Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ d35527d9

History | View | Annotate | Download (59.8 kB)

1
#include "exec.h"
2
#include "host-utils.h"
3
#include "helper.h"
4

    
5
//#define DEBUG_PCALL
6
//#define DEBUG_MMU
7
//#define DEBUG_MXCC
8
//#define DEBUG_UNALIGNED
9
//#define DEBUG_UNASSIGNED
10
//#define DEBUG_ASI
11

    
12
#ifdef DEBUG_MMU
13
#define DPRINTF_MMU(fmt, args...) \
14
do { printf("MMU: " fmt , ##args); } while (0)
15
#else
16
#define DPRINTF_MMU(fmt, args...)
17
#endif
18

    
19
#ifdef DEBUG_MXCC
20
#define DPRINTF_MXCC(fmt, args...) \
21
do { printf("MXCC: " fmt , ##args); } while (0)
22
#else
23
#define DPRINTF_MXCC(fmt, args...)
24
#endif
25

    
26
#ifdef DEBUG_ASI
27
#define DPRINTF_ASI(fmt, args...) \
28
do { printf("ASI: " fmt , ##args); } while (0)
29
#else
30
#define DPRINTF_ASI(fmt, args...)
31
#endif
32

    
33
void raise_exception(int tt)
34
{
35
    env->exception_index = tt;
36
    cpu_loop_exit();
37
}
38

    
39
void helper_trap(target_ulong nb_trap)
40
{
41
    env->exception_index = TT_TRAP + (nb_trap & 0x7f);
42
    cpu_loop_exit();
43
}
44

    
45
void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
46
{
47
    if (do_trap) {
48
        env->exception_index = TT_TRAP + (nb_trap & 0x7f);
49
        cpu_loop_exit();
50
    }
51
}
52

    
53
void helper_check_ieee_exceptions(void)
54
{
55
    target_ulong status;
56

    
57
    status = get_float_exception_flags(&env->fp_status);
58
    if (status) {
59
        /* Copy IEEE 754 flags into FSR */
60
        if (status & float_flag_invalid)
61
            env->fsr |= FSR_NVC;
62
        if (status & float_flag_overflow)
63
            env->fsr |= FSR_OFC;
64
        if (status & float_flag_underflow)
65
            env->fsr |= FSR_UFC;
66
        if (status & float_flag_divbyzero)
67
            env->fsr |= FSR_DZC;
68
        if (status & float_flag_inexact)
69
            env->fsr |= FSR_NXC;
70

    
71
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
72
            /* Unmasked exception, generate a trap */
73
            env->fsr |= FSR_FTT_IEEE_EXCP;
74
            raise_exception(TT_FP_EXCP);
75
        } else {
76
            /* Accumulate exceptions */
77
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
78
        }
79
    }
80
}
81

    
82
void helper_clear_float_exceptions(void)
83
{
84
    set_float_exception_flags(0, &env->fp_status);
85
}
86

    
87
#ifdef USE_INT_TO_FLOAT_HELPERS
88
void do_fitos(void)
89
{
90
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
91
}
92

    
93
void do_fitod(void)
94
{
95
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
96
}
97

    
98
#if defined(CONFIG_USER_ONLY)
99
void do_fitoq(void)
100
{
101
    QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
102
}
103
#endif
104

    
105
#ifdef TARGET_SPARC64
106
void do_fxtos(void)
107
{
108
    FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
109
}
110

    
111
void do_fxtod(void)
112
{
113
    DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
114
}
115

    
116
#if defined(CONFIG_USER_ONLY)
117
void do_fxtoq(void)
118
{
119
    QT0 = int64_to_float128(*((int32_t *)&DT1), &env->fp_status);
120
}
121
#endif
122
#endif
123
#endif
124

    
125
void helper_fabss(void)
126
{
127
    FT0 = float32_abs(FT1);
128
}
129

    
130
#ifdef TARGET_SPARC64
131
void helper_fabsd(void)
132
{
133
    DT0 = float64_abs(DT1);
134
}
135

    
136
#if defined(CONFIG_USER_ONLY)
137
void helper_fabsq(void)
138
{
139
    QT0 = float128_abs(QT1);
140
}
141
#endif
142
#endif
143

    
144
void helper_fsqrts(void)
145
{
146
    FT0 = float32_sqrt(FT1, &env->fp_status);
147
}
148

    
149
void helper_fsqrtd(void)
150
{
151
    DT0 = float64_sqrt(DT1, &env->fp_status);
152
}
153

    
154
#if defined(CONFIG_USER_ONLY)
155
void helper_fsqrtq(void)
156
{
157
    QT0 = float128_sqrt(QT1, &env->fp_status);
158
}
159
#endif
160

    
161
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
162
    void glue(helper_, name) (void)                                     \
163
    {                                                                   \
164
        target_ulong new_fsr;                                           \
165
                                                                        \
166
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
167
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
168
        case float_relation_unordered:                                  \
169
            new_fsr = (FSR_FCC1 | FSR_FCC0) << FS;                      \
170
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
171
                env->fsr |= new_fsr;                                    \
172
                env->fsr |= FSR_NVC;                                    \
173
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
174
                raise_exception(TT_FP_EXCP);                            \
175
            } else {                                                    \
176
                env->fsr |= FSR_NVA;                                    \
177
            }                                                           \
178
            break;                                                      \
179
        case float_relation_less:                                       \
180
            new_fsr = FSR_FCC0 << FS;                                   \
181
            break;                                                      \
182
        case float_relation_greater:                                    \
183
            new_fsr = FSR_FCC1 << FS;                                   \
184
            break;                                                      \
185
        default:                                                        \
186
            new_fsr = 0;                                                \
187
            break;                                                      \
188
        }                                                               \
189
        env->fsr |= new_fsr;                                            \
190
    }
191

    
192
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
193
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
194

    
195
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
196
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
197

    
198
#ifdef CONFIG_USER_ONLY
199
GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
200
GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
201
#endif
202

    
203
#ifdef TARGET_SPARC64
204
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
205
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
206

    
207
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
208
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
209

    
210
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
211
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
212

    
213
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
214
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
215

    
216
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
217
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
218

    
219
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
220
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
221
#ifdef CONFIG_USER_ONLY
222
GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
223
GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
224
GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
225
GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
226
GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
227
GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
228
#endif
229
#endif
230

    
231
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC)
232
static void dump_mxcc(CPUState *env)
233
{
234
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
235
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
236
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
237
           "          %016llx %016llx %016llx %016llx\n",
238
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
239
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
240
}
241
#endif
242

    
243
#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
244
    && defined(DEBUG_ASI)
245
static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
246
                     uint64_t r1)
247
{
248
    switch (size)
249
    {
250
    case 1:
251
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
252
                    addr, asi, r1 & 0xff);
253
        break;
254
    case 2:
255
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
256
                    addr, asi, r1 & 0xffff);
257
        break;
258
    case 4:
259
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
260
                    addr, asi, r1 & 0xffffffff);
261
        break;
262
    case 8:
263
        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
264
                    addr, asi, r1);
265
        break;
266
    }
267
}
268
#endif
269

    
270
#ifndef TARGET_SPARC64
271
#ifndef CONFIG_USER_ONLY
272
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
273
{
274
    uint64_t ret = 0;
275
#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
276
    uint32_t last_addr = addr;
277
#endif
278

    
279
    switch (asi) {
280
    case 2: /* SuperSparc MXCC registers */
281
        switch (addr) {
282
        case 0x01c00a00: /* MXCC control register */
283
            if (size == 8)
284
                ret = env->mxccregs[3];
285
            else
286
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
287
            break;
288
        case 0x01c00a04: /* MXCC control register */
289
            if (size == 4)
290
                ret = env->mxccregs[3];
291
            else
292
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
293
            break;
294
        case 0x01c00c00: /* Module reset register */
295
            if (size == 8) {
296
                ret = env->mxccregs[5];
297
                // should we do something here?
298
            } else
299
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
300
            break;
301
        case 0x01c00f00: /* MBus port address register */
302
            if (size == 8)
303
                ret = env->mxccregs[7];
304
            else
305
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
306
            break;
307
        default:
308
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
309
            break;
310
        }
311
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x,"
312
                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
313
#ifdef DEBUG_MXCC
314
        dump_mxcc(env);
315
#endif
316
        break;
317
    case 3: /* MMU probe */
318
        {
319
            int mmulev;
320

    
321
            mmulev = (addr >> 8) & 15;
322
            if (mmulev > 4)
323
                ret = 0;
324
            else
325
                ret = mmu_probe(env, addr, mmulev);
326
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
327
                        addr, mmulev, ret);
328
        }
329
        break;
330
    case 4: /* read MMU regs */
331
        {
332
            int reg = (addr >> 8) & 0x1f;
333

    
334
            ret = env->mmuregs[reg];
335
            if (reg == 3) /* Fault status cleared on read */
336
                env->mmuregs[3] = 0;
337
            else if (reg == 0x13) /* Fault status read */
338
                ret = env->mmuregs[3];
339
            else if (reg == 0x14) /* Fault address read */
340
                ret = env->mmuregs[4];
341
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
342
        }
343
        break;
344
    case 5: // Turbosparc ITLB Diagnostic
345
    case 6: // Turbosparc DTLB Diagnostic
346
    case 7: // Turbosparc IOTLB Diagnostic
347
        break;
348
    case 9: /* Supervisor code access */
349
        switch(size) {
350
        case 1:
351
            ret = ldub_code(addr);
352
            break;
353
        case 2:
354
            ret = lduw_code(addr & ~1);
355
            break;
356
        default:
357
        case 4:
358
            ret = ldl_code(addr & ~3);
359
            break;
360
        case 8:
361
            ret = ldq_code(addr & ~7);
362
            break;
363
        }
364
        break;
365
    case 0xa: /* User data access */
366
        switch(size) {
367
        case 1:
368
            ret = ldub_user(addr);
369
            break;
370
        case 2:
371
            ret = lduw_user(addr & ~1);
372
            break;
373
        default:
374
        case 4:
375
            ret = ldl_user(addr & ~3);
376
            break;
377
        case 8:
378
            ret = ldq_user(addr & ~7);
379
            break;
380
        }
381
        break;
382
    case 0xb: /* Supervisor data access */
383
        switch(size) {
384
        case 1:
385
            ret = ldub_kernel(addr);
386
            break;
387
        case 2:
388
            ret = lduw_kernel(addr & ~1);
389
            break;
390
        default:
391
        case 4:
392
            ret = ldl_kernel(addr & ~3);
393
            break;
394
        case 8:
395
            ret = ldq_kernel(addr & ~7);
396
            break;
397
        }
398
        break;
399
    case 0xc: /* I-cache tag */
400
    case 0xd: /* I-cache data */
401
    case 0xe: /* D-cache tag */
402
    case 0xf: /* D-cache data */
403
        break;
404
    case 0x20: /* MMU passthrough */
405
        switch(size) {
406
        case 1:
407
            ret = ldub_phys(addr);
408
            break;
409
        case 2:
410
            ret = lduw_phys(addr & ~1);
411
            break;
412
        default:
413
        case 4:
414
            ret = ldl_phys(addr & ~3);
415
            break;
416
        case 8:
417
            ret = ldq_phys(addr & ~7);
418
            break;
419
        }
420
        break;
421
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
422
        switch(size) {
423
        case 1:
424
            ret = ldub_phys((target_phys_addr_t)addr
425
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
426
            break;
427
        case 2:
428
            ret = lduw_phys((target_phys_addr_t)(addr & ~1)
429
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
430
            break;
431
        default:
432
        case 4:
433
            ret = ldl_phys((target_phys_addr_t)(addr & ~3)
434
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
435
            break;
436
        case 8:
437
            ret = ldq_phys((target_phys_addr_t)(addr & ~7)
438
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
439
            break;
440
        }
441
        break;
442
    case 0x30: // Turbosparc secondary cache diagnostic
443
    case 0x31: // Turbosparc RAM snoop
444
    case 0x32: // Turbosparc page table descriptor diagnostic
445
    case 0x39: /* data cache diagnostic register */
446
        ret = 0;
447
        break;
448
    case 8: /* User code access, XXX */
449
    default:
450
        do_unassigned_access(addr, 0, 0, asi);
451
        ret = 0;
452
        break;
453
    }
454
    if (sign) {
455
        switch(size) {
456
        case 1:
457
            ret = (int8_t) ret;
458
            break;
459
        case 2:
460
            ret = (int16_t) ret;
461
            break;
462
        case 4:
463
            ret = (int32_t) ret;
464
            break;
465
        default:
466
            break;
467
        }
468
    }
469
#ifdef DEBUG_ASI
470
    dump_asi("read ", last_addr, asi, size, ret);
471
#endif
472
    return ret;
473
}
474

    
475
void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
476
{
477
    switch(asi) {
478
    case 2: /* SuperSparc MXCC registers */
479
        switch (addr) {
480
        case 0x01c00000: /* MXCC stream data register 0 */
481
            if (size == 8)
482
                env->mxccdata[0] = val;
483
            else
484
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
485
            break;
486
        case 0x01c00008: /* MXCC stream data register 1 */
487
            if (size == 8)
488
                env->mxccdata[1] = val;
489
            else
490
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
491
            break;
492
        case 0x01c00010: /* MXCC stream data register 2 */
493
            if (size == 8)
494
                env->mxccdata[2] = val;
495
            else
496
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
497
            break;
498
        case 0x01c00018: /* MXCC stream data register 3 */
499
            if (size == 8)
500
                env->mxccdata[3] = val;
501
            else
502
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
503
            break;
504
        case 0x01c00100: /* MXCC stream source */
505
            if (size == 8)
506
                env->mxccregs[0] = val;
507
            else
508
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
509
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
510
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
511
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
512
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
513
            break;
514
        case 0x01c00200: /* MXCC stream destination */
515
            if (size == 8)
516
                env->mxccregs[1] = val;
517
            else
518
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
519
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
520
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
521
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
522
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
523
            break;
524
        case 0x01c00a00: /* MXCC control register */
525
            if (size == 8)
526
                env->mxccregs[3] = val;
527
            else
528
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
529
            break;
530
        case 0x01c00a04: /* MXCC control register */
531
            if (size == 4)
532
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val;
533
            else
534
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
535
            break;
536
        case 0x01c00e00: /* MXCC error register  */
537
            // writing a 1 bit clears the error
538
            if (size == 8)
539
                env->mxccregs[6] &= ~val;
540
            else
541
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
542
            break;
543
        case 0x01c00f00: /* MBus port address register */
544
            if (size == 8)
545
                env->mxccregs[7] = val;
546
            else
547
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
548
            break;
549
        default:
550
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
551
            break;
552
        }
553
        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val);
554
#ifdef DEBUG_MXCC
555
        dump_mxcc(env);
556
#endif
557
        break;
558
    case 3: /* MMU flush */
559
        {
560
            int mmulev;
561

    
562
            mmulev = (addr >> 8) & 15;
563
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
564
            switch (mmulev) {
565
            case 0: // flush page
566
                tlb_flush_page(env, addr & 0xfffff000);
567
                break;
568
            case 1: // flush segment (256k)
569
            case 2: // flush region (16M)
570
            case 3: // flush context (4G)
571
            case 4: // flush entire
572
                tlb_flush(env, 1);
573
                break;
574
            default:
575
                break;
576
            }
577
#ifdef DEBUG_MMU
578
            dump_mmu(env);
579
#endif
580
        }
581
        break;
582
    case 4: /* write MMU regs */
583
        {
584
            int reg = (addr >> 8) & 0x1f;
585
            uint32_t oldreg;
586

    
587
            oldreg = env->mmuregs[reg];
588
            switch(reg) {
589
            case 0: // Control Register
590
                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
591
                                    (val & 0x00ffffff);
592
                // Mappings generated during no-fault mode or MMU
593
                // disabled mode are invalid in normal mode
594
                if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
595
                    (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
596
                    tlb_flush(env, 1);
597
                break;
598
            case 1: // Context Table Pointer Register
599
                env->mmuregs[reg] = val & env->mmu_ctpr_mask;
600
                break;
601
            case 2: // Context Register
602
                env->mmuregs[reg] = val & env->mmu_cxr_mask;
603
                if (oldreg != env->mmuregs[reg]) {
604
                    /* we flush when the MMU context changes because
605
                       QEMU has no MMU context support */
606
                    tlb_flush(env, 1);
607
                }
608
                break;
609
            case 3: // Synchronous Fault Status Register with Clear
610
            case 4: // Synchronous Fault Address Register
611
                break;
612
            case 0x10: // TLB Replacement Control Register
613
                env->mmuregs[reg] = val & env->mmu_trcr_mask;
614
                break;
615
            case 0x13: // Synchronous Fault Status Register with Read and Clear
616
                env->mmuregs[3] = val & env->mmu_sfsr_mask;
617
                break;
618
            case 0x14: // Synchronous Fault Address Register
619
                env->mmuregs[4] = val;
620
                break;
621
            default:
622
                env->mmuregs[reg] = val;
623
                break;
624
            }
625
            if (oldreg != env->mmuregs[reg]) {
626
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
627
            }
628
#ifdef DEBUG_MMU
629
            dump_mmu(env);
630
#endif
631
        }
632
        break;
633
    case 5: // Turbosparc ITLB Diagnostic
634
    case 6: // Turbosparc DTLB Diagnostic
635
    case 7: // Turbosparc IOTLB Diagnostic
636
        break;
637
    case 0xa: /* User data access */
638
        switch(size) {
639
        case 1:
640
            stb_user(addr, val);
641
            break;
642
        case 2:
643
            stw_user(addr & ~1, val);
644
            break;
645
        default:
646
        case 4:
647
            stl_user(addr & ~3, val);
648
            break;
649
        case 8:
650
            stq_user(addr & ~7, val);
651
            break;
652
        }
653
        break;
654
    case 0xb: /* Supervisor data access */
655
        switch(size) {
656
        case 1:
657
            stb_kernel(addr, val);
658
            break;
659
        case 2:
660
            stw_kernel(addr & ~1, val);
661
            break;
662
        default:
663
        case 4:
664
            stl_kernel(addr & ~3, val);
665
            break;
666
        case 8:
667
            stq_kernel(addr & ~7, val);
668
            break;
669
        }
670
        break;
671
    case 0xc: /* I-cache tag */
672
    case 0xd: /* I-cache data */
673
    case 0xe: /* D-cache tag */
674
    case 0xf: /* D-cache data */
675
    case 0x10: /* I/D-cache flush page */
676
    case 0x11: /* I/D-cache flush segment */
677
    case 0x12: /* I/D-cache flush region */
678
    case 0x13: /* I/D-cache flush context */
679
    case 0x14: /* I/D-cache flush user */
680
        break;
681
    case 0x17: /* Block copy, sta access */
682
        {
683
            // val = src
684
            // addr = dst
685
            // copy 32 bytes
686
            unsigned int i;
687
            uint32_t src = val & ~3, dst = addr & ~3, temp;
688

    
689
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
690
                temp = ldl_kernel(src);
691
                stl_kernel(dst, temp);
692
            }
693
        }
694
        break;
695
    case 0x1f: /* Block fill, stda access */
696
        {
697
            // addr = dst
698
            // fill 32 bytes with val
699
            unsigned int i;
700
            uint32_t dst = addr & 7;
701

    
702
            for (i = 0; i < 32; i += 8, dst += 8)
703
                stq_kernel(dst, val);
704
        }
705
        break;
706
    case 0x20: /* MMU passthrough */
707
        {
708
            switch(size) {
709
            case 1:
710
                stb_phys(addr, val);
711
                break;
712
            case 2:
713
                stw_phys(addr & ~1, val);
714
                break;
715
            case 4:
716
            default:
717
                stl_phys(addr & ~3, val);
718
                break;
719
            case 8:
720
                stq_phys(addr & ~7, val);
721
                break;
722
            }
723
        }
724
        break;
725
    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
726
        {
727
            switch(size) {
728
            case 1:
729
                stb_phys((target_phys_addr_t)addr
730
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
731
                break;
732
            case 2:
733
                stw_phys((target_phys_addr_t)(addr & ~1)
734
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
735
                break;
736
            case 4:
737
            default:
738
                stl_phys((target_phys_addr_t)(addr & ~3)
739
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
740
                break;
741
            case 8:
742
                stq_phys((target_phys_addr_t)(addr & ~7)
743
                         | ((target_phys_addr_t)(asi & 0xf) << 32), val);
744
                break;
745
            }
746
        }
747
        break;
748
    case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
749
    case 0x31: // store buffer data, Ross RT620 I-cache flush or
750
               // Turbosparc snoop RAM
751
    case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic
752
    case 0x36: /* I-cache flash clear */
753
    case 0x37: /* D-cache flash clear */
754
    case 0x38: /* breakpoint diagnostics */
755
    case 0x4c: /* breakpoint action */
756
        break;
757
    case 8: /* User code access, XXX */
758
    case 9: /* Supervisor code access, XXX */
759
    default:
760
        do_unassigned_access(addr, 1, 0, asi);
761
        break;
762
    }
763
#ifdef DEBUG_ASI
764
    dump_asi("write", addr, asi, size, val);
765
#endif
766
}
767

    
768
#endif /* CONFIG_USER_ONLY */
769
#else /* TARGET_SPARC64 */
770

    
771
#ifdef CONFIG_USER_ONLY
772
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
773
{
774
    uint64_t ret = 0;
775
#if defined(DEBUG_ASI)
776
    target_ulong last_addr = addr;
777
#endif
778

    
779
    if (asi < 0x80)
780
        raise_exception(TT_PRIV_ACT);
781

    
782
    switch (asi) {
783
    case 0x80: // Primary
784
    case 0x82: // Primary no-fault
785
    case 0x88: // Primary LE
786
    case 0x8a: // Primary no-fault LE
787
        {
788
            switch(size) {
789
            case 1:
790
                ret = ldub_raw(addr);
791
                break;
792
            case 2:
793
                ret = lduw_raw(addr & ~1);
794
                break;
795
            case 4:
796
                ret = ldl_raw(addr & ~3);
797
                break;
798
            default:
799
            case 8:
800
                ret = ldq_raw(addr & ~7);
801
                break;
802
            }
803
        }
804
        break;
805
    case 0x81: // Secondary
806
    case 0x83: // Secondary no-fault
807
    case 0x89: // Secondary LE
808
    case 0x8b: // Secondary no-fault LE
809
        // XXX
810
        break;
811
    default:
812
        break;
813
    }
814

    
815
    /* Convert from little endian */
816
    switch (asi) {
817
    case 0x88: // Primary LE
818
    case 0x89: // Secondary LE
819
    case 0x8a: // Primary no-fault LE
820
    case 0x8b: // Secondary no-fault LE
821
        switch(size) {
822
        case 2:
823
            ret = bswap16(ret);
824
            break;
825
        case 4:
826
            ret = bswap32(ret);
827
            break;
828
        case 8:
829
            ret = bswap64(ret);
830
            break;
831
        default:
832
            break;
833
        }
834
    default:
835
        break;
836
    }
837

    
838
    /* Convert to signed number */
839
    if (sign) {
840
        switch(size) {
841
        case 1:
842
            ret = (int8_t) ret;
843
            break;
844
        case 2:
845
            ret = (int16_t) ret;
846
            break;
847
        case 4:
848
            ret = (int32_t) ret;
849
            break;
850
        default:
851
            break;
852
        }
853
    }
854
#ifdef DEBUG_ASI
855
    dump_asi("read ", last_addr, asi, size, ret);
856
#endif
857
    return ret;
858
}
859

    
860
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
861
{
862
#ifdef DEBUG_ASI
863
    dump_asi("write", addr, asi, size, val);
864
#endif
865
    if (asi < 0x80)
866
        raise_exception(TT_PRIV_ACT);
867

    
868
    /* Convert to little endian */
869
    switch (asi) {
870
    case 0x88: // Primary LE
871
    case 0x89: // Secondary LE
872
        switch(size) {
873
        case 2:
874
            addr = bswap16(addr);
875
            break;
876
        case 4:
877
            addr = bswap32(addr);
878
            break;
879
        case 8:
880
            addr = bswap64(addr);
881
            break;
882
        default:
883
            break;
884
        }
885
    default:
886
        break;
887
    }
888

    
889
    switch(asi) {
890
    case 0x80: // Primary
891
    case 0x88: // Primary LE
892
        {
893
            switch(size) {
894
            case 1:
895
                stb_raw(addr, val);
896
                break;
897
            case 2:
898
                stw_raw(addr & ~1, val);
899
                break;
900
            case 4:
901
                stl_raw(addr & ~3, val);
902
                break;
903
            case 8:
904
            default:
905
                stq_raw(addr & ~7, val);
906
                break;
907
            }
908
        }
909
        break;
910
    case 0x81: // Secondary
911
    case 0x89: // Secondary LE
912
        // XXX
913
        return;
914

    
915
    case 0x82: // Primary no-fault, RO
916
    case 0x83: // Secondary no-fault, RO
917
    case 0x8a: // Primary no-fault LE, RO
918
    case 0x8b: // Secondary no-fault LE, RO
919
    default:
920
        do_unassigned_access(addr, 1, 0, 1);
921
        return;
922
    }
923
}
924

    
925
#else /* CONFIG_USER_ONLY */
926

    
927
uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
928
{
929
    uint64_t ret = 0;
930
#if defined(DEBUG_ASI)
931
    target_ulong last_addr = addr;
932
#endif
933

    
934
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
935
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
936
        raise_exception(TT_PRIV_ACT);
937

    
938
    switch (asi) {
939
    case 0x10: // As if user primary
940
    case 0x18: // As if user primary LE
941
    case 0x80: // Primary
942
    case 0x82: // Primary no-fault
943
    case 0x88: // Primary LE
944
    case 0x8a: // Primary no-fault LE
945
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
946
            if (env->hpstate & HS_PRIV) {
947
                switch(size) {
948
                case 1:
949
                    ret = ldub_hypv(addr);
950
                    break;
951
                case 2:
952
                    ret = lduw_hypv(addr & ~1);
953
                    break;
954
                case 4:
955
                    ret = ldl_hypv(addr & ~3);
956
                    break;
957
                default:
958
                case 8:
959
                    ret = ldq_hypv(addr & ~7);
960
                    break;
961
                }
962
            } else {
963
                switch(size) {
964
                case 1:
965
                    ret = ldub_kernel(addr);
966
                    break;
967
                case 2:
968
                    ret = lduw_kernel(addr & ~1);
969
                    break;
970
                case 4:
971
                    ret = ldl_kernel(addr & ~3);
972
                    break;
973
                default:
974
                case 8:
975
                    ret = ldq_kernel(addr & ~7);
976
                    break;
977
                }
978
            }
979
        } else {
980
            switch(size) {
981
            case 1:
982
                ret = ldub_user(addr);
983
                break;
984
            case 2:
985
                ret = lduw_user(addr & ~1);
986
                break;
987
            case 4:
988
                ret = ldl_user(addr & ~3);
989
                break;
990
            default:
991
            case 8:
992
                ret = ldq_user(addr & ~7);
993
                break;
994
            }
995
        }
996
        break;
997
    case 0x14: // Bypass
998
    case 0x15: // Bypass, non-cacheable
999
    case 0x1c: // Bypass LE
1000
    case 0x1d: // Bypass, non-cacheable LE
1001
        {
1002
            switch(size) {
1003
            case 1:
1004
                ret = ldub_phys(addr);
1005
                break;
1006
            case 2:
1007
                ret = lduw_phys(addr & ~1);
1008
                break;
1009
            case 4:
1010
                ret = ldl_phys(addr & ~3);
1011
                break;
1012
            default:
1013
            case 8:
1014
                ret = ldq_phys(addr & ~7);
1015
                break;
1016
            }
1017
            break;
1018
        }
1019
    case 0x04: // Nucleus
1020
    case 0x0c: // Nucleus Little Endian (LE)
1021
    case 0x11: // As if user secondary
1022
    case 0x19: // As if user secondary LE
1023
    case 0x24: // Nucleus quad LDD 128 bit atomic
1024
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1025
    case 0x4a: // UPA config
1026
    case 0x81: // Secondary
1027
    case 0x83: // Secondary no-fault
1028
    case 0x89: // Secondary LE
1029
    case 0x8b: // Secondary no-fault LE
1030
        // XXX
1031
        break;
1032
    case 0x45: // LSU
1033
        ret = env->lsu;
1034
        break;
1035
    case 0x50: // I-MMU regs
1036
        {
1037
            int reg = (addr >> 3) & 0xf;
1038

    
1039
            ret = env->immuregs[reg];
1040
            break;
1041
        }
1042
    case 0x51: // I-MMU 8k TSB pointer
1043
    case 0x52: // I-MMU 64k TSB pointer
1044
    case 0x55: // I-MMU data access
1045
        // XXX
1046
        break;
1047
    case 0x56: // I-MMU tag read
1048
        {
1049
            unsigned int i;
1050

    
1051
            for (i = 0; i < 64; i++) {
1052
                // Valid, ctx match, vaddr match
1053
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1054
                    env->itlb_tag[i] == addr) {
1055
                    ret = env->itlb_tag[i];
1056
                    break;
1057
                }
1058
            }
1059
            break;
1060
        }
1061
    case 0x58: // D-MMU regs
1062
        {
1063
            int reg = (addr >> 3) & 0xf;
1064

    
1065
            ret = env->dmmuregs[reg];
1066
            break;
1067
        }
1068
    case 0x5e: // D-MMU tag read
1069
        {
1070
            unsigned int i;
1071

    
1072
            for (i = 0; i < 64; i++) {
1073
                // Valid, ctx match, vaddr match
1074
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
1075
                    env->dtlb_tag[i] == addr) {
1076
                    ret = env->dtlb_tag[i];
1077
                    break;
1078
                }
1079
            }
1080
            break;
1081
        }
1082
    case 0x59: // D-MMU 8k TSB pointer
1083
    case 0x5a: // D-MMU 64k TSB pointer
1084
    case 0x5b: // D-MMU data pointer
1085
    case 0x5d: // D-MMU data access
1086
    case 0x48: // Interrupt dispatch, RO
1087
    case 0x49: // Interrupt data receive
1088
    case 0x7f: // Incoming interrupt vector, RO
1089
        // XXX
1090
        break;
1091
    case 0x54: // I-MMU data in, WO
1092
    case 0x57: // I-MMU demap, WO
1093
    case 0x5c: // D-MMU data in, WO
1094
    case 0x5f: // D-MMU demap, WO
1095
    case 0x77: // Interrupt vector, WO
1096
    default:
1097
        do_unassigned_access(addr, 0, 0, 1);
1098
        ret = 0;
1099
        break;
1100
    }
1101

    
1102
    /* Convert from little endian */
1103
    switch (asi) {
1104
    case 0x0c: // Nucleus Little Endian (LE)
1105
    case 0x18: // As if user primary LE
1106
    case 0x19: // As if user secondary LE
1107
    case 0x1c: // Bypass LE
1108
    case 0x1d: // Bypass, non-cacheable LE
1109
    case 0x88: // Primary LE
1110
    case 0x89: // Secondary LE
1111
    case 0x8a: // Primary no-fault LE
1112
    case 0x8b: // Secondary no-fault LE
1113
        switch(size) {
1114
        case 2:
1115
            ret = bswap16(ret);
1116
            break;
1117
        case 4:
1118
            ret = bswap32(ret);
1119
            break;
1120
        case 8:
1121
            ret = bswap64(ret);
1122
            break;
1123
        default:
1124
            break;
1125
        }
1126
    default:
1127
        break;
1128
    }
1129

    
1130
    /* Convert to signed number */
1131
    if (sign) {
1132
        switch(size) {
1133
        case 1:
1134
            ret = (int8_t) ret;
1135
            break;
1136
        case 2:
1137
            ret = (int16_t) ret;
1138
            break;
1139
        case 4:
1140
            ret = (int32_t) ret;
1141
            break;
1142
        default:
1143
            break;
1144
        }
1145
    }
1146
#ifdef DEBUG_ASI
1147
    dump_asi("read ", last_addr, asi, size, ret);
1148
#endif
1149
    return ret;
1150
}
1151

    
1152
void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
1153
{
1154
#ifdef DEBUG_ASI
1155
    dump_asi("write", addr, asi, size, val);
1156
#endif
1157
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1158
        || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
1159
        raise_exception(TT_PRIV_ACT);
1160

    
1161
    /* Convert to little endian */
1162
    switch (asi) {
1163
    case 0x0c: // Nucleus Little Endian (LE)
1164
    case 0x18: // As if user primary LE
1165
    case 0x19: // As if user secondary LE
1166
    case 0x1c: // Bypass LE
1167
    case 0x1d: // Bypass, non-cacheable LE
1168
    case 0x88: // Primary LE
1169
    case 0x89: // Secondary LE
1170
        switch(size) {
1171
        case 2:
1172
            addr = bswap16(addr);
1173
            break;
1174
        case 4:
1175
            addr = bswap32(addr);
1176
            break;
1177
        case 8:
1178
            addr = bswap64(addr);
1179
            break;
1180
        default:
1181
            break;
1182
        }
1183
    default:
1184
        break;
1185
    }
1186

    
1187
    switch(asi) {
1188
    case 0x10: // As if user primary
1189
    case 0x18: // As if user primary LE
1190
    case 0x80: // Primary
1191
    case 0x88: // Primary LE
1192
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1193
            if (env->hpstate & HS_PRIV) {
1194
                switch(size) {
1195
                case 1:
1196
                    stb_hypv(addr, val);
1197
                    break;
1198
                case 2:
1199
                    stw_hypv(addr & ~1, val);
1200
                    break;
1201
                case 4:
1202
                    stl_hypv(addr & ~3, val);
1203
                    break;
1204
                case 8:
1205
                default:
1206
                    stq_hypv(addr & ~7, val);
1207
                    break;
1208
                }
1209
            } else {
1210
                switch(size) {
1211
                case 1:
1212
                    stb_kernel(addr, val);
1213
                    break;
1214
                case 2:
1215
                    stw_kernel(addr & ~1, val);
1216
                    break;
1217
                case 4:
1218
                    stl_kernel(addr & ~3, val);
1219
                    break;
1220
                case 8:
1221
                default:
1222
                    stq_kernel(addr & ~7, val);
1223
                    break;
1224
                }
1225
            }
1226
        } else {
1227
            switch(size) {
1228
            case 1:
1229
                stb_user(addr, val);
1230
                break;
1231
            case 2:
1232
                stw_user(addr & ~1, val);
1233
                break;
1234
            case 4:
1235
                stl_user(addr & ~3, val);
1236
                break;
1237
            case 8:
1238
            default:
1239
                stq_user(addr & ~7, val);
1240
                break;
1241
            }
1242
        }
1243
        break;
1244
    case 0x14: // Bypass
1245
    case 0x15: // Bypass, non-cacheable
1246
    case 0x1c: // Bypass LE
1247
    case 0x1d: // Bypass, non-cacheable LE
1248
        {
1249
            switch(size) {
1250
            case 1:
1251
                stb_phys(addr, val);
1252
                break;
1253
            case 2:
1254
                stw_phys(addr & ~1, val);
1255
                break;
1256
            case 4:
1257
                stl_phys(addr & ~3, val);
1258
                break;
1259
            case 8:
1260
            default:
1261
                stq_phys(addr & ~7, val);
1262
                break;
1263
            }
1264
        }
1265
        return;
1266
    case 0x04: // Nucleus
1267
    case 0x0c: // Nucleus Little Endian (LE)
1268
    case 0x11: // As if user secondary
1269
    case 0x19: // As if user secondary LE
1270
    case 0x24: // Nucleus quad LDD 128 bit atomic
1271
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1272
    case 0x4a: // UPA config
1273
    case 0x81: // Secondary
1274
    case 0x89: // Secondary LE
1275
        // XXX
1276
        return;
1277
    case 0x45: // LSU
1278
        {
1279
            uint64_t oldreg;
1280

    
1281
            oldreg = env->lsu;
1282
            env->lsu = val & (DMMU_E | IMMU_E);
1283
            // Mappings generated during D/I MMU disabled mode are
1284
            // invalid in normal mode
1285
            if (oldreg != env->lsu) {
1286
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1287
#ifdef DEBUG_MMU
1288
                dump_mmu(env);
1289
#endif
1290
                tlb_flush(env, 1);
1291
            }
1292
            return;
1293
        }
1294
    case 0x50: // I-MMU regs
1295
        {
1296
            int reg = (addr >> 3) & 0xf;
1297
            uint64_t oldreg;
1298

    
1299
            oldreg = env->immuregs[reg];
1300
            switch(reg) {
1301
            case 0: // RO
1302
            case 4:
1303
                return;
1304
            case 1: // Not in I-MMU
1305
            case 2:
1306
            case 7:
1307
            case 8:
1308
                return;
1309
            case 3: // SFSR
1310
                if ((val & 1) == 0)
1311
                    val = 0; // Clear SFSR
1312
                break;
1313
            case 5: // TSB access
1314
            case 6: // Tag access
1315
            default:
1316
                break;
1317
            }
1318
            env->immuregs[reg] = val;
1319
            if (oldreg != env->immuregs[reg]) {
1320
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1321
            }
1322
#ifdef DEBUG_MMU
1323
            dump_mmu(env);
1324
#endif
1325
            return;
1326
        }
1327
    case 0x54: // I-MMU data in
1328
        {
1329
            unsigned int i;
1330

    
1331
            // Try finding an invalid entry
1332
            for (i = 0; i < 64; i++) {
1333
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1334
                    env->itlb_tag[i] = env->immuregs[6];
1335
                    env->itlb_tte[i] = val;
1336
                    return;
1337
                }
1338
            }
1339
            // Try finding an unlocked entry
1340
            for (i = 0; i < 64; i++) {
1341
                if ((env->itlb_tte[i] & 0x40) == 0) {
1342
                    env->itlb_tag[i] = env->immuregs[6];
1343
                    env->itlb_tte[i] = val;
1344
                    return;
1345
                }
1346
            }
1347
            // error state?
1348
            return;
1349
        }
1350
    case 0x55: // I-MMU data access
1351
        {
1352
            unsigned int i = (addr >> 3) & 0x3f;
1353

    
1354
            env->itlb_tag[i] = env->immuregs[6];
1355
            env->itlb_tte[i] = val;
1356
            return;
1357
        }
1358
    case 0x57: // I-MMU demap
1359
        // XXX
1360
        return;
1361
    case 0x58: // D-MMU regs
1362
        {
1363
            int reg = (addr >> 3) & 0xf;
1364
            uint64_t oldreg;
1365

    
1366
            oldreg = env->dmmuregs[reg];
1367
            switch(reg) {
1368
            case 0: // RO
1369
            case 4:
1370
                return;
1371
            case 3: // SFSR
1372
                if ((val & 1) == 0) {
1373
                    val = 0; // Clear SFSR, Fault address
1374
                    env->dmmuregs[4] = 0;
1375
                }
1376
                env->dmmuregs[reg] = val;
1377
                break;
1378
            case 1: // Primary context
1379
            case 2: // Secondary context
1380
            case 5: // TSB access
1381
            case 6: // Tag access
1382
            case 7: // Virtual Watchpoint
1383
            case 8: // Physical Watchpoint
1384
            default:
1385
                break;
1386
            }
1387
            env->dmmuregs[reg] = val;
1388
            if (oldreg != env->dmmuregs[reg]) {
1389
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1390
            }
1391
#ifdef DEBUG_MMU
1392
            dump_mmu(env);
1393
#endif
1394
            return;
1395
        }
1396
    case 0x5c: // D-MMU data in
1397
        {
1398
            unsigned int i;
1399

    
1400
            // Try finding an invalid entry
1401
            for (i = 0; i < 64; i++) {
1402
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1403
                    env->dtlb_tag[i] = env->dmmuregs[6];
1404
                    env->dtlb_tte[i] = val;
1405
                    return;
1406
                }
1407
            }
1408
            // Try finding an unlocked entry
1409
            for (i = 0; i < 64; i++) {
1410
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1411
                    env->dtlb_tag[i] = env->dmmuregs[6];
1412
                    env->dtlb_tte[i] = val;
1413
                    return;
1414
                }
1415
            }
1416
            // error state?
1417
            return;
1418
        }
1419
    case 0x5d: // D-MMU data access
1420
        {
1421
            unsigned int i = (addr >> 3) & 0x3f;
1422

    
1423
            env->dtlb_tag[i] = env->dmmuregs[6];
1424
            env->dtlb_tte[i] = val;
1425
            return;
1426
        }
1427
    case 0x5f: // D-MMU demap
1428
    case 0x49: // Interrupt data receive
1429
        // XXX
1430
        return;
1431
    case 0x51: // I-MMU 8k TSB pointer, RO
1432
    case 0x52: // I-MMU 64k TSB pointer, RO
1433
    case 0x56: // I-MMU tag read, RO
1434
    case 0x59: // D-MMU 8k TSB pointer, RO
1435
    case 0x5a: // D-MMU 64k TSB pointer, RO
1436
    case 0x5b: // D-MMU data pointer, RO
1437
    case 0x5e: // D-MMU tag read, RO
1438
    case 0x48: // Interrupt dispatch, RO
1439
    case 0x7f: // Incoming interrupt vector, RO
1440
    case 0x82: // Primary no-fault, RO
1441
    case 0x83: // Secondary no-fault, RO
1442
    case 0x8a: // Primary no-fault LE, RO
1443
    case 0x8b: // Secondary no-fault LE, RO
1444
    default:
1445
        do_unassigned_access(addr, 1, 0, 1);
1446
        return;
1447
    }
1448
}
1449
#endif /* CONFIG_USER_ONLY */
1450

    
1451
void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
1452
{
1453
    unsigned int i;
1454
    target_ulong val;
1455

    
1456
    switch (asi) {
1457
    case 0xf0: // Block load primary
1458
    case 0xf1: // Block load secondary
1459
    case 0xf8: // Block load primary LE
1460
    case 0xf9: // Block load secondary LE
1461
        if (rd & 7) {
1462
            raise_exception(TT_ILL_INSN);
1463
            return;
1464
        }
1465
        if (addr & 0x3f) {
1466
            raise_exception(TT_UNALIGNED);
1467
            return;
1468
        }
1469
        for (i = 0; i < 16; i++) {
1470
            *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0);
1471
            addr += 4;
1472
        }
1473

    
1474
        return;
1475
    default:
1476
        break;
1477
    }
1478

    
1479
    val = helper_ld_asi(addr, asi, size, 0);
1480
    switch(size) {
1481
    default:
1482
    case 4:
1483
        *((uint32_t *)&FT0) = val;
1484
        break;
1485
    case 8:
1486
        *((int64_t *)&DT0) = val;
1487
        break;
1488
#if defined(CONFIG_USER_ONLY)
1489
    case 16:
1490
        // XXX
1491
        break;
1492
#endif
1493
    }
1494
}
1495

    
1496
void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
1497
{
1498
    unsigned int i;
1499
    target_ulong val = 0;
1500

    
1501
    switch (asi) {
1502
    case 0xf0: // Block store primary
1503
    case 0xf1: // Block store secondary
1504
    case 0xf8: // Block store primary LE
1505
    case 0xf9: // Block store secondary LE
1506
        if (rd & 7) {
1507
            raise_exception(TT_ILL_INSN);
1508
            return;
1509
        }
1510
        if (addr & 0x3f) {
1511
            raise_exception(TT_UNALIGNED);
1512
            return;
1513
        }
1514
        for (i = 0; i < 16; i++) {
1515
            val = *(uint32_t *)&env->fpr[rd++];
1516
            helper_st_asi(addr, val, asi & 0x8f, 4);
1517
            addr += 4;
1518
        }
1519

    
1520
        return;
1521
    default:
1522
        break;
1523
    }
1524

    
1525
    switch(size) {
1526
    default:
1527
    case 4:
1528
        val = *((uint32_t *)&FT0);
1529
        break;
1530
    case 8:
1531
        val = *((int64_t *)&DT0);
1532
        break;
1533
#if defined(CONFIG_USER_ONLY)
1534
    case 16:
1535
        // XXX
1536
        break;
1537
#endif
1538
    }
1539
    helper_st_asi(addr, val, asi, size);
1540
}
1541

    
1542
target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
1543
                            target_ulong val2, uint32_t asi)
1544
{
1545
    target_ulong ret;
1546

    
1547
    val1 &= 0xffffffffUL;
1548
    ret = helper_ld_asi(addr, asi, 4, 0);
1549
    ret &= 0xffffffffUL;
1550
    if (val1 == ret)
1551
        helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
1552
    return ret;
1553
}
1554

    
1555
target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
1556
                             target_ulong val2, uint32_t asi)
1557
{
1558
    target_ulong ret;
1559

    
1560
    ret = helper_ld_asi(addr, asi, 8, 0);
1561
    if (val1 == ret)
1562
        helper_st_asi(addr, val2, asi, 8);
1563
    return ret;
1564
}
1565
#endif /* TARGET_SPARC64 */
1566

    
1567
#ifndef TARGET_SPARC64
1568
void helper_rett(void)
1569
{
1570
    unsigned int cwp;
1571

    
1572
    if (env->psret == 1)
1573
        raise_exception(TT_ILL_INSN);
1574

    
1575
    env->psret = 1;
1576
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1577
    if (env->wim & (1 << cwp)) {
1578
        raise_exception(TT_WIN_UNF);
1579
    }
1580
    set_cwp(cwp);
1581
    env->psrs = env->psrps;
1582
}
1583
#endif
1584

    
1585
uint64_t helper_pack64(target_ulong high, target_ulong low)
1586
{
1587
    return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
1588
}
1589

    
1590
void helper_ldfsr(void)
1591
{
1592
    int rnd_mode;
1593

    
1594
    PUT_FSR32(env, *((uint32_t *) &FT0));
1595
    switch (env->fsr & FSR_RD_MASK) {
1596
    case FSR_RD_NEAREST:
1597
        rnd_mode = float_round_nearest_even;
1598
        break;
1599
    default:
1600
    case FSR_RD_ZERO:
1601
        rnd_mode = float_round_to_zero;
1602
        break;
1603
    case FSR_RD_POS:
1604
        rnd_mode = float_round_up;
1605
        break;
1606
    case FSR_RD_NEG:
1607
        rnd_mode = float_round_down;
1608
        break;
1609
    }
1610
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1611
}
1612

    
1613
void helper_stfsr(void)
1614
{
1615
    *((uint32_t *) &FT0) = GET_FSR32(env);
1616
}
1617

    
1618
void helper_debug(void)
1619
{
1620
    env->exception_index = EXCP_DEBUG;
1621
    cpu_loop_exit();
1622
}
1623

    
1624
#ifndef TARGET_SPARC64
1625
void helper_wrpsr(target_ulong new_psr)
1626
{
1627
    if ((new_psr & PSR_CWP) >= NWINDOWS)
1628
        raise_exception(TT_ILL_INSN);
1629
    else
1630
        PUT_PSR(env, new_psr);
1631
}
1632

    
1633
target_ulong helper_rdpsr(void)
1634
{
1635
    return GET_PSR(env);
1636
}
1637

    
1638
#else
1639
target_ulong helper_rdccr(void)
1640
{
1641
    return GET_CCR(env);
1642
}
1643

    
1644
void helper_wrccr(target_ulong new_ccr)
1645
{
1646
    PUT_CCR(env, new_ccr);
1647
}
1648

    
1649
// CWP handling is reversed in V9, but we still use the V8 register
1650
// order.
1651
target_ulong helper_rdcwp(void)
1652
{
1653
    return GET_CWP64(env);
1654
}
1655

    
1656
void helper_wrcwp(target_ulong new_cwp)
1657
{
1658
    PUT_CWP64(env, new_cwp);
1659
}
1660

    
1661
// This function uses non-native bit order
1662
#define GET_FIELD(X, FROM, TO)                                  \
1663
    ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
1664

    
1665
// This function uses the order in the manuals, i.e. bit 0 is 2^0
1666
#define GET_FIELD_SP(X, FROM, TO)               \
1667
    GET_FIELD(X, 63 - (TO), 63 - (FROM))
1668

    
1669
target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
1670
{
1671
    return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
1672
        (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
1673
        (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
1674
        (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
1675
        (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
1676
        (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
1677
        (((pixel_addr >> 55) & 1) << 4) |
1678
        (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
1679
        GET_FIELD_SP(pixel_addr, 11, 12);
1680
}
1681

    
1682
target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
1683
{
1684
    uint64_t tmp;
1685

    
1686
    tmp = addr + offset;
1687
    env->gsr &= ~7ULL;
1688
    env->gsr |= tmp & 7ULL;
1689
    return tmp & ~7ULL;
1690
}
1691

    
1692
target_ulong helper_popc(target_ulong val)
1693
{
1694
    return ctpop64(val);
1695
}
1696

    
1697
static inline uint64_t *get_gregset(uint64_t pstate)
1698
{
1699
    switch (pstate) {
1700
    default:
1701
    case 0:
1702
        return env->bgregs;
1703
    case PS_AG:
1704
        return env->agregs;
1705
    case PS_MG:
1706
        return env->mgregs;
1707
    case PS_IG:
1708
        return env->igregs;
1709
    }
1710
}
1711

    
1712
static inline void change_pstate(uint64_t new_pstate)
1713
{
1714
    uint64_t pstate_regs, new_pstate_regs;
1715
    uint64_t *src, *dst;
1716

    
1717
    pstate_regs = env->pstate & 0xc01;
1718
    new_pstate_regs = new_pstate & 0xc01;
1719
    if (new_pstate_regs != pstate_regs) {
1720
        // Switch global register bank
1721
        src = get_gregset(new_pstate_regs);
1722
        dst = get_gregset(pstate_regs);
1723
        memcpy32(dst, env->gregs);
1724
        memcpy32(env->gregs, src);
1725
    }
1726
    env->pstate = new_pstate;
1727
}
1728

    
1729
void helper_wrpstate(target_ulong new_state)
1730
{
1731
    change_pstate(new_state & 0xf3f);
1732
}
1733

    
1734
void helper_done(void)
1735
{
1736
    env->tl--;
1737
    env->tsptr = &env->ts[env->tl];
1738
    env->pc = env->tsptr->tpc;
1739
    env->npc = env->tsptr->tnpc + 4;
1740
    PUT_CCR(env, env->tsptr->tstate >> 32);
1741
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
1742
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
1743
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
1744
}
1745

    
1746
void helper_retry(void)
1747
{
1748
    env->tl--;
1749
    env->tsptr = &env->ts[env->tl];
1750
    env->pc = env->tsptr->tpc;
1751
    env->npc = env->tsptr->tnpc;
1752
    PUT_CCR(env, env->tsptr->tstate >> 32);
1753
    env->asi = (env->tsptr->tstate >> 24) & 0xff;
1754
    change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
1755
    PUT_CWP64(env, env->tsptr->tstate & 0xff);
1756
}
1757
#endif
1758

    
1759
void set_cwp(int new_cwp)
1760
{
1761
    /* put the modified wrap registers at their proper location */
1762
    if (env->cwp == (NWINDOWS - 1))
1763
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1764
    env->cwp = new_cwp;
1765
    /* put the wrap registers at their temporary location */
1766
    if (new_cwp == (NWINDOWS - 1))
1767
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1768
    env->regwptr = env->regbase + (new_cwp * 16);
1769
    REGWPTR = env->regwptr;
1770
}
1771

    
1772
void cpu_set_cwp(CPUState *env1, int new_cwp)
1773
{
1774
    CPUState *saved_env;
1775
#ifdef reg_REGWPTR
1776
    target_ulong *saved_regwptr;
1777
#endif
1778

    
1779
    saved_env = env;
1780
#ifdef reg_REGWPTR
1781
    saved_regwptr = REGWPTR;
1782
#endif
1783
    env = env1;
1784
    set_cwp(new_cwp);
1785
    env = saved_env;
1786
#ifdef reg_REGWPTR
1787
    REGWPTR = saved_regwptr;
1788
#endif
1789
}
1790

    
1791
#ifdef TARGET_SPARC64
1792
#ifdef DEBUG_PCALL
1793
static const char * const excp_names[0x50] = {
1794
    [TT_TFAULT] = "Instruction Access Fault",
1795
    [TT_TMISS] = "Instruction Access MMU Miss",
1796
    [TT_CODE_ACCESS] = "Instruction Access Error",
1797
    [TT_ILL_INSN] = "Illegal Instruction",
1798
    [TT_PRIV_INSN] = "Privileged Instruction",
1799
    [TT_NFPU_INSN] = "FPU Disabled",
1800
    [TT_FP_EXCP] = "FPU Exception",
1801
    [TT_TOVF] = "Tag Overflow",
1802
    [TT_CLRWIN] = "Clean Windows",
1803
    [TT_DIV_ZERO] = "Division By Zero",
1804
    [TT_DFAULT] = "Data Access Fault",
1805
    [TT_DMISS] = "Data Access MMU Miss",
1806
    [TT_DATA_ACCESS] = "Data Access Error",
1807
    [TT_DPROT] = "Data Protection Error",
1808
    [TT_UNALIGNED] = "Unaligned Memory Access",
1809
    [TT_PRIV_ACT] = "Privileged Action",
1810
    [TT_EXTINT | 0x1] = "External Interrupt 1",
1811
    [TT_EXTINT | 0x2] = "External Interrupt 2",
1812
    [TT_EXTINT | 0x3] = "External Interrupt 3",
1813
    [TT_EXTINT | 0x4] = "External Interrupt 4",
1814
    [TT_EXTINT | 0x5] = "External Interrupt 5",
1815
    [TT_EXTINT | 0x6] = "External Interrupt 6",
1816
    [TT_EXTINT | 0x7] = "External Interrupt 7",
1817
    [TT_EXTINT | 0x8] = "External Interrupt 8",
1818
    [TT_EXTINT | 0x9] = "External Interrupt 9",
1819
    [TT_EXTINT | 0xa] = "External Interrupt 10",
1820
    [TT_EXTINT | 0xb] = "External Interrupt 11",
1821
    [TT_EXTINT | 0xc] = "External Interrupt 12",
1822
    [TT_EXTINT | 0xd] = "External Interrupt 13",
1823
    [TT_EXTINT | 0xe] = "External Interrupt 14",
1824
    [TT_EXTINT | 0xf] = "External Interrupt 15",
1825
};
1826
#endif
1827

    
1828
void do_interrupt(int intno)
1829
{
1830
#ifdef DEBUG_PCALL
1831
    if (loglevel & CPU_LOG_INT) {
1832
        static int count;
1833
        const char *name;
1834

    
1835
        if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
1836
            name = "Unknown";
1837
        else if (intno >= 0x100)
1838
            name = "Trap Instruction";
1839
        else if (intno >= 0xc0)
1840
            name = "Window Fill";
1841
        else if (intno >= 0x80)
1842
            name = "Window Spill";
1843
        else {
1844
            name = excp_names[intno];
1845
            if (!name)
1846
                name = "Unknown";
1847
        }
1848

    
1849
        fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
1850
                " SP=%016" PRIx64 "\n",
1851
                count, name, intno,
1852
                env->pc,
1853
                env->npc, env->regwptr[6]);
1854
        cpu_dump_state(env, logfile, fprintf, 0);
1855
#if 0
1856
        {
1857
            int i;
1858
            uint8_t *ptr;
1859

1860
            fprintf(logfile, "       code=");
1861
            ptr = (uint8_t *)env->pc;
1862
            for(i = 0; i < 16; i++) {
1863
                fprintf(logfile, " %02x", ldub(ptr + i));
1864
            }
1865
            fprintf(logfile, "\n");
1866
        }
1867
#endif
1868
        count++;
1869
    }
1870
#endif
1871
#if !defined(CONFIG_USER_ONLY)
1872
    if (env->tl == MAXTL) {
1873
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1874
        return;
1875
    }
1876
#endif
1877
    env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
1878
        ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
1879
        GET_CWP64(env);
1880
    env->tsptr->tpc = env->pc;
1881
    env->tsptr->tnpc = env->npc;
1882
    env->tsptr->tt = intno;
1883
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1884

    
1885
    if (intno == TT_CLRWIN)
1886
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1887
    else if ((intno & 0x1c0) == TT_SPILL)
1888
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1889
    else if ((intno & 0x1c0) == TT_FILL)
1890
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1891
    env->tbr &= ~0x7fffULL;
1892
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1893
    if (env->tl < MAXTL - 1) {
1894
        env->tl++;
1895
    } else {
1896
        env->pstate |= PS_RED;
1897
        if (env->tl != MAXTL)
1898
            env->tl++;
1899
    }
1900
    env->tsptr = &env->ts[env->tl];
1901
    env->pc = env->tbr;
1902
    env->npc = env->pc + 4;
1903
    env->exception_index = 0;
1904
}
1905
#else
1906
#ifdef DEBUG_PCALL
1907
static const char * const excp_names[0x80] = {
1908
    [TT_TFAULT] = "Instruction Access Fault",
1909
    [TT_ILL_INSN] = "Illegal Instruction",
1910
    [TT_PRIV_INSN] = "Privileged Instruction",
1911
    [TT_NFPU_INSN] = "FPU Disabled",
1912
    [TT_WIN_OVF] = "Window Overflow",
1913
    [TT_WIN_UNF] = "Window Underflow",
1914
    [TT_UNALIGNED] = "Unaligned Memory Access",
1915
    [TT_FP_EXCP] = "FPU Exception",
1916
    [TT_DFAULT] = "Data Access Fault",
1917
    [TT_TOVF] = "Tag Overflow",
1918
    [TT_EXTINT | 0x1] = "External Interrupt 1",
1919
    [TT_EXTINT | 0x2] = "External Interrupt 2",
1920
    [TT_EXTINT | 0x3] = "External Interrupt 3",
1921
    [TT_EXTINT | 0x4] = "External Interrupt 4",
1922
    [TT_EXTINT | 0x5] = "External Interrupt 5",
1923
    [TT_EXTINT | 0x6] = "External Interrupt 6",
1924
    [TT_EXTINT | 0x7] = "External Interrupt 7",
1925
    [TT_EXTINT | 0x8] = "External Interrupt 8",
1926
    [TT_EXTINT | 0x9] = "External Interrupt 9",
1927
    [TT_EXTINT | 0xa] = "External Interrupt 10",
1928
    [TT_EXTINT | 0xb] = "External Interrupt 11",
1929
    [TT_EXTINT | 0xc] = "External Interrupt 12",
1930
    [TT_EXTINT | 0xd] = "External Interrupt 13",
1931
    [TT_EXTINT | 0xe] = "External Interrupt 14",
1932
    [TT_EXTINT | 0xf] = "External Interrupt 15",
1933
    [TT_TOVF] = "Tag Overflow",
1934
    [TT_CODE_ACCESS] = "Instruction Access Error",
1935
    [TT_DATA_ACCESS] = "Data Access Error",
1936
    [TT_DIV_ZERO] = "Division By Zero",
1937
    [TT_NCP_INSN] = "Coprocessor Disabled",
1938
};
1939
#endif
1940

    
1941
void do_interrupt(int intno)
1942
{
1943
    int cwp;
1944

    
1945
#ifdef DEBUG_PCALL
1946
    if (loglevel & CPU_LOG_INT) {
1947
        static int count;
1948
        const char *name;
1949

    
1950
        if (intno < 0 || intno >= 0x100)
1951
            name = "Unknown";
1952
        else if (intno >= 0x80)
1953
            name = "Trap Instruction";
1954
        else {
1955
            name = excp_names[intno];
1956
            if (!name)
1957
                name = "Unknown";
1958
        }
1959

    
1960
        fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
1961
                count, name, intno,
1962
                env->pc,
1963
                env->npc, env->regwptr[6]);
1964
        cpu_dump_state(env, logfile, fprintf, 0);
1965
#if 0
1966
        {
1967
            int i;
1968
            uint8_t *ptr;
1969

1970
            fprintf(logfile, "       code=");
1971
            ptr = (uint8_t *)env->pc;
1972
            for(i = 0; i < 16; i++) {
1973
                fprintf(logfile, " %02x", ldub(ptr + i));
1974
            }
1975
            fprintf(logfile, "\n");
1976
        }
1977
#endif
1978
        count++;
1979
    }
1980
#endif
1981
#if !defined(CONFIG_USER_ONLY)
1982
    if (env->psret == 0) {
1983
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1984
        return;
1985
    }
1986
#endif
1987
    env->psret = 0;
1988
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1989
    set_cwp(cwp);
1990
    env->regwptr[9] = env->pc;
1991
    env->regwptr[10] = env->npc;
1992
    env->psrps = env->psrs;
1993
    env->psrs = 1;
1994
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1995
    env->pc = env->tbr;
1996
    env->npc = env->pc + 4;
1997
    env->exception_index = 0;
1998
}
1999
#endif
2000

    
2001
#if !defined(CONFIG_USER_ONLY)
2002

    
2003
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2004
                                void *retaddr);
2005

    
2006
#define MMUSUFFIX _mmu
2007
#define ALIGNED_ONLY
2008
#ifdef __s390__
2009
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2010
#else
2011
# define GETPC() (__builtin_return_address(0))
2012
#endif
2013

    
2014
#define SHIFT 0
2015
#include "softmmu_template.h"
2016

    
2017
#define SHIFT 1
2018
#include "softmmu_template.h"
2019

    
2020
#define SHIFT 2
2021
#include "softmmu_template.h"
2022

    
2023
#define SHIFT 3
2024
#include "softmmu_template.h"
2025

    
2026
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
2027
                                void *retaddr)
2028
{
2029
#ifdef DEBUG_UNALIGNED
2030
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
2031
#endif
2032
    raise_exception(TT_UNALIGNED);
2033
}
2034

    
2035
/* try to fill the TLB and return an exception if error. If retaddr is
2036
   NULL, it means that the function was called in C code (i.e. not
2037
   from generated code or from helper.c) */
2038
/* XXX: fix it to restore all registers */
2039
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2040
{
2041
    TranslationBlock *tb;
2042
    int ret;
2043
    unsigned long pc;
2044
    CPUState *saved_env;
2045

    
2046
    /* XXX: hack to restore env in all cases, even if not called from
2047
       generated code */
2048
    saved_env = env;
2049
    env = cpu_single_env;
2050

    
2051
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2052
    if (ret) {
2053
        if (retaddr) {
2054
            /* now we have a real cpu fault */
2055
            pc = (unsigned long)retaddr;
2056
            tb = tb_find_pc(pc);
2057
            if (tb) {
2058
                /* the PC is inside the translated code. It means that we have
2059
                   a virtual CPU fault */
2060
                cpu_restore_state(tb, env, pc, (void *)T2);
2061
            }
2062
        }
2063
        cpu_loop_exit();
2064
    }
2065
    env = saved_env;
2066
}
2067

    
2068
#endif
2069

    
2070
#ifndef TARGET_SPARC64
2071
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2072
                          int is_asi)
2073
{
2074
    CPUState *saved_env;
2075

    
2076
    /* XXX: hack to restore env in all cases, even if not called from
2077
       generated code */
2078
    saved_env = env;
2079
    env = cpu_single_env;
2080
#ifdef DEBUG_UNASSIGNED
2081
    if (is_asi)
2082
        printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from "
2083
               TARGET_FMT_lx "\n",
2084
               is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
2085
               env->pc);
2086
    else
2087
        printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
2088
               TARGET_FMT_lx "\n",
2089
               is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
2090
#endif
2091
    if (env->mmuregs[3]) /* Fault status register */
2092
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
2093
    if (is_asi)
2094
        env->mmuregs[3] |= 1 << 16;
2095
    if (env->psrs)
2096
        env->mmuregs[3] |= 1 << 5;
2097
    if (is_exec)
2098
        env->mmuregs[3] |= 1 << 6;
2099
    if (is_write)
2100
        env->mmuregs[3] |= 1 << 7;
2101
    env->mmuregs[3] |= (5 << 2) | 2;
2102
    env->mmuregs[4] = addr; /* Fault address register */
2103
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
2104
        if (is_exec)
2105
            raise_exception(TT_CODE_ACCESS);
2106
        else
2107
            raise_exception(TT_DATA_ACCESS);
2108
    }
2109
    env = saved_env;
2110
}
2111
#else
2112
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
2113
                          int is_asi)
2114
{
2115
#ifdef DEBUG_UNASSIGNED
2116
    CPUState *saved_env;
2117

    
2118
    /* XXX: hack to restore env in all cases, even if not called from
2119
       generated code */
2120
    saved_env = env;
2121
    env = cpu_single_env;
2122
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
2123
           addr, env->pc);
2124
    env = saved_env;
2125
#endif
2126
    if (is_exec)
2127
        raise_exception(TT_CODE_ACCESS);
2128
    else
2129
        raise_exception(TT_DATA_ACCESS);
2130
}
2131
#endif
2132