;                        // Current state in periodic schedule
404
    USBPort ports[NB_PORTS];
405
    uint32_t usbsts_pending;
406
    QTAILQ_HEAD(, EHCIQueue) queues;
407

    
408
    uint32_t a_fetch_addr;   // which address to look at next
409
    uint32_t p_fetch_addr;   // which address to look at next
410

    
411
    USBPacket ipacket;
412
    uint8_t ibuffer[BUFF_SIZE];
413
    int isoch_pause;
414

    
415
    uint32_t last_run_usec;
416
    uint32_t frame_end_usec;
417
};
418

    
419
#define SET_LAST_RUN_CLOCK(s) \
420
    (s)->last_run_usec = qemu_get_clock_ns(vm_clock) / 1000;
421

    
422
/* nifty macros from Arnon's EHCI version  */
423
#define get_field(data, field) \
424
    (((data) & field##_MASK) >> field##_SH)
425

    
426
#define set_field(data, newval, field) do { \
427
    uint32_t val = *data; \
428
    val &= ~ field##_MASK; \
429
    val |= ((newval) << field##_SH) & field##_MASK; \
430
    *data = val; \
431
    } while(0)
432

    
433
static const char *ehci_state_names[] = {
434
    [ EST_INACTIVE ]     = "INACTIVE",
435
    [ EST_ACTIVE ]       = "ACTIVE",
436
    [ EST_EXECUTING ]    = "EXECUTING",
437
    [ EST_SLEEPING ]     = "SLEEPING",
438
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
439
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
440
    [ EST_FETCHQH ]      = "FETCH QH",
441
    [ EST_FETCHITD ]     = "FETCH ITD",
442
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
443
    [ EST_FETCHQTD ]     = "FETCH QTD",
444
    [ EST_EXECUTE ]      = "EXECUTE",
445
    [ EST_WRITEBACK ]    = "WRITEBACK",
446
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
447
};
448

    
449
static const char *ehci_mmio_names[] = {
450
    [ CAPLENGTH ]        = "CAPLENGTH",
451
    [ HCIVERSION ]       = "HCIVERSION",
452
    [ HCSPARAMS ]        = "HCSPARAMS",
453
    [ HCCPARAMS ]        = "HCCPARAMS",
454
    [ USBCMD ]           = "USBCMD",
455
    [ USBSTS ]           = "USBSTS",
456
    [ USBINTR ]          = "USBINTR",
457
    [ FRINDEX ]          = "FRINDEX",
458
    [ PERIODICLISTBASE ] = "P-LIST BASE",
459
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
460
    [ PORTSC_BEGIN ]     = "PORTSC #0",
461
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
462
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
463
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
464
    [ CONFIGFLAG ]       = "CONFIGFLAG",
465
};
466

    
467
static const char *nr2str(const char **n, size_t len, uint32_t nr)
468
{
469
    if (nr < len && n[nr] != NULL) {
470
        return n[nr];
471
    } else {
472
        return "unknown";
473
    }
474
}
475

    
476
static const char *state2str(uint32_t state)
477
{
478
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
479
}
480

    
481
static const char *addr2str(target_phys_addr_t addr)
482
{
483
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
484
}
485

    
486
static void ehci_trace_usbsts(uint32_t mask, int state)
487
{
488
    /* interrupts */
489
    if (mask & USBSTS_INT) {
490
        trace_usb_ehci_usbsts("INT", state);
491
    }
492
    if (mask & USBSTS_ERRINT) {
493
        trace_usb_ehci_usbsts("ERRINT", state);
494
    }
495
    if (mask & USBSTS_PCD) {
496
        trace_usb_ehci_usbsts("PCD", state);
497
    }
498
    if (mask & USBSTS_FLR) {
499
        trace_usb_ehci_usbsts("FLR", state);
500
    }
501
    if (mask & USBSTS_HSE) {
502
        trace_usb_ehci_usbsts("HSE", state);
503
    }
504
    if (mask & USBSTS_IAA) {
505
        trace_usb_ehci_usbsts("IAA", state);
506
    }
507

    
508
    /* status */
509
    if (mask & USBSTS_HALT) {
510
        trace_usb_ehci_usbsts("HALT", state);
511
    }
512
    if (mask & USBSTS_REC) {
513
        trace_usb_ehci_usbsts("REC", state);
514
    }
515
    if (mask & USBSTS_PSS) {
516
        trace_usb_ehci_usbsts("PSS", state);
517
    }
518
    if (mask & USBSTS_ASS) {
519
        trace_usb_ehci_usbsts("ASS", state);
520
    }
521
}
522

    
523
static inline void ehci_set_usbsts(EHCIState *s, int mask)
524
{
525
    if ((s->usbsts & mask) == mask) {
526
        return;
527
    }
528
    ehci_trace_usbsts(mask, 1);
529
    s->usbsts |= mask;
530
}
531

    
532
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
533
{
534
    if ((s->usbsts & mask) == 0) {
535
        return;
536
    }
537
    ehci_trace_usbsts(mask, 0);
538
    s->usbsts &= ~mask;
539
}
540

    
541
static inline void ehci_set_interrupt(EHCIState *s, int intr)
542
{
543
    int level = 0;
544

    
545
    // TODO honour interrupt threshold requests
546

    
547
    ehci_set_usbsts(s, intr);
548

    
549
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
550
        level = 1;
551
    }
552

    
553
    qemu_set_irq(s->irq, level);
554
}
555

    
556
static inline void ehci_record_interrupt(EHCIState *s, int intr)
557
{
558
    s->usbsts_pending |= intr;
559
}
560

    
561
static inline void ehci_commit_interrupt(EHCIState *s)
562
{
563
    if (!s->usbsts_pending) {
564
        return;
565
    }
566
    ehci_set_interrupt(s, s->usbsts_pending);
567
    s->usbsts_pending = 0;
568
}
569

    
570
static void ehci_set_state(EHCIState *s, int async, int state)
571
{
572
    if (async) {
573
        trace_usb_ehci_state("async", state2str(state));
574
        s->astate = state;
575
    } else {
576
        trace_usb_ehci_state("periodic", state2str(state));
577
        s->pstate = state;
578
    }
579
}
580

    
581
static int ehci_get_state(EHCIState *s, int async)
582
{
583
    return async ? s->astate : s->pstate;
584
}
585

    
586
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
587
{
588
    if (async) {
589
        s->a_fetch_addr = addr;
590
    } else {
591
        s->p_fetch_addr = addr;
592
    }
593
}
594

    
595
static int ehci_get_fetch_addr(EHCIState *s, int async)
596
{
597
    return async ? s->a_fetch_addr : s->p_fetch_addr;
598
}
599

    
600
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
601
{
602
    trace_usb_ehci_qh(q, addr, qh->next,
603
                      qh->current_qtd, qh->next_qtd, qh->altnext_qtd,
604
                      get_field(qh->epchar, QH_EPCHAR_RL),
605
                      get_field(qh->epchar, QH_EPCHAR_MPLEN),
606
                      get_field(qh->epchar, QH_EPCHAR_EPS),
607
                      get_field(qh->epchar, QH_EPCHAR_EP),
608
                      get_field(qh->epchar, QH_EPCHAR_DEVADDR),
609
                      (bool)(qh->epchar & QH_EPCHAR_C),
610
                      (bool)(qh->epchar & QH_EPCHAR_H),
611
                      (bool)(qh->epchar & QH_EPCHAR_DTC),
612
                      (bool)(qh->epchar & QH_EPCHAR_I));
613
}
614

    
615
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
616
{
617
    trace_usb_ehci_qtd(q, addr, qtd->next, qtd->altnext,
618
                       get_field(qtd->token, QTD_TOKEN_TBYTES),
619
                       get_field(qtd->token, QTD_TOKEN_CPAGE),
620
                       get_field(qtd->token, QTD_TOKEN_CERR),
621
                       get_field(qtd->token, QTD_TOKEN_PID),
622
                       (bool)(qtd->token & QTD_TOKEN_IOC),
623
                       (bool)(qtd->token & QTD_TOKEN_ACTIVE),
624
                       (bool)(qtd->token & QTD_TOKEN_HALT),
625
                       (bool)(qtd->token & QTD_TOKEN_BABBLE),
626
                       (bool)(qtd->token & QTD_TOKEN_XACTERR));
627
}
628

    
629
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
630
{
631
    trace_usb_ehci_itd(addr, itd->next);
632
}
633

    
634
/* queue management */
635

    
636
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
637
{
638
    EHCIQueue *q;
639

    
640
    q = qemu_mallocz(sizeof(*q));
641
    q->ehci = ehci;
642
    q->async_schedule = async;
643
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
644
    trace_usb_ehci_queue_action(q, "alloc");
645
    return q;
646
}
647

    
648
static void ehci_free_queue(EHCIQueue *q)
649
{
650
    trace_usb_ehci_queue_action(q, "free");
651
    if (q->async == EHCI_ASYNC_INFLIGHT) {
652
        usb_cancel_packet(&q->packet);
653
    }
654
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
655
    qemu_free(q);
656
}
657

    
658
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
659
{
660
    EHCIQueue *q;
661

    
662
    QTAILQ_FOREACH(q, &ehci->queues, next) {
663
        if (addr == q->qhaddr) {
664
            return q;
665
        }
666
    }
667
    return NULL;
668
}
669

    
670
static void ehci_queues_rip_unused(EHCIState *ehci)
671
{
672
    EHCIQueue *q, *tmp;
673

    
674
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
675
        if (q->seen) {
676
            q->seen = 0;
677
            q->ts = ehci->last_run_usec;
678
            continue;
679
        }
680
        if (ehci->last_run_usec < q->ts + 250000) {
681
            /* allow 0.25 sec idle */
682
            continue;
683
        }
684
        ehci_free_queue(q);
685
    }
686
}
687

    
688
static void ehci_queues_rip_all(EHCIState *ehci)
689
{
690
    EHCIQueue *q, *tmp;
691

    
692
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
693
        ehci_free_queue(q);
694
    }
695
}
696

    
697
/* Attach or detach a device on root hub */
698

    
699
static void ehci_attach(USBPort *port)
700
{
701
    EHCIState *s = port->opaque;
702
    uint32_t *portsc = &s->portsc[port->index];
703

    
704
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
705

    
706
    *portsc |= PORTSC_CONNECT;
707
    *portsc |= PORTSC_CSC;
708

    
709
    /*
710
     *  If a high speed device is attached then we own this port(indicated
711
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
712
     *  and set an interrupt if enabled.
713
     */
714
    if ( !(*portsc & PORTSC_POWNER)) {
715
        ehci_set_interrupt(s, USBSTS_PCD);
716
    }
717
}
718

    
719
static void ehci_detach(USBPort *port)
720
{
721
    EHCIState *s = port->opaque;
722
    uint32_t *portsc = &s->portsc[port->index];
723

    
724
    trace_usb_ehci_port_detach(port->index);
725

    
726
    *portsc &= ~PORTSC_CONNECT;
727
    *portsc |= PORTSC_CSC;
728

    
729
    /*
730
     *  If a high speed device is attached then we own this port(indicated
731
     *  by zero in the PORTSC_POWNER bit field) so set the status bit
732
     *  and set an interrupt if enabled.
733
     */
734
    if ( !(*portsc & PORTSC_POWNER)) {
735
        ehci_set_interrupt(s, USBSTS_PCD);
736
    }
737
}
738

    
739
/* 4.1 host controller initialization */
740
static void ehci_reset(void *opaque)
741
{
742
    EHCIState *s = opaque;
743
    uint8_t *pci_conf;
744
    int i;
745

    
746
    trace_usb_ehci_reset();
747
    pci_conf = s->dev.config;
748

    
749
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
750

    
751
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
752
    s->usbsts = USBSTS_HALT;
753

    
754
    s->astate = EST_INACTIVE;
755
    s->pstate = EST_INACTIVE;
756
    s->isoch_pause = -1;
757
    s->attach_poll_counter = 0;
758

    
759
    for(i = 0; i < NB_PORTS; i++) {
760
        s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
761

    
762
        if (s->ports[i].dev) {
763
            usb_attach(&s->ports[i], s->ports[i].dev);
764
        }
765
    }
766
    ehci_queues_rip_all(s);
767
}
768

    
769
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
770
{
771
    EHCIState *s = ptr;
772
    uint32_t val;
773

    
774
    val = s->mmio[addr];
775

    
776
    return val;
777
}
778

    
779
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
780
{
781
    EHCIState *s = ptr;
782
    uint32_t val;
783

    
784
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
785

    
786
    return val;
787
}
788

    
789
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
790
{
791
    EHCIState *s = ptr;
792
    uint32_t val;
793

    
794
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
795
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
796

    
797
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
798
    return val;
799
}
800

    
801
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
802
{
803
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
804
    exit(1);
805
}
806

    
807
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
808
{
809
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
810
    exit(1);
811
}
812

    
813
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
814
{
815
    uint32_t *portsc = &s->portsc[port];
816
    int rwc;
817
    USBDevice *dev = s->ports[port].dev;
818

    
819
    rwc = val & PORTSC_RWC_MASK;
820
    val &= PORTSC_RO_MASK;
821

    
822
    // handle_read_write_clear(&val, portsc, PORTSC_PEDC | PORTSC_CSC);
823

    
824
    *portsc &= ~rwc;
825

    
826
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
827
        trace_usb_ehci_port_reset(port, 1);
828
    }
829

    
830
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
831
        trace_usb_ehci_port_reset(port, 0);
832
        usb_attach(&s->ports[port], dev);
833

    
834
        // TODO how to handle reset of ports with no device
835
        if (dev) {
836
            usb_send_msg(dev, USB_MSG_RESET);
837
        }
838

    
839
        if (s->ports[port].dev) {
840
            *portsc &= ~PORTSC_CSC;
841
        }
842

    
843
        /*  Table 2.16 Set the enable bit(and enable bit change) to indicate
844
         *  to SW that this port has a high speed device attached
845
         *
846
         *  TODO - when to disable?
847
         */
848
        val |= PORTSC_PED;
849
        val |= PORTSC_PEDC;
850
    }
851

    
852
    *portsc &= ~PORTSC_RO_MASK;
853
    *portsc |= val;
854
}
855

    
856
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
857
{
858
    EHCIState *s = ptr;
859
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
860
    uint32_t old = *mmio;
861
    int i;
862

    
863
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
864

    
865
    /* Only aligned reads are allowed on OHCI */
866
    if (addr & 3) {
867
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
868
                TARGET_FMT_plx "\n", addr);
869
        return;
870
    }
871

    
872
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
873
        handle_port_status_write(s, (addr-PORTSC)/4, val);
874
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
875
        return;
876
    }
877

    
878
    if (addr < OPREGBASE) {
879
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
880
                TARGET_FMT_plx "\n", addr);
881
        return;
882
    }
883

    
884

    
885
    /* Do any register specific pre-write processing here.  */
886
    switch(addr) {
887
    case USBCMD:
888
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
889
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
890
            SET_LAST_RUN_CLOCK(s);
891
            ehci_clear_usbsts(s, USBSTS_HALT);
892
        }
893

    
894
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
895
            qemu_del_timer(s->frame_timer);
896
            // TODO - should finish out some stuff before setting halt
897
            ehci_set_usbsts(s, USBSTS_HALT);
898
        }
899

    
900
        if (val & USBCMD_HCRESET) {
901
            ehci_reset(s);
902
            val &= ~USBCMD_HCRESET;
903
        }
904

    
905
        /* not supporting dynamic frame list size at the moment */
906
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
907
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
908
                    val & USBCMD_FLS);
909
            val &= ~USBCMD_FLS;
910
        }
911
        break;
912

    
913
    case USBSTS:
914
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
915
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
916
        val = s->usbsts;
917
        ehci_set_interrupt(s, 0);
918
        break;
919

    
920
    case USBINTR:
921
        val &= USBINTR_MASK;
922
        break;
923

    
924
    case FRINDEX:
925
        s->sofv = val >> 3;
926
        break;
927

    
928
    case CONFIGFLAG:
929
        val &= 0x1;
930
        if (val) {
931
            for(i = 0; i < NB_PORTS; i++)
932
                s->portsc[i] &= ~PORTSC_POWNER;
933
        }
934
        break;
935

    
936
    case PERIODICLISTBASE:
937
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
938
            fprintf(stderr,
939
              "ehci: PERIODIC list base register set while periodic schedule\n"
940
              "      is enabled and HC is enabled\n");
941
        }
942
        break;
943

    
944
    case ASYNCLISTADDR:
945
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
946
            fprintf(stderr,
947
              "ehci: ASYNC list address register set while async schedule\n"
948
              "      is enabled and HC is enabled\n");
949
        }
950
        break;
951
    }
952

    
953
    *mmio = val;
954
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
955
}
956

    
957

    
958
// TODO : Put in common header file, duplication from usb-ohci.c
959

    
960
/* Get an array of dwords from main memory */
961
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
962
{
963
    int i;
964

    
965
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
966
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
967
        *buf = le32_to_cpu(*buf);
968
    }
969

    
970
    return 1;
971
}
972

    
973
/* Put an array of dwords in to main memory */
974
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
975
{
976
    int i;
977

    
978
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
979
        uint32_t tmp = cpu_to_le32(*buf);
980
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
981
    }
982

    
983
    return 1;
984
}
985

    
986
// 4.10.2
987

    
988
static int ehci_qh_do_overlay(EHCIQueue *q)
989
{
990
    int i;
991
    int dtoggle;
992
    int ping;
993
    int eps;
994
    int reload;
995

    
996
    // remember values in fields to preserve in qh after overlay
997

    
998
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
999
    ping    = q->qh.token & QTD_TOKEN_PING;
1000

    
1001
    q->qh.current_qtd = q->qtdaddr;
1002
    q->qh.next_qtd    = q->qtd.next;
1003
    q->qh.altnext_qtd = q->qtd.altnext;
1004
    q->qh.token       = q->qtd.token;
1005

    
1006

    
1007
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1008
    if (eps == EHCI_QH_EPS_HIGH) {
1009
        q->qh.token &= ~QTD_TOKEN_PING;
1010
        q->qh.token |= ping;
1011
    }
1012

    
1013
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1014
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1015

    
1016
    for (i = 0; i < 5; i++) {
1017
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1018
    }
1019

    
1020
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1021
        // preserve QH DT bit
1022
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1023
        q->qh.token |= dtoggle;
1024
    }
1025

    
1026
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1027
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1028

    
1029
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1030

    
1031
    return 0;
1032
}
1033

    
1034
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1035
{
1036
    int bufpos = 0;
1037
    int cpage, offset;
1038
    uint32_t head;
1039
    uint32_t tail;
1040

    
1041

    
1042
    if (!bytes) {
1043
        return 0;
1044
    }
1045

    
1046
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1047
    if (cpage > 4) {
1048
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1049
        return USB_RET_PROCERR;
1050
    }
1051

    
1052
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1053

    
1054
    do {
1055
        /* start and end of this page */
1056
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1057
        tail = head + ~QTD_BUFPTR_MASK + 1;
1058
        /* add offset into page */
1059
        head |= offset;
1060

    
1061
        if (bytes <= (tail - head)) {
1062
            tail = head + bytes;
1063
        }
1064

    
1065
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1066
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1067

    
1068
        bufpos += (tail - head);
1069
        offset += (tail - head);
1070
        bytes -= (tail - head);
1071

    
1072
        if (bytes > 0) {
1073
            cpage++;
1074
            offset = 0;
1075
        }
1076
    } while (bytes > 0);
1077

    
1078
    /* save cpage */
1079
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1080

    
1081
    /* save offset into cpage */
1082
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1083
    q->qh.bufptr[0] |= offset;
1084

    
1085
    return 0;
1086
}
1087

    
1088
static void ehci_async_complete_packet(USBDevice *dev, USBPacket *packet)
1089
{
1090
    EHCIQueue *q = container_of(packet, EHCIQueue, packet);
1091

    
1092
    trace_usb_ehci_queue_action(q, "wakeup");
1093
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1094
    q->async = EHCI_ASYNC_FINISHED;
1095
    q->usb_status = packet->len;
1096
}
1097

    
1098
static void ehci_execute_complete(EHCIQueue *q)
1099
{
1100
    int c_err, reload;
1101

    
1102
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1103
    q->async = EHCI_ASYNC_NONE;
1104

    
1105
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1106
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1107

    
1108
    if (q->usb_status < 0) {
1109
err:
1110
        /* TO-DO: put this is in a function that can be invoked below as well */
1111
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1112
        c_err--;
1113
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1114

    
1115
        switch(q->usb_status) {
1116
        case USB_RET_NODEV:
1117
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1118
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1119
            break;
1120
        case USB_RET_STALL:
1121
            q->qh.token |= QTD_TOKEN_HALT;
1122
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1123
            break;
1124
        case USB_RET_NAK:
1125
            /* 4.10.3 */
1126
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1127
            if ((q->pid == USB_TOKEN_IN) && reload) {
1128
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1129
                nakcnt--;
1130
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1131
            } else if (!reload) {
1132
                return;
1133
            }
1134
            break;
1135
        case USB_RET_BABBLE:
1136
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1137
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1138
            break;
1139
        default:
1140
            /* should not be triggerable */
1141
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1142
            assert(0);
1143
            break;
1144
        }
1145
    } else {
1146
        // DPRINTF("Short packet condition\n");
1147
        // TODO check 4.12 for splits
1148

    
1149
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1150
            q->usb_status = USB_RET_BABBLE;
1151
            goto err;
1152
        }
1153

    
1154
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1155
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1156
                q->usb_status = USB_RET_PROCERR;
1157
                return;
1158
            }
1159
            q->tbytes -= q->usb_status;
1160
        } else {
1161
            q->tbytes = 0;
1162
        }
1163

    
1164
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1165
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1166
    }
1167

    
1168
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1169
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1170

    
1171
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1172
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1173
    }
1174
}
1175

    
1176
// 4.10.3
1177

    
1178
static int ehci_execute(EHCIQueue *q)
1179
{
1180
    USBPort *port;
1181
    USBDevice *dev;
1182
    int ret;
1183
    int i;
1184
    int endp;
1185
    int devadr;
1186

    
1187
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1188
        fprintf(stderr, "Attempting to execute inactive QH\n");
1189
        return USB_RET_PROCERR;
1190
    }
1191

    
1192
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1193
    if (q->tbytes > BUFF_SIZE) {
1194
        fprintf(stderr, "Request for more bytes than allowed\n");
1195
        return USB_RET_PROCERR;
1196
    }
1197

    
1198
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1199
    switch(q->pid) {
1200
        case 0: q->pid = USB_TOKEN_OUT; break;
1201
        case 1: q->pid = USB_TOKEN_IN; break;
1202
        case 2: q->pid = USB_TOKEN_SETUP; break;
1203
        default: fprintf(stderr, "bad token\n"); break;
1204
    }
1205

    
1206
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1207
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1208
        return USB_RET_PROCERR;
1209
    }
1210

    
1211
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1212
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1213

    
1214
    ret = USB_RET_NODEV;
1215

    
1216
    // TO-DO: associating device with ehci port
1217
    for(i = 0; i < NB_PORTS; i++) {
1218
        port = &q->ehci->ports[i];
1219
        dev = port->dev;
1220

    
1221
        // TODO sometime we will also need to check if we are the port owner
1222

    
1223
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1224
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1225
                    i, q->ehci->portsc[i]);
1226
            continue;
1227
        }
1228

    
1229
        q->packet.pid = q->pid;
1230
        q->packet.devaddr = devadr;
1231
        q->packet.devep = endp;
1232
        q->packet.data = q->buffer;
1233
        q->packet.len = q->tbytes;
1234

    
1235
        ret = usb_handle_packet(dev, &q->packet);
1236

    
1237
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1238
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1239
                q->packet.len, q->tbytes, endp, ret);
1240

    
1241
        if (ret != USB_RET_NODEV) {
1242
            break;
1243
        }
1244
    }
1245

    
1246
    if (ret > BUFF_SIZE) {
1247
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1248
        return USB_RET_PROCERR;
1249
    }
1250

    
1251
    return ret;
1252
}
1253

    
1254
/*  4.7.2
1255
 */
1256

    
1257
static int ehci_process_itd(EHCIState *ehci,
1258
                            EHCIitd *itd)
1259
{
1260
    USBPort *port;
1261
    USBDevice *dev;
1262
    int ret;
1263
    int i, j;
1264
    int ptr;
1265
    int pid;
1266
    int pg;
1267
    int len;
1268
    int dir;
1269
    int devadr;
1270
    int endp;
1271
    int maxpkt;
1272

    
1273
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1274
    devadr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1275
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1276
    maxpkt = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1277

    
1278
    for(i = 0; i < 8; i++) {
1279
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1280
            DPRINTF("ISOCHRONOUS active for frame %d, interval %d\n",
1281
                    ehci->frindex >> 3, i);
1282

    
1283
            pg = get_field(itd->transact[i], ITD_XACT_PGSEL);
1284
            ptr = (itd->bufptr[pg] & ITD_BUFPTR_MASK) |
1285
                (itd->transact[i] & ITD_XACT_OFFSET_MASK);
1286
            len = get_field(itd->transact[i], ITD_XACT_LENGTH);
1287

    
1288
            if (len > BUFF_SIZE) {
1289
                return USB_RET_PROCERR;
1290
            }
1291

    
1292
            DPRINTF("ISOCH: buffer %08X len %d\n", ptr, len);
1293

    
1294
            if (!dir) {
1295
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 0);
1296
                pid = USB_TOKEN_OUT;
1297
            } else
1298
                pid = USB_TOKEN_IN;
1299

    
1300
            ret = USB_RET_NODEV;
1301

    
1302
            for (j = 0; j < NB_PORTS; j++) {
1303
                port = &ehci->ports[j];
1304
                dev = port->dev;
1305

    
1306
                // TODO sometime we will also need to check if we are the port owner
1307

    
1308
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1309
                    DPRINTF("Port %d, no exec, not connected(%08X)\n",
1310
                            j, ehci->portsc[j]);
1311
                    continue;
1312
                }
1313

    
1314
                ehci->ipacket.pid = pid;
1315
                ehci->ipacket.devaddr = devadr;
1316
                ehci->ipacket.devep = endp;
1317
                ehci->ipacket.data = ehci->ibuffer;
1318
                ehci->ipacket.len = len;
1319

    
1320
                DPRINTF("calling usb_handle_packet\n");
1321
                ret = usb_handle_packet(dev, &ehci->ipacket);
1322

    
1323
                if (ret != USB_RET_NODEV) {
1324
                    break;
1325
                }
1326
            }
1327

    
1328
            /*  In isoch, there is no facility to indicate a NAK so let's
1329
             *  instead just complete a zero-byte transaction.  Setting
1330
             *  DBERR seems too draconian.
1331
             */
1332

    
1333
            if (ret == USB_RET_NAK) {
1334
                if (ehci->isoch_pause > 0) {
1335
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1336
                    ehci->isoch_pause--;
1337
                    return 0;
1338
                } else if (ehci->isoch_pause == -1) {
1339
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1340
                    // Pause frindex for up to 50 msec waiting for data from
1341
                    // remote
1342
                    ehci->isoch_pause = 50;
1343
                    return 0;
1344
                } else {
1345
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1346
                    ret = 0;
1347
                }
1348
            } else {
1349
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1350
                ehci->isoch_pause = -1;
1351
            }
1352

    
1353
            if (ret >= 0) {
1354
                itd->transact[i] &= ~ITD_XACT_ACTIVE;
1355

    
1356
                if (itd->transact[i] & ITD_XACT_IOC) {
1357
                    ehci_record_interrupt(ehci, USBSTS_INT);
1358
                }
1359
            }
1360

    
1361
            if (ret >= 0 && dir) {
1362
                cpu_physical_memory_rw(ptr, &ehci->ibuffer[0], len, 1);
1363

    
1364
                if (ret != len) {
1365
                    DPRINTF("ISOCH IN expected %d, got %d\n",
1366
                            len, ret);
1367
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1368
                }
1369
            }
1370
        }
1371
    }
1372
    return 0;
1373
}
1374

    
1375
/*  This state is the entry point for asynchronous schedule
1376
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1377
 */
1378
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1379
{
1380
    EHCIqh qh;
1381
    int i = 0;
1382
    int again = 0;
1383
    uint32_t entry = ehci->asynclistaddr;
1384

    
1385
    /* set reclamation flag at start event (4.8.6) */
1386
    if (async) {
1387
        ehci_set_usbsts(ehci, USBSTS_REC);
1388
    }
1389

    
1390
    ehci_queues_rip_unused(ehci);
1391

    
1392
    /*  Find the head of the list (4.9.1.1) */
1393
    for(i = 0; i < MAX_QH; i++) {
1394
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1395
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1396

    
1397
        if (qh.epchar & QH_EPCHAR_H) {
1398
            if (async) {
1399
                entry |= (NLPTR_TYPE_QH << 1);
1400
            }
1401

    
1402
            ehci_set_fetch_addr(ehci, async, entry);
1403
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1404
            again = 1;
1405
            goto out;
1406
        }
1407

    
1408
        entry = qh.next;
1409
        if (entry == ehci->asynclistaddr) {
1410
            break;
1411
        }
1412
    }
1413

    
1414
    /* no head found for list. */
1415

    
1416
    ehci_set_state(ehci, async, EST_ACTIVE);
1417

    
1418
out:
1419
    return again;
1420
}
1421

    
1422

    
1423
/*  This state is the entry point for periodic schedule processing as
1424
 *  well as being a continuation state for async processing.
1425
 */
1426
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1427
{
1428
    int again = 0;
1429
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1430

    
1431
#if EHCI_DEBUG == 0
1432
    if (qemu_get_clock_ns(vm_clock) / 1000 >= ehci->frame_end_usec) {
1433
        if (async) {
1434
            DPRINTF("FETCHENTRY: FRAME timer elapsed, exit state machine\n");
1435
            goto out;
1436
        } else {
1437
            DPRINTF("FETCHENTRY: WARNING "
1438
                    "- frame timer elapsed during periodic\n");
1439
        }
1440
    }
1441
#endif
1442
    if (entry < 0x1000) {
1443
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1444
        ehci_set_state(ehci, async, EST_ACTIVE);
1445
        goto out;
1446
    }
1447

    
1448
    /* section 4.8, only QH in async schedule */
1449
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1450
        fprintf(stderr, "non queue head request in async schedule\n");
1451
        return -1;
1452
    }
1453

    
1454
    switch (NLPTR_TYPE_GET(entry)) {
1455
    case NLPTR_TYPE_QH:
1456
        ehci_set_state(ehci, async, EST_FETCHQH);
1457
        again = 1;
1458
        break;
1459

    
1460
    case NLPTR_TYPE_ITD:
1461
        ehci_set_state(ehci, async, EST_FETCHITD);
1462
        again = 1;
1463
        break;
1464

    
1465
    default:
1466
        // TODO: handle siTD and FSTN types
1467
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1468
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1469
        return -1;
1470
    }
1471

    
1472
out:
1473
    return again;
1474
}
1475

    
1476
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1477
{
1478
    uint32_t entry;
1479
    EHCIQueue *q;
1480
    int reload;
1481

    
1482
    entry = ehci_get_fetch_addr(ehci, async);
1483
    q = ehci_find_queue_by_qh(ehci, entry);
1484
    if (NULL == q) {
1485
        q = ehci_alloc_queue(ehci, async);
1486
    }
1487
    q->qhaddr = entry;
1488
    q->seen++;
1489

    
1490
    if (q->seen > 1) {
1491
        /* we are going in circles -- stop processing */
1492
        ehci_set_state(ehci, async, EST_ACTIVE);
1493
        q = NULL;
1494
        goto out;
1495
    }
1496

    
1497
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1498
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1499

    
1500
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1501
        /* I/O still in progress -- skip queue */
1502
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1503
        goto out;
1504
    }
1505
    if (q->async == EHCI_ASYNC_FINISHED) {
1506
        /* I/O finished -- continue processing queue */
1507
        trace_usb_ehci_queue_action(q, "resume");
1508
        ehci_set_state(ehci, async, EST_EXECUTING);
1509
        goto out;
1510
    }
1511

    
1512
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1513

    
1514
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1515
        if (ehci->usbsts & USBSTS_REC) {
1516
            ehci_clear_usbsts(ehci, USBSTS_REC);
1517
        } else {
1518
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1519
                       " - done processing\n", q->qhaddr);
1520
            ehci_set_state(ehci, async, EST_ACTIVE);
1521
            q = NULL;
1522
            goto out;
1523
        }
1524
    }
1525

    
1526
#if EHCI_DEBUG
1527
    if (q->qhaddr != q->qh.next) {
1528
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1529
               q->qhaddr,
1530
               q->qh.epchar & QH_EPCHAR_H,
1531
               q->qh.token & QTD_TOKEN_HALT,
1532
               q->qh.token & QTD_TOKEN_ACTIVE,
1533
               q->qh.next);
1534
    }
1535
#endif
1536

    
1537
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1538
    if (reload) {
1539
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1540
    }
1541

    
1542
    if (q->qh.token & QTD_TOKEN_HALT) {
1543
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1544

    
1545
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1546
        q->qtdaddr = q->qh.current_qtd;
1547
        ehci_set_state(ehci, async, EST_FETCHQTD);
1548

    
1549
    } else {
1550
        /*  EHCI spec version 1.0 Section 4.10.2 */
1551
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1552
    }
1553

    
1554
out:
1555
    return q;
1556
}
1557

    
1558
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1559
{
1560
    uint32_t entry;
1561
    EHCIitd itd;
1562

    
1563
    assert(!async);
1564
    entry = ehci_get_fetch_addr(ehci, async);
1565

    
1566
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1567
               sizeof(EHCIitd) >> 2);
1568
    ehci_trace_itd(ehci, entry, &itd);
1569

    
1570
    if (ehci_process_itd(ehci, &itd) != 0) {
1571
        return -1;
1572
    }
1573

    
1574
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1575
                sizeof(EHCIitd) >> 2);
1576
    ehci_set_fetch_addr(ehci, async, itd.next);
1577
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1578

    
1579
    return 1;
1580
}
1581

    
1582
/* Section 4.10.2 - paragraph 3 */
1583
static int ehci_state_advqueue(EHCIQueue *q, int async)
1584
{
1585
#if 0
1586
    /* TO-DO: 4.10.2 - paragraph 2
1587
     * if I-bit is set to 1 and QH is not active
1588
     * go to horizontal QH
1589
     */
1590
    if (I-bit set) {
1591
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1592
        goto out;
1593
    }
1594
#endif
1595

    
1596
    /*
1597
     * want data and alt-next qTD is valid
1598
     */
1599
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1600
        (q->qh.altnext_qtd > 0x1000) &&
1601
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1602
        q->qtdaddr = q->qh.altnext_qtd;
1603
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1604

    
1605
    /*
1606
     *  next qTD is valid
1607
     */
1608
    } else if ((q->qh.next_qtd > 0x1000) &&
1609
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1610
        q->qtdaddr = q->qh.next_qtd;
1611
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1612

    
1613
    /*
1614
     *  no valid qTD, try next QH
1615
     */
1616
    } else {
1617
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1618
    }
1619

    
1620
    return 1;
1621
}
1622

    
1623
/* Section 4.10.2 - paragraph 4 */
1624
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1625
{
1626
    int again = 0;
1627

    
1628
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1629
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1630

    
1631
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1632
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1633
        again = 1;
1634
    } else {
1635
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1636
        again = 1;
1637
    }
1638

    
1639
    return again;
1640
}
1641

    
1642
static int ehci_state_horizqh(EHCIQueue *q, int async)
1643
{
1644
    int again = 0;
1645

    
1646
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1647
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1648
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1649
        again = 1;
1650
    } else {
1651
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1652
    }
1653

    
1654
    return again;
1655
}
1656

    
1657
/*
1658
 *  Write the qh back to guest physical memory.  This step isn't
1659
 *  in the EHCI spec but we need to do it since we don't share
1660
 *  physical memory with our guest VM.
1661
 *
1662
 *  The first three dwords are read-only for the EHCI, so skip them
1663
 *  when writing back the qh.
1664
 */
1665
static void ehci_flush_qh(EHCIQueue *q)
1666
{
1667
    uint32_t *qh = (uint32_t *) &q->qh;
1668
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1669
    uint32_t addr = NLPTR_GET(q->qhaddr);
1670

    
1671
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1672
}
1673

    
1674
static int ehci_state_execute(EHCIQueue *q, int async)
1675
{
1676
    int again = 0;
1677
    int reload, nakcnt;
1678
    int smask;
1679

    
1680
    if (ehci_qh_do_overlay(q) != 0) {
1681
        return -1;
1682
    }
1683

    
1684
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1685

    
1686
    if (!smask) {
1687
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1688
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1689
        if (reload && !nakcnt) {
1690
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1691
            again = 1;
1692
            goto out;
1693
        }
1694
    }
1695

    
1696
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1697
    // TODO write back ptr to async list when done or out of time
1698
    // TODO Windows does not seem to ever set the MULT field
1699

    
1700
    if (!async) {
1701
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1702
        if (!transactCtr) {
1703
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1704
            again = 1;
1705
            goto out;
1706
        }
1707
    }
1708

    
1709
    if (async) {
1710
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1711
    }
1712

    
1713
    q->usb_status = ehci_execute(q);
1714
    if (q->usb_status == USB_RET_PROCERR) {
1715
        again = -1;
1716
        goto out;
1717
    }
1718
    if (q->usb_status == USB_RET_ASYNC) {
1719
        ehci_flush_qh(q);
1720
        trace_usb_ehci_queue_action(q, "suspend");
1721
        q->async = EHCI_ASYNC_INFLIGHT;
1722
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1723
        again = 1;
1724
        goto out;
1725
    }
1726

    
1727
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1728
    again = 1;
1729

    
1730
out:
1731
    return again;
1732
}
1733

    
1734
static int ehci_state_executing(EHCIQueue *q, int async)
1735
{
1736
    int again = 0;
1737
    int reload, nakcnt;
1738

    
1739
    ehci_execute_complete(q);
1740
    if (q->usb_status == USB_RET_ASYNC) {
1741
        goto out;
1742
    }
1743
    if (q->usb_status == USB_RET_PROCERR) {
1744
        again = -1;
1745
        goto out;
1746
    }
1747

    
1748
    // 4.10.3
1749
    if (!async) {
1750
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1751
        transactCtr--;
1752
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1753
        // 4.10.3, bottom of page 82, should exit this state when transaction
1754
        // counter decrements to 0
1755
    }
1756

    
1757
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1758
    if (reload) {
1759
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1760
        if (q->usb_status == USB_RET_NAK) {
1761
            if (nakcnt) {
1762
                nakcnt--;
1763
            }
1764
        } else {
1765
            nakcnt = reload;
1766
        }
1767
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1768
    }
1769

    
1770
    /* 4.10.5 */
1771
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1772
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1773
    } else {
1774
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1775
    }
1776

    
1777
    again = 1;
1778

    
1779
out:
1780
    ehci_flush_qh(q);
1781
    return again;
1782
}
1783

    
1784

    
1785
static int ehci_state_writeback(EHCIQueue *q, int async)
1786
{
1787
    int again = 0;
1788

    
1789
    /*  Write back the QTD from the QH area */
1790
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1791
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1792
                sizeof(EHCIqtd) >> 2);
1793

    
1794
    /*
1795
     * EHCI specs say go horizontal here.
1796
     *
1797
     * We can also advance the queue here for performance reasons.  We
1798
     * need to take care to only take that shortcut in case we've
1799
     * processed the qtd just written back without errors, i.e. halt
1800
     * bit is clear.
1801
     */
1802
    if (q->qh.token & QTD_TOKEN_HALT) {
1803
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1804
        again = 1;
1805
    } else {
1806
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1807
        again = 1;
1808
    }
1809
    return again;
1810
}
1811

    
1812
/*
1813
 * This is the state machine that is common to both async and periodic
1814
 */
1815

    
1816
static void ehci_advance_state(EHCIState *ehci,
1817
                               int async)
1818
{
1819
    EHCIQueue *q = NULL;
1820
    int again;
1821
    int iter = 0;
1822

    
1823
    do {
1824
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1825
            iter++;
1826
            /* if we are roaming a lot of QH without executing a qTD
1827
             * something is wrong with the linked list. TO-DO: why is
1828
             * this hack needed?
1829
             */
1830
            assert(iter < MAX_ITERATIONS);
1831
#if 0
1832
            if (iter > MAX_ITERATIONS) {
1833
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1834
                ehci_set_state(ehci, async, EST_ACTIVE);
1835
                break;
1836
            }
1837
#endif
1838
        }
1839
        switch(ehci_get_state(ehci, async)) {
1840
        case EST_WAITLISTHEAD:
1841
            again = ehci_state_waitlisthead(ehci, async);
1842
            break;
1843

    
1844
        case EST_FETCHENTRY:
1845
            again = ehci_state_fetchentry(ehci, async);
1846
            break;
1847

    
1848
        case EST_FETCHQH:
1849
            q = ehci_state_fetchqh(ehci, async);
1850
            again = q ? 1 : 0;
1851
            break;
1852

    
1853
        case EST_FETCHITD:
1854
            again = ehci_state_fetchitd(ehci, async);
1855
            break;
1856

    
1857
        case EST_ADVANCEQUEUE:
1858
            again = ehci_state_advqueue(q, async);
1859
            break;
1860

    
1861
        case EST_FETCHQTD:
1862
            again = ehci_state_fetchqtd(q, async);
1863
            break;
1864

    
1865
        case EST_HORIZONTALQH:
1866
            again = ehci_state_horizqh(q, async);
1867
            break;
1868

    
1869
        case EST_EXECUTE:
1870
            iter = 0;
1871
            again = ehci_state_execute(q, async);
1872
            break;
1873

    
1874
        case EST_EXECUTING:
1875
            assert(q != NULL);
1876
            again = ehci_state_executing(q, async);
1877
            break;
1878

    
1879
        case EST_WRITEBACK:
1880
            again = ehci_state_writeback(q, async);
1881
            break;
1882

    
1883
        default:
1884
            fprintf(stderr, "Bad state!\n");
1885
            again = -1;
1886
            assert(0);
1887
            break;
1888
        }
1889

    
1890
        if (again < 0) {
1891
            fprintf(stderr, "processing error - resetting ehci HC\n");
1892
            ehci_reset(ehci);
1893
            again = 0;
1894
            assert(0);
1895
        }
1896
    }
1897
    while (again);
1898

    
1899
    ehci_commit_interrupt(ehci);
1900
}
1901

    
1902
static void ehci_advance_async_state(EHCIState *ehci)
1903
{
1904
    int async = 1;
1905

    
1906
    switch(ehci_get_state(ehci, async)) {
1907
    case EST_INACTIVE:
1908
        if (!(ehci->usbcmd & USBCMD_ASE)) {
1909
            break;
1910
        }
1911
        ehci_set_usbsts(ehci, USBSTS_ASS);
1912
        ehci_set_state(ehci, async, EST_ACTIVE);
1913
        // No break, fall through to ACTIVE
1914

    
1915
    case EST_ACTIVE:
1916
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
1917
            ehci_clear_usbsts(ehci, USBSTS_ASS);
1918
            ehci_set_state(ehci, async, EST_INACTIVE);
1919
            break;
1920
        }
1921

    
1922
        /* If the doorbell is set, the guest wants to make a change to the
1923
         * schedule. The host controller needs to release cached data.
1924
         * (section 4.8.2)
1925
         */
1926
        if (ehci->usbcmd & USBCMD_IAAD) {
1927
            DPRINTF("ASYNC: doorbell request acknowledged\n");
1928
            ehci->usbcmd &= ~USBCMD_IAAD;
1929
            ehci_set_interrupt(ehci, USBSTS_IAA);
1930
            break;
1931
        }
1932

    
1933
        /* make sure guest has acknowledged */
1934
        /* TO-DO: is this really needed? */
1935
        if (ehci->usbsts & USBSTS_IAA) {
1936
            DPRINTF("IAA status bit still set.\n");
1937
            break;
1938
        }
1939

    
1940
        /* check that address register has been set */
1941
        if (ehci->asynclistaddr == 0) {
1942
            break;
1943
        }
1944

    
1945
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
1946
        /* fall through */
1947

    
1948
    case EST_FETCHENTRY:
1949
        /* fall through */
1950

    
1951
    case EST_EXECUTING:
1952
        ehci_advance_state(ehci, async);
1953
        break;
1954

    
1955
    default:
1956
        /* this should only be due to a developer mistake */
1957
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
1958
                "Resetting to active\n", ehci->astate);
1959
        assert(0);
1960
    }
1961
}
1962

    
1963
static void ehci_advance_periodic_state(EHCIState *ehci)
1964
{
1965
    uint32_t entry;
1966
    uint32_t list;
1967
    int async = 0;
1968

    
1969
    // 4.6
1970

    
1971
    switch(ehci_get_state(ehci, async)) {
1972
    case EST_INACTIVE:
1973
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
1974
            ehci_set_usbsts(ehci, USBSTS_PSS);
1975
            ehci_set_state(ehci, async, EST_ACTIVE);
1976
            // No break, fall through to ACTIVE
1977
        } else
1978
            break;
1979

    
1980
    case EST_ACTIVE:
1981
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
1982
            ehci_clear_usbsts(ehci, USBSTS_PSS);
1983
            ehci_set_state(ehci, async, EST_INACTIVE);
1984
            break;
1985
        }
1986

    
1987
        list = ehci->periodiclistbase & 0xfffff000;
1988
        /* check that register has been set */
1989
        if (list == 0) {
1990
            break;
1991
        }
1992
        list |= ((ehci->frindex & 0x1ff8) >> 1);
1993

    
1994
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
1995
        entry = le32_to_cpu(entry);
1996

    
1997
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
1998
                ehci->frindex / 8, list, entry);
1999
        ehci_set_fetch_addr(ehci, async,entry);
2000
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2001
        ehci_advance_state(ehci, async);
2002
        break;
2003

    
2004
    case EST_EXECUTING:
2005
        DPRINTF("PERIODIC state adv for executing\n");
2006
        ehci_advance_state(ehci, async);
2007
        break;
2008

    
2009
    default:
2010
        /* this should only be due to a developer mistake */
2011
        fprintf(stderr, "ehci: Bad periodic state %d. "
2012
                "Resetting to active\n", ehci->pstate);
2013
        assert(0);
2014
    }
2015
}
2016

    
2017
static void ehci_frame_timer(void *opaque)
2018
{
2019
    EHCIState *ehci = opaque;
2020
    int64_t expire_time, t_now;
2021
    int usec_elapsed;
2022
    int frames;
2023
    int usec_now;
2024
    int i;
2025
    int skipped_frames = 0;
2026

    
2027

    
2028
    t_now = qemu_get_clock_ns(vm_clock);
2029
    expire_time = t_now + (get_ticks_per_sec() / FRAME_TIMER_FREQ);
2030
    if (expire_time == t_now) {
2031
        expire_time++;
2032
    }
2033

    
2034
    usec_now = t_now / 1000;
2035
    usec_elapsed = usec_now - ehci->last_run_usec;
2036
    frames = usec_elapsed / FRAME_TIMER_USEC;
2037
    ehci->frame_end_usec = usec_now + FRAME_TIMER_USEC - 10;
2038

    
2039
    for (i = 0; i < frames; i++) {
2040
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2041
            if (ehci->isoch_pause <= 0) {
2042
                ehci->frindex += 8;
2043
            }
2044

    
2045
            if (ehci->frindex > 0x00001fff) {
2046
                ehci->frindex = 0;
2047
                ehci_set_interrupt(ehci, USBSTS_FLR);
2048
            }
2049

    
2050
            ehci->sofv = (ehci->frindex - 1) >> 3;
2051
            ehci->sofv &= 0x000003ff;
2052
        }
2053

    
2054
        if (frames - i > 10) {
2055
            skipped_frames++;
2056
        } else {
2057
            // TODO could this cause periodic frames to get skipped if async
2058
            // active?
2059
            if (ehci_get_state(ehci, 1) != EST_EXECUTING) {
2060
                ehci_advance_periodic_state(ehci);
2061
            }
2062
        }
2063

    
2064
        ehci->last_run_usec += FRAME_TIMER_USEC;
2065
    }
2066

    
2067
#if 0
2068
    if (skipped_frames) {
2069
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2070
    }
2071
#endif
2072

    
2073
    /*  Async is not inside loop since it executes everything it can once
2074
     *  called
2075
     */
2076
    if (ehci_get_state(ehci, 0) != EST_EXECUTING) {
2077
        ehci_advance_async_state(ehci);
2078
    }
2079

    
2080
    qemu_mod_timer(ehci->frame_timer, expire_time);
2081
}
2082

    
2083
static CPUReadMemoryFunc *ehci_readfn[3]={
2084
    ehci_mem_readb,
2085
    ehci_mem_readw,
2086
    ehci_mem_readl
2087
};
2088

    
2089
static CPUWriteMemoryFunc *ehci_writefn[3]={
2090
    ehci_mem_writeb,
2091
    ehci_mem_writew,
2092
    ehci_mem_writel
2093
};
2094

    
2095
static void ehci_map(PCIDevice *pci_dev, int region_num,
2096
                     pcibus_t addr, pcibus_t size, int type)
2097
{
2098
    EHCIState *s =(EHCIState *)pci_dev;
2099

    
2100
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2101
            region_num, addr, size, s->mem);
2102
    s->mem_base = addr;
2103
    cpu_register_physical_memory(addr, size, s->mem);
2104
}
2105

    
2106
static int usb_ehci_initfn(PCIDevice *dev);
2107

    
2108
static USBPortOps ehci_port_ops = {
2109
    .attach = ehci_attach,
2110
    .detach = ehci_detach,
2111
    .complete = ehci_async_complete_packet,
2112
};
2113

    
2114
static PCIDeviceInfo ehci_info = {
2115
    .qdev.name    = "usb-ehci",
2116
    .qdev.size    = sizeof(EHCIState),
2117
    .init         = usb_ehci_initfn,
2118
};
2119

    
2120
static int usb_ehci_initfn(PCIDevice *dev)
2121
{
2122
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2123
    uint8_t *pci_conf = s->dev.config;
2124
    int i;
2125

    
2126
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
2127
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82801D);
2128
    pci_set_byte(&pci_conf[PCI_REVISION_ID], 0x10);
2129
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2130
    pci_config_set_class(pci_conf, PCI_CLASS_SERIAL_USB);
2131
    pci_set_byte(&pci_conf[PCI_HEADER_TYPE], PCI_HEADER_TYPE_NORMAL);
2132

    
2133
    /* capabilities pointer */
2134
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2135
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2136

    
2137
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2138
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2139
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2140

    
2141
    // pci_conf[0x50] = 0x01; // power management caps
2142

    
2143
    pci_set_byte(&pci_conf[0x60], 0x20);  // spec release number (2.1.4)
2144
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2145
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2146

    
2147
    pci_conf[0x64] = 0x00;
2148
    pci_conf[0x65] = 0x00;
2149
    pci_conf[0x66] = 0x00;
2150
    pci_conf[0x67] = 0x00;
2151
    pci_conf[0x68] = 0x01;
2152
    pci_conf[0x69] = 0x00;
2153
    pci_conf[0x6a] = 0x00;
2154
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2155
    pci_conf[0x6c] = 0x00;
2156
    pci_conf[0x6d] = 0x00;
2157
    pci_conf[0x6e] = 0x00;
2158
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2159

    
2160
    // 2.2 host controller interface version
2161
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2162
    s->mmio[0x01] = 0x00;
2163
    s->mmio[0x02] = 0x00;
2164
    s->mmio[0x03] = 0x01;        // HC version
2165
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2166
    s->mmio[0x05] = 0x00;        // No companion ports at present
2167
    s->mmio[0x06] = 0x00;
2168
    s->mmio[0x07] = 0x00;
2169
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2170
    s->mmio[0x09] = 0x68;        // EECP
2171
    s->mmio[0x0a] = 0x00;
2172
    s->mmio[0x0b] = 0x00;
2173

    
2174
    s->irq = s->dev.irq[3];
2175

    
2176
    usb_bus_new(&s->bus, &s->dev.qdev);
2177
    for(i = 0; i < NB_PORTS; i++) {
2178
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2179
                          USB_SPEED_MASK_HIGH);
2180
        usb_port_location(&s->ports[i], NULL, i+1);
2181
        s->ports[i].dev = 0;
2182
    }
2183

    
2184
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2185
    QTAILQ_INIT(&s->queues);
2186

    
2187
    qemu_register_reset(ehci_reset, s);
2188

    
2189
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2190
                                    DEVICE_LITTLE_ENDIAN);
2191

    
2192
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2193
                                                            ehci_map);
2194

    
2195
    fprintf(stderr, "*** EHCI support is under development ***\n");
2196

    
2197
    return 0;
2198
}
2199

    
2200
static void ehci_register(void)
2201
{
2202
    pci_qdev_register(&ehci_info);
2203
}
2204
device_init(ehci_register);
2205

    
2206
/*
2207
 * vim: expandtab ts=4
2208
 */