Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ d362e757

History | View | Annotate | Download (57 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21
#include <linux/kvm_para.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "kvm.h"
26
#include "cpu.h"
27
#include "gdbstub.h"
28
#include "host-utils.h"
29
#include "hw/pc.h"
30
#include "hw/apic.h"
31
#include "ioport.h"
32
#include "hyperv.h"
33

    
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifndef BUS_MCEERR_AR
48
#define BUS_MCEERR_AR 4
49
#endif
50
#ifndef BUS_MCEERR_AO
51
#define BUS_MCEERR_AO 5
52
#endif
53

    
54
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55
    KVM_CAP_INFO(SET_TSS_ADDR),
56
    KVM_CAP_INFO(EXT_CPUID),
57
    KVM_CAP_INFO(MP_STATE),
58
    KVM_CAP_LAST_INFO
59
};
60

    
61
static bool has_msr_star;
62
static bool has_msr_hsave_pa;
63
static bool has_msr_tsc_deadline;
64
static bool has_msr_async_pf_en;
65
static bool has_msr_misc_enable;
66
static int lm_capable_kernel;
67

    
68
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69
{
70
    struct kvm_cpuid2 *cpuid;
71
    int r, size;
72

    
73
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74
    cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
75
    cpuid->nent = max;
76
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77
    if (r == 0 && cpuid->nent >= max) {
78
        r = -E2BIG;
79
    }
80
    if (r < 0) {
81
        if (r == -E2BIG) {
82
            g_free(cpuid);
83
            return NULL;
84
        } else {
85
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86
                    strerror(-r));
87
            exit(1);
88
        }
89
    }
90
    return cpuid;
91
}
92

    
93
struct kvm_para_features {
94
    int cap;
95
    int feature;
96
} para_features[] = {
97
    { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98
    { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99
    { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100
    { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
101
    { -1, -1 }
102
};
103

    
104
static int get_para_features(KVMState *s)
105
{
106
    int i, features = 0;
107

    
108
    for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109
        if (kvm_check_extension(s, para_features[i].cap)) {
110
            features |= (1 << para_features[i].feature);
111
        }
112
    }
113

    
114
    return features;
115
}
116

    
117

    
118
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119
                                      uint32_t index, int reg)
120
{
121
    struct kvm_cpuid2 *cpuid;
122
    int i, max;
123
    uint32_t ret = 0;
124
    uint32_t cpuid_1_edx;
125
    int has_kvm_features = 0;
126

    
127
    max = 1;
128
    while ((cpuid = try_get_cpuid(s, max)) == NULL) {
129
        max *= 2;
130
    }
131

    
132
    for (i = 0; i < cpuid->nent; ++i) {
133
        if (cpuid->entries[i].function == function &&
134
            cpuid->entries[i].index == index) {
135
            if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136
                has_kvm_features = 1;
137
            }
138
            switch (reg) {
139
            case R_EAX:
140
                ret = cpuid->entries[i].eax;
141
                break;
142
            case R_EBX:
143
                ret = cpuid->entries[i].ebx;
144
                break;
145
            case R_ECX:
146
                ret = cpuid->entries[i].ecx;
147
                break;
148
            case R_EDX:
149
                ret = cpuid->entries[i].edx;
150
                switch (function) {
151
                case 1:
152
                    /* KVM before 2.6.30 misreports the following features */
153
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154
                    break;
155
                case 0x80000001:
156
                    /* On Intel, kvm returns cpuid according to the Intel spec,
157
                     * so add missing bits according to the AMD spec:
158
                     */
159
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160
                    ret |= cpuid_1_edx & 0x183f7ff;
161
                    break;
162
                }
163
                break;
164
            }
165
        }
166
    }
167

    
168
    g_free(cpuid);
169

    
170
    /* fallback for older kernels */
171
    if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172
        ret = get_para_features(s);
173
    }
174

    
175
    return ret;
176
}
177

    
178
typedef struct HWPoisonPage {
179
    ram_addr_t ram_addr;
180
    QLIST_ENTRY(HWPoisonPage) list;
181
} HWPoisonPage;
182

    
183
static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184
    QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185

    
186
static void kvm_unpoison_all(void *param)
187
{
188
    HWPoisonPage *page, *next_page;
189

    
190
    QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191
        QLIST_REMOVE(page, list);
192
        qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
193
        g_free(page);
194
    }
195
}
196

    
197
static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198
{
199
    HWPoisonPage *page;
200

    
201
    QLIST_FOREACH(page, &hwpoison_page_list, list) {
202
        if (page->ram_addr == ram_addr) {
203
            return;
204
        }
205
    }
206
    page = g_malloc(sizeof(HWPoisonPage));
207
    page->ram_addr = ram_addr;
208
    QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209
}
210

    
211
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212
                                     int *max_banks)
213
{
214
    int r;
215

    
216
    r = kvm_check_extension(s, KVM_CAP_MCE);
217
    if (r > 0) {
218
        *max_banks = r;
219
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220
    }
221
    return -ENOSYS;
222
}
223

    
224
static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
225
{
226
    uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227
                      MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228
    uint64_t mcg_status = MCG_STATUS_MCIP;
229

    
230
    if (code == BUS_MCEERR_AR) {
231
        status |= MCI_STATUS_AR | 0x134;
232
        mcg_status |= MCG_STATUS_EIPV;
233
    } else {
234
        status |= 0xc0;
235
        mcg_status |= MCG_STATUS_RIPV;
236
    }
237
    cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238
                       (MCM_ADDR_PHYS << 6) | 0xc,
239
                       cpu_x86_support_mca_broadcast(env) ?
240
                       MCE_INJECT_BROADCAST : 0);
241
}
242

    
243
static void hardware_memory_error(void)
244
{
245
    fprintf(stderr, "Hardware memory error!\n");
246
    exit(1);
247
}
248

    
249
int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
250
{
251
    ram_addr_t ram_addr;
252
    target_phys_addr_t paddr;
253

    
254
    if ((env->mcg_cap & MCG_SER_P) && addr
255
        && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257
            !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258
            fprintf(stderr, "Hardware memory error for memory used by "
259
                    "QEMU itself instead of guest system!\n");
260
            /* Hope we are lucky for AO MCE */
261
            if (code == BUS_MCEERR_AO) {
262
                return 0;
263
            } else {
264
                hardware_memory_error();
265
            }
266
        }
267
        kvm_hwpoison_page_add(ram_addr);
268
        kvm_mce_inject(env, paddr, code);
269
    } else {
270
        if (code == BUS_MCEERR_AO) {
271
            return 0;
272
        } else if (code == BUS_MCEERR_AR) {
273
            hardware_memory_error();
274
        } else {
275
            return 1;
276
        }
277
    }
278
    return 0;
279
}
280

    
281
int kvm_arch_on_sigbus(int code, void *addr)
282
{
283
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284
        ram_addr_t ram_addr;
285
        target_phys_addr_t paddr;
286

    
287
        /* Hope we are lucky for AO MCE */
288
        if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289
            !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290
                                                &paddr)) {
291
            fprintf(stderr, "Hardware memory error for memory used by "
292
                    "QEMU itself instead of guest system!: %p\n", addr);
293
            return 0;
294
        }
295
        kvm_hwpoison_page_add(ram_addr);
296
        kvm_mce_inject(first_cpu, paddr, code);
297
    } else {
298
        if (code == BUS_MCEERR_AO) {
299
            return 0;
300
        } else if (code == BUS_MCEERR_AR) {
301
            hardware_memory_error();
302
        } else {
303
            return 1;
304
        }
305
    }
306
    return 0;
307
}
308

    
309
static int kvm_inject_mce_oldstyle(CPUState *env)
310
{
311
    if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312
        unsigned int bank, bank_num = env->mcg_cap & 0xff;
313
        struct kvm_x86_mce mce;
314

    
315
        env->exception_injected = -1;
316

    
317
        /*
318
         * There must be at least one bank in use if an MCE is pending.
319
         * Find it and use its values for the event injection.
320
         */
321
        for (bank = 0; bank < bank_num; bank++) {
322
            if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323
                break;
324
            }
325
        }
326
        assert(bank < bank_num);
327

    
328
        mce.bank = bank;
329
        mce.status = env->mce_banks[bank * 4 + 1];
330
        mce.mcg_status = env->mcg_status;
331
        mce.addr = env->mce_banks[bank * 4 + 2];
332
        mce.misc = env->mce_banks[bank * 4 + 3];
333

    
334
        return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335
    }
336
    return 0;
337
}
338

    
339
static void cpu_update_state(void *opaque, int running, RunState state)
340
{
341
    CPUState *env = opaque;
342

    
343
    if (running) {
344
        env->tsc_valid = false;
345
    }
346
}
347

    
348
int kvm_arch_init_vcpu(CPUState *env)
349
{
350
    struct {
351
        struct kvm_cpuid2 cpuid;
352
        struct kvm_cpuid_entry2 entries[100];
353
    } QEMU_PACKED cpuid_data;
354
    KVMState *s = env->kvm_state;
355
    uint32_t limit, i, j, cpuid_i;
356
    uint32_t unused;
357
    struct kvm_cpuid_entry2 *c;
358
    uint32_t signature[3];
359
    int r;
360

    
361
    env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
362

    
363
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
365
    env->cpuid_ext_features |= i;
366

    
367
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
368
                                                             0, R_EDX);
369
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
370
                                                             0, R_ECX);
371
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
372
                                                             0, R_EDX);
373

    
374
    cpuid_i = 0;
375

    
376
    /* Paravirtualization CPUIDs */
377
    c = &cpuid_data.entries[cpuid_i++];
378
    memset(c, 0, sizeof(*c));
379
    c->function = KVM_CPUID_SIGNATURE;
380
    if (!hyperv_enabled()) {
381
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
382
        c->eax = 0;
383
    } else {
384
        memcpy(signature, "Microsoft Hv", 12);
385
        c->eax = HYPERV_CPUID_MIN;
386
    }
387
    c->ebx = signature[0];
388
    c->ecx = signature[1];
389
    c->edx = signature[2];
390

    
391
    c = &cpuid_data.entries[cpuid_i++];
392
    memset(c, 0, sizeof(*c));
393
    c->function = KVM_CPUID_FEATURES;
394
    c->eax = env->cpuid_kvm_features &
395
        kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
396

    
397
    if (hyperv_enabled()) {
398
        memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
399
        c->eax = signature[0];
400

    
401
        c = &cpuid_data.entries[cpuid_i++];
402
        memset(c, 0, sizeof(*c));
403
        c->function = HYPERV_CPUID_VERSION;
404
        c->eax = 0x00001bbc;
405
        c->ebx = 0x00060001;
406

    
407
        c = &cpuid_data.entries[cpuid_i++];
408
        memset(c, 0, sizeof(*c));
409
        c->function = HYPERV_CPUID_FEATURES;
410
        if (hyperv_relaxed_timing_enabled()) {
411
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
412
        }
413
        if (hyperv_vapic_recommended()) {
414
            c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
415
            c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
416
        }
417

    
418
        c = &cpuid_data.entries[cpuid_i++];
419
        memset(c, 0, sizeof(*c));
420
        c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
421
        if (hyperv_relaxed_timing_enabled()) {
422
            c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
423
        }
424
        if (hyperv_vapic_recommended()) {
425
            c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
426
        }
427
        c->ebx = hyperv_get_spinlock_retries();
428

    
429
        c = &cpuid_data.entries[cpuid_i++];
430
        memset(c, 0, sizeof(*c));
431
        c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
432
        c->eax = 0x40;
433
        c->ebx = 0x40;
434

    
435
        c = &cpuid_data.entries[cpuid_i++];
436
        memset(c, 0, sizeof(*c));
437
        c->function = KVM_CPUID_SIGNATURE_NEXT;
438
        memcpy(signature, "KVMKVMKVM\0\0\0", 12);
439
        c->eax = 0;
440
        c->ebx = signature[0];
441
        c->ecx = signature[1];
442
        c->edx = signature[2];
443
    }
444

    
445
    has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
446

    
447
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
448

    
449
    for (i = 0; i <= limit; i++) {
450
        c = &cpuid_data.entries[cpuid_i++];
451

    
452
        switch (i) {
453
        case 2: {
454
            /* Keep reading function 2 till all the input is received */
455
            int times;
456

    
457
            c->function = i;
458
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
459
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
460
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
461
            times = c->eax & 0xff;
462

    
463
            for (j = 1; j < times; ++j) {
464
                c = &cpuid_data.entries[cpuid_i++];
465
                c->function = i;
466
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
467
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
468
            }
469
            break;
470
        }
471
        case 4:
472
        case 0xb:
473
        case 0xd:
474
            for (j = 0; ; j++) {
475
                if (i == 0xd && j == 64) {
476
                    break;
477
                }
478
                c->function = i;
479
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
480
                c->index = j;
481
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
482

    
483
                if (i == 4 && c->eax == 0) {
484
                    break;
485
                }
486
                if (i == 0xb && !(c->ecx & 0xff00)) {
487
                    break;
488
                }
489
                if (i == 0xd && c->eax == 0) {
490
                    continue;
491
                }
492
                c = &cpuid_data.entries[cpuid_i++];
493
            }
494
            break;
495
        default:
496
            c->function = i;
497
            c->flags = 0;
498
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
499
            break;
500
        }
501
    }
502
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
503

    
504
    for (i = 0x80000000; i <= limit; i++) {
505
        c = &cpuid_data.entries[cpuid_i++];
506

    
507
        c->function = i;
508
        c->flags = 0;
509
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510
    }
511

    
512
    /* Call Centaur's CPUID instructions they are supported. */
513
    if (env->cpuid_xlevel2 > 0) {
514
        env->cpuid_ext4_features &=
515
            kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
516
        cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
517

    
518
        for (i = 0xC0000000; i <= limit; i++) {
519
            c = &cpuid_data.entries[cpuid_i++];
520

    
521
            c->function = i;
522
            c->flags = 0;
523
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
524
        }
525
    }
526

    
527
    cpuid_data.cpuid.nent = cpuid_i;
528

    
529
    if (((env->cpuid_version >> 8)&0xF) >= 6
530
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
531
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
532
        uint64_t mcg_cap;
533
        int banks;
534
        int ret;
535

    
536
        ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
537
        if (ret < 0) {
538
            fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
539
            return ret;
540
        }
541

    
542
        if (banks > MCE_BANKS_DEF) {
543
            banks = MCE_BANKS_DEF;
544
        }
545
        mcg_cap &= MCE_CAP_DEF;
546
        mcg_cap |= banks;
547
        ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
548
        if (ret < 0) {
549
            fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
550
            return ret;
551
        }
552

    
553
        env->mcg_cap = mcg_cap;
554
    }
555

    
556
    qemu_add_vm_change_state_handler(cpu_update_state, env);
557

    
558
    r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
559
    if (r) {
560
        return r;
561
    }
562

    
563
    r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
564
    if (r && env->tsc_khz) {
565
        r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
566
        if (r < 0) {
567
            fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
568
            return r;
569
        }
570
    }
571

    
572
    if (kvm_has_xsave()) {
573
        env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
574
    }
575

    
576
    return 0;
577
}
578

    
579
void kvm_arch_reset_vcpu(CPUState *env)
580
{
581
    env->exception_injected = -1;
582
    env->interrupt_injected = -1;
583
    env->xcr0 = 1;
584
    if (kvm_irqchip_in_kernel()) {
585
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
586
                                          KVM_MP_STATE_UNINITIALIZED;
587
    } else {
588
        env->mp_state = KVM_MP_STATE_RUNNABLE;
589
    }
590
}
591

    
592
static int kvm_get_supported_msrs(KVMState *s)
593
{
594
    static int kvm_supported_msrs;
595
    int ret = 0;
596

    
597
    /* first time */
598
    if (kvm_supported_msrs == 0) {
599
        struct kvm_msr_list msr_list, *kvm_msr_list;
600

    
601
        kvm_supported_msrs = -1;
602

    
603
        /* Obtain MSR list from KVM.  These are the MSRs that we must
604
         * save/restore */
605
        msr_list.nmsrs = 0;
606
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
607
        if (ret < 0 && ret != -E2BIG) {
608
            return ret;
609
        }
610
        /* Old kernel modules had a bug and could write beyond the provided
611
           memory. Allocate at least a safe amount of 1K. */
612
        kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
613
                                              msr_list.nmsrs *
614
                                              sizeof(msr_list.indices[0])));
615

    
616
        kvm_msr_list->nmsrs = msr_list.nmsrs;
617
        ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
618
        if (ret >= 0) {
619
            int i;
620

    
621
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
622
                if (kvm_msr_list->indices[i] == MSR_STAR) {
623
                    has_msr_star = true;
624
                    continue;
625
                }
626
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
627
                    has_msr_hsave_pa = true;
628
                    continue;
629
                }
630
                if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
631
                    has_msr_tsc_deadline = true;
632
                    continue;
633
                }
634
                if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
635
                    has_msr_misc_enable = true;
636
                    continue;
637
                }
638
            }
639
        }
640

    
641
        g_free(kvm_msr_list);
642
    }
643

    
644
    return ret;
645
}
646

    
647
int kvm_arch_init(KVMState *s)
648
{
649
    QemuOptsList *list = qemu_find_opts("machine");
650
    uint64_t identity_base = 0xfffbc000;
651
    uint64_t shadow_mem;
652
    int ret;
653
    struct utsname utsname;
654

    
655
    ret = kvm_get_supported_msrs(s);
656
    if (ret < 0) {
657
        return ret;
658
    }
659

    
660
    uname(&utsname);
661
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
662

    
663
    /*
664
     * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
665
     * In order to use vm86 mode, an EPT identity map and a TSS  are needed.
666
     * Since these must be part of guest physical memory, we need to allocate
667
     * them, both by setting their start addresses in the kernel and by
668
     * creating a corresponding e820 entry. We need 4 pages before the BIOS.
669
     *
670
     * Older KVM versions may not support setting the identity map base. In
671
     * that case we need to stick with the default, i.e. a 256K maximum BIOS
672
     * size.
673
     */
674
    if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
675
        /* Allows up to 16M BIOSes. */
676
        identity_base = 0xfeffc000;
677

    
678
        ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
679
        if (ret < 0) {
680
            return ret;
681
        }
682
    }
683

    
684
    /* Set TSS base one page after EPT identity map. */
685
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
686
    if (ret < 0) {
687
        return ret;
688
    }
689

    
690
    /* Tell fw_cfg to notify the BIOS to reserve the range. */
691
    ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
692
    if (ret < 0) {
693
        fprintf(stderr, "e820_add_entry() table is full\n");
694
        return ret;
695
    }
696
    qemu_register_reset(kvm_unpoison_all, NULL);
697

    
698
    if (!QTAILQ_EMPTY(&list->head)) {
699
        shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
700
                                       "kvm_shadow_mem", -1);
701
        if (shadow_mem != -1) {
702
            shadow_mem /= 4096;
703
            ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
704
            if (ret < 0) {
705
                return ret;
706
            }
707
        }
708
    }
709
    return 0;
710
}
711

    
712
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
713
{
714
    lhs->selector = rhs->selector;
715
    lhs->base = rhs->base;
716
    lhs->limit = rhs->limit;
717
    lhs->type = 3;
718
    lhs->present = 1;
719
    lhs->dpl = 3;
720
    lhs->db = 0;
721
    lhs->s = 1;
722
    lhs->l = 0;
723
    lhs->g = 0;
724
    lhs->avl = 0;
725
    lhs->unusable = 0;
726
}
727

    
728
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
729
{
730
    unsigned flags = rhs->flags;
731
    lhs->selector = rhs->selector;
732
    lhs->base = rhs->base;
733
    lhs->limit = rhs->limit;
734
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
735
    lhs->present = (flags & DESC_P_MASK) != 0;
736
    lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
737
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
738
    lhs->s = (flags & DESC_S_MASK) != 0;
739
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
740
    lhs->g = (flags & DESC_G_MASK) != 0;
741
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
742
    lhs->unusable = 0;
743
}
744

    
745
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
746
{
747
    lhs->selector = rhs->selector;
748
    lhs->base = rhs->base;
749
    lhs->limit = rhs->limit;
750
    lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
751
                 (rhs->present * DESC_P_MASK) |
752
                 (rhs->dpl << DESC_DPL_SHIFT) |
753
                 (rhs->db << DESC_B_SHIFT) |
754
                 (rhs->s * DESC_S_MASK) |
755
                 (rhs->l << DESC_L_SHIFT) |
756
                 (rhs->g * DESC_G_MASK) |
757
                 (rhs->avl * DESC_AVL_MASK);
758
}
759

    
760
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
761
{
762
    if (set) {
763
        *kvm_reg = *qemu_reg;
764
    } else {
765
        *qemu_reg = *kvm_reg;
766
    }
767
}
768

    
769
static int kvm_getput_regs(CPUState *env, int set)
770
{
771
    struct kvm_regs regs;
772
    int ret = 0;
773

    
774
    if (!set) {
775
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
776
        if (ret < 0) {
777
            return ret;
778
        }
779
    }
780

    
781
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
782
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
783
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
784
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
785
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
786
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
787
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
788
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
789
#ifdef TARGET_X86_64
790
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
791
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
792
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
793
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
794
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
795
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
796
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
797
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
798
#endif
799

    
800
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
801
    kvm_getput_reg(&regs.rip, &env->eip, set);
802

    
803
    if (set) {
804
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
805
    }
806

    
807
    return ret;
808
}
809

    
810
static int kvm_put_fpu(CPUState *env)
811
{
812
    struct kvm_fpu fpu;
813
    int i;
814

    
815
    memset(&fpu, 0, sizeof fpu);
816
    fpu.fsw = env->fpus & ~(7 << 11);
817
    fpu.fsw |= (env->fpstt & 7) << 11;
818
    fpu.fcw = env->fpuc;
819
    fpu.last_opcode = env->fpop;
820
    fpu.last_ip = env->fpip;
821
    fpu.last_dp = env->fpdp;
822
    for (i = 0; i < 8; ++i) {
823
        fpu.ftwx |= (!env->fptags[i]) << i;
824
    }
825
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
826
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
827
    fpu.mxcsr = env->mxcsr;
828

    
829
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
830
}
831

    
832
#define XSAVE_FCW_FSW     0
833
#define XSAVE_FTW_FOP     1
834
#define XSAVE_CWD_RIP     2
835
#define XSAVE_CWD_RDP     4
836
#define XSAVE_MXCSR       6
837
#define XSAVE_ST_SPACE    8
838
#define XSAVE_XMM_SPACE   40
839
#define XSAVE_XSTATE_BV   128
840
#define XSAVE_YMMH_SPACE  144
841

    
842
static int kvm_put_xsave(CPUState *env)
843
{
844
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
845
    uint16_t cwd, swd, twd;
846
    int i, r;
847

    
848
    if (!kvm_has_xsave()) {
849
        return kvm_put_fpu(env);
850
    }
851

    
852
    memset(xsave, 0, sizeof(struct kvm_xsave));
853
    twd = 0;
854
    swd = env->fpus & ~(7 << 11);
855
    swd |= (env->fpstt & 7) << 11;
856
    cwd = env->fpuc;
857
    for (i = 0; i < 8; ++i) {
858
        twd |= (!env->fptags[i]) << i;
859
    }
860
    xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
861
    xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
862
    memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
863
    memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
864
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
865
            sizeof env->fpregs);
866
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
867
            sizeof env->xmm_regs);
868
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
869
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
870
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
871
            sizeof env->ymmh_regs);
872
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
873
    return r;
874
}
875

    
876
static int kvm_put_xcrs(CPUState *env)
877
{
878
    struct kvm_xcrs xcrs;
879

    
880
    if (!kvm_has_xcrs()) {
881
        return 0;
882
    }
883

    
884
    xcrs.nr_xcrs = 1;
885
    xcrs.flags = 0;
886
    xcrs.xcrs[0].xcr = 0;
887
    xcrs.xcrs[0].value = env->xcr0;
888
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
889
}
890

    
891
static int kvm_put_sregs(CPUState *env)
892
{
893
    struct kvm_sregs sregs;
894

    
895
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
896
    if (env->interrupt_injected >= 0) {
897
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
898
                (uint64_t)1 << (env->interrupt_injected % 64);
899
    }
900

    
901
    if ((env->eflags & VM_MASK)) {
902
        set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
903
        set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
904
        set_v8086_seg(&sregs.es, &env->segs[R_ES]);
905
        set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
906
        set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
907
        set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
908
    } else {
909
        set_seg(&sregs.cs, &env->segs[R_CS]);
910
        set_seg(&sregs.ds, &env->segs[R_DS]);
911
        set_seg(&sregs.es, &env->segs[R_ES]);
912
        set_seg(&sregs.fs, &env->segs[R_FS]);
913
        set_seg(&sregs.gs, &env->segs[R_GS]);
914
        set_seg(&sregs.ss, &env->segs[R_SS]);
915
    }
916

    
917
    set_seg(&sregs.tr, &env->tr);
918
    set_seg(&sregs.ldt, &env->ldt);
919

    
920
    sregs.idt.limit = env->idt.limit;
921
    sregs.idt.base = env->idt.base;
922
    sregs.gdt.limit = env->gdt.limit;
923
    sregs.gdt.base = env->gdt.base;
924

    
925
    sregs.cr0 = env->cr[0];
926
    sregs.cr2 = env->cr[2];
927
    sregs.cr3 = env->cr[3];
928
    sregs.cr4 = env->cr[4];
929

    
930
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
931
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
932

    
933
    sregs.efer = env->efer;
934

    
935
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
936
}
937

    
938
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
939
                              uint32_t index, uint64_t value)
940
{
941
    entry->index = index;
942
    entry->data = value;
943
}
944

    
945
static int kvm_put_msrs(CPUState *env, int level)
946
{
947
    struct {
948
        struct kvm_msrs info;
949
        struct kvm_msr_entry entries[100];
950
    } msr_data;
951
    struct kvm_msr_entry *msrs = msr_data.entries;
952
    int n = 0;
953

    
954
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
955
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
956
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
957
    kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
958
    if (has_msr_star) {
959
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
960
    }
961
    if (has_msr_hsave_pa) {
962
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
963
    }
964
    if (has_msr_tsc_deadline) {
965
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
966
    }
967
    if (has_msr_misc_enable) {
968
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
969
                          env->msr_ia32_misc_enable);
970
    }
971
#ifdef TARGET_X86_64
972
    if (lm_capable_kernel) {
973
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
974
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
975
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
976
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
977
    }
978
#endif
979
    if (level == KVM_PUT_FULL_STATE) {
980
        /*
981
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
982
         * writeback. Until this is fixed, we only write the offset to SMP
983
         * guests after migration, desynchronizing the VCPUs, but avoiding
984
         * huge jump-backs that would occur without any writeback at all.
985
         */
986
        if (smp_cpus == 1 || env->tsc != 0) {
987
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
988
        }
989
    }
990
    /*
991
     * The following paravirtual MSRs have side effects on the guest or are
992
     * too heavy for normal writeback. Limit them to reset or full state
993
     * updates.
994
     */
995
    if (level >= KVM_PUT_RESET_STATE) {
996
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
997
                          env->system_time_msr);
998
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
999
        if (has_msr_async_pf_en) {
1000
            kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1001
                              env->async_pf_en_msr);
1002
        }
1003
        if (hyperv_hypercall_available()) {
1004
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1005
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1006
        }
1007
        if (hyperv_vapic_recommended()) {
1008
            kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1009
        }
1010
    }
1011
    if (env->mcg_cap) {
1012
        int i;
1013

    
1014
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1015
        kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1016
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1017
            kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1018
        }
1019
    }
1020

    
1021
    msr_data.info.nmsrs = n;
1022

    
1023
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1024

    
1025
}
1026

    
1027

    
1028
static int kvm_get_fpu(CPUState *env)
1029
{
1030
    struct kvm_fpu fpu;
1031
    int i, ret;
1032

    
1033
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1034
    if (ret < 0) {
1035
        return ret;
1036
    }
1037

    
1038
    env->fpstt = (fpu.fsw >> 11) & 7;
1039
    env->fpus = fpu.fsw;
1040
    env->fpuc = fpu.fcw;
1041
    env->fpop = fpu.last_opcode;
1042
    env->fpip = fpu.last_ip;
1043
    env->fpdp = fpu.last_dp;
1044
    for (i = 0; i < 8; ++i) {
1045
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
1046
    }
1047
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1048
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1049
    env->mxcsr = fpu.mxcsr;
1050

    
1051
    return 0;
1052
}
1053

    
1054
static int kvm_get_xsave(CPUState *env)
1055
{
1056
    struct kvm_xsave* xsave = env->kvm_xsave_buf;
1057
    int ret, i;
1058
    uint16_t cwd, swd, twd;
1059

    
1060
    if (!kvm_has_xsave()) {
1061
        return kvm_get_fpu(env);
1062
    }
1063

    
1064
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1065
    if (ret < 0) {
1066
        return ret;
1067
    }
1068

    
1069
    cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1070
    swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1071
    twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1072
    env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1073
    env->fpstt = (swd >> 11) & 7;
1074
    env->fpus = swd;
1075
    env->fpuc = cwd;
1076
    for (i = 0; i < 8; ++i) {
1077
        env->fptags[i] = !((twd >> i) & 1);
1078
    }
1079
    memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1080
    memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1081
    env->mxcsr = xsave->region[XSAVE_MXCSR];
1082
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1083
            sizeof env->fpregs);
1084
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1085
            sizeof env->xmm_regs);
1086
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1087
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1088
            sizeof env->ymmh_regs);
1089
    return 0;
1090
}
1091

    
1092
static int kvm_get_xcrs(CPUState *env)
1093
{
1094
    int i, ret;
1095
    struct kvm_xcrs xcrs;
1096

    
1097
    if (!kvm_has_xcrs()) {
1098
        return 0;
1099
    }
1100

    
1101
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1102
    if (ret < 0) {
1103
        return ret;
1104
    }
1105

    
1106
    for (i = 0; i < xcrs.nr_xcrs; i++) {
1107
        /* Only support xcr0 now */
1108
        if (xcrs.xcrs[0].xcr == 0) {
1109
            env->xcr0 = xcrs.xcrs[0].value;
1110
            break;
1111
        }
1112
    }
1113
    return 0;
1114
}
1115

    
1116
static int kvm_get_sregs(CPUState *env)
1117
{
1118
    struct kvm_sregs sregs;
1119
    uint32_t hflags;
1120
    int bit, i, ret;
1121

    
1122
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1123
    if (ret < 0) {
1124
        return ret;
1125
    }
1126

    
1127
    /* There can only be one pending IRQ set in the bitmap at a time, so try
1128
       to find it and save its number instead (-1 for none). */
1129
    env->interrupt_injected = -1;
1130
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1131
        if (sregs.interrupt_bitmap[i]) {
1132
            bit = ctz64(sregs.interrupt_bitmap[i]);
1133
            env->interrupt_injected = i * 64 + bit;
1134
            break;
1135
        }
1136
    }
1137

    
1138
    get_seg(&env->segs[R_CS], &sregs.cs);
1139
    get_seg(&env->segs[R_DS], &sregs.ds);
1140
    get_seg(&env->segs[R_ES], &sregs.es);
1141
    get_seg(&env->segs[R_FS], &sregs.fs);
1142
    get_seg(&env->segs[R_GS], &sregs.gs);
1143
    get_seg(&env->segs[R_SS], &sregs.ss);
1144

    
1145
    get_seg(&env->tr, &sregs.tr);
1146
    get_seg(&env->ldt, &sregs.ldt);
1147

    
1148
    env->idt.limit = sregs.idt.limit;
1149
    env->idt.base = sregs.idt.base;
1150
    env->gdt.limit = sregs.gdt.limit;
1151
    env->gdt.base = sregs.gdt.base;
1152

    
1153
    env->cr[0] = sregs.cr0;
1154
    env->cr[2] = sregs.cr2;
1155
    env->cr[3] = sregs.cr3;
1156
    env->cr[4] = sregs.cr4;
1157

    
1158
    env->efer = sregs.efer;
1159

    
1160
    /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1161

    
1162
#define HFLAG_COPY_MASK \
1163
    ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1164
       HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1165
       HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1166
       HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1167

    
1168
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1169
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1170
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1171
                (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1172
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1173
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1174
                (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1175

    
1176
    if (env->efer & MSR_EFER_LMA) {
1177
        hflags |= HF_LMA_MASK;
1178
    }
1179

    
1180
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1181
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1182
    } else {
1183
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1184
                    (DESC_B_SHIFT - HF_CS32_SHIFT);
1185
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1186
                    (DESC_B_SHIFT - HF_SS32_SHIFT);
1187
        if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1188
            !(hflags & HF_CS32_MASK)) {
1189
            hflags |= HF_ADDSEG_MASK;
1190
        } else {
1191
            hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1192
                        env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1193
        }
1194
    }
1195
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1196

    
1197
    return 0;
1198
}
1199

    
1200
static int kvm_get_msrs(CPUState *env)
1201
{
1202
    struct {
1203
        struct kvm_msrs info;
1204
        struct kvm_msr_entry entries[100];
1205
    } msr_data;
1206
    struct kvm_msr_entry *msrs = msr_data.entries;
1207
    int ret, i, n;
1208

    
1209
    n = 0;
1210
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1211
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1212
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1213
    msrs[n++].index = MSR_PAT;
1214
    if (has_msr_star) {
1215
        msrs[n++].index = MSR_STAR;
1216
    }
1217
    if (has_msr_hsave_pa) {
1218
        msrs[n++].index = MSR_VM_HSAVE_PA;
1219
    }
1220
    if (has_msr_tsc_deadline) {
1221
        msrs[n++].index = MSR_IA32_TSCDEADLINE;
1222
    }
1223
    if (has_msr_misc_enable) {
1224
        msrs[n++].index = MSR_IA32_MISC_ENABLE;
1225
    }
1226

    
1227
    if (!env->tsc_valid) {
1228
        msrs[n++].index = MSR_IA32_TSC;
1229
        env->tsc_valid = !runstate_is_running();
1230
    }
1231

    
1232
#ifdef TARGET_X86_64
1233
    if (lm_capable_kernel) {
1234
        msrs[n++].index = MSR_CSTAR;
1235
        msrs[n++].index = MSR_KERNELGSBASE;
1236
        msrs[n++].index = MSR_FMASK;
1237
        msrs[n++].index = MSR_LSTAR;
1238
    }
1239
#endif
1240
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1241
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1242
    if (has_msr_async_pf_en) {
1243
        msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1244
    }
1245

    
1246
    if (env->mcg_cap) {
1247
        msrs[n++].index = MSR_MCG_STATUS;
1248
        msrs[n++].index = MSR_MCG_CTL;
1249
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1250
            msrs[n++].index = MSR_MC0_CTL + i;
1251
        }
1252
    }
1253

    
1254
    msr_data.info.nmsrs = n;
1255
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1256
    if (ret < 0) {
1257
        return ret;
1258
    }
1259

    
1260
    for (i = 0; i < ret; i++) {
1261
        switch (msrs[i].index) {
1262
        case MSR_IA32_SYSENTER_CS:
1263
            env->sysenter_cs = msrs[i].data;
1264
            break;
1265
        case MSR_IA32_SYSENTER_ESP:
1266
            env->sysenter_esp = msrs[i].data;
1267
            break;
1268
        case MSR_IA32_SYSENTER_EIP:
1269
            env->sysenter_eip = msrs[i].data;
1270
            break;
1271
        case MSR_PAT:
1272
            env->pat = msrs[i].data;
1273
            break;
1274
        case MSR_STAR:
1275
            env->star = msrs[i].data;
1276
            break;
1277
#ifdef TARGET_X86_64
1278
        case MSR_CSTAR:
1279
            env->cstar = msrs[i].data;
1280
            break;
1281
        case MSR_KERNELGSBASE:
1282
            env->kernelgsbase = msrs[i].data;
1283
            break;
1284
        case MSR_FMASK:
1285
            env->fmask = msrs[i].data;
1286
            break;
1287
        case MSR_LSTAR:
1288
            env->lstar = msrs[i].data;
1289
            break;
1290
#endif
1291
        case MSR_IA32_TSC:
1292
            env->tsc = msrs[i].data;
1293
            break;
1294
        case MSR_IA32_TSCDEADLINE:
1295
            env->tsc_deadline = msrs[i].data;
1296
            break;
1297
        case MSR_VM_HSAVE_PA:
1298
            env->vm_hsave = msrs[i].data;
1299
            break;
1300
        case MSR_KVM_SYSTEM_TIME:
1301
            env->system_time_msr = msrs[i].data;
1302
            break;
1303
        case MSR_KVM_WALL_CLOCK:
1304
            env->wall_clock_msr = msrs[i].data;
1305
            break;
1306
        case MSR_MCG_STATUS:
1307
            env->mcg_status = msrs[i].data;
1308
            break;
1309
        case MSR_MCG_CTL:
1310
            env->mcg_ctl = msrs[i].data;
1311
            break;
1312
        case MSR_IA32_MISC_ENABLE:
1313
            env->msr_ia32_misc_enable = msrs[i].data;
1314
            break;
1315
        default:
1316
            if (msrs[i].index >= MSR_MC0_CTL &&
1317
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1318
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1319
            }
1320
            break;
1321
        case MSR_KVM_ASYNC_PF_EN:
1322
            env->async_pf_en_msr = msrs[i].data;
1323
            break;
1324
        }
1325
    }
1326

    
1327
    return 0;
1328
}
1329

    
1330
static int kvm_put_mp_state(CPUState *env)
1331
{
1332
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1333

    
1334
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1335
}
1336

    
1337
static int kvm_get_mp_state(CPUState *env)
1338
{
1339
    struct kvm_mp_state mp_state;
1340
    int ret;
1341

    
1342
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1343
    if (ret < 0) {
1344
        return ret;
1345
    }
1346
    env->mp_state = mp_state.mp_state;
1347
    if (kvm_irqchip_in_kernel()) {
1348
        env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1349
    }
1350
    return 0;
1351
}
1352

    
1353
static int kvm_get_apic(CPUState *env)
1354
{
1355
    DeviceState *apic = env->apic_state;
1356
    struct kvm_lapic_state kapic;
1357
    int ret;
1358

    
1359
    if (apic && kvm_irqchip_in_kernel()) {
1360
        ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1361
        if (ret < 0) {
1362
            return ret;
1363
        }
1364

    
1365
        kvm_get_apic_state(apic, &kapic);
1366
    }
1367
    return 0;
1368
}
1369

    
1370
static int kvm_put_apic(CPUState *env)
1371
{
1372
    DeviceState *apic = env->apic_state;
1373
    struct kvm_lapic_state kapic;
1374

    
1375
    if (apic && kvm_irqchip_in_kernel()) {
1376
        kvm_put_apic_state(apic, &kapic);
1377

    
1378
        return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1379
    }
1380
    return 0;
1381
}
1382

    
1383
static int kvm_put_vcpu_events(CPUState *env, int level)
1384
{
1385
    struct kvm_vcpu_events events;
1386

    
1387
    if (!kvm_has_vcpu_events()) {
1388
        return 0;
1389
    }
1390

    
1391
    events.exception.injected = (env->exception_injected >= 0);
1392
    events.exception.nr = env->exception_injected;
1393
    events.exception.has_error_code = env->has_error_code;
1394
    events.exception.error_code = env->error_code;
1395

    
1396
    events.interrupt.injected = (env->interrupt_injected >= 0);
1397
    events.interrupt.nr = env->interrupt_injected;
1398
    events.interrupt.soft = env->soft_interrupt;
1399

    
1400
    events.nmi.injected = env->nmi_injected;
1401
    events.nmi.pending = env->nmi_pending;
1402
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1403

    
1404
    events.sipi_vector = env->sipi_vector;
1405

    
1406
    events.flags = 0;
1407
    if (level >= KVM_PUT_RESET_STATE) {
1408
        events.flags |=
1409
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1410
    }
1411

    
1412
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1413
}
1414

    
1415
static int kvm_get_vcpu_events(CPUState *env)
1416
{
1417
    struct kvm_vcpu_events events;
1418
    int ret;
1419

    
1420
    if (!kvm_has_vcpu_events()) {
1421
        return 0;
1422
    }
1423

    
1424
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1425
    if (ret < 0) {
1426
       return ret;
1427
    }
1428
    env->exception_injected =
1429
       events.exception.injected ? events.exception.nr : -1;
1430
    env->has_error_code = events.exception.has_error_code;
1431
    env->error_code = events.exception.error_code;
1432

    
1433
    env->interrupt_injected =
1434
        events.interrupt.injected ? events.interrupt.nr : -1;
1435
    env->soft_interrupt = events.interrupt.soft;
1436

    
1437
    env->nmi_injected = events.nmi.injected;
1438
    env->nmi_pending = events.nmi.pending;
1439
    if (events.nmi.masked) {
1440
        env->hflags2 |= HF2_NMI_MASK;
1441
    } else {
1442
        env->hflags2 &= ~HF2_NMI_MASK;
1443
    }
1444

    
1445
    env->sipi_vector = events.sipi_vector;
1446

    
1447
    return 0;
1448
}
1449

    
1450
static int kvm_guest_debug_workarounds(CPUState *env)
1451
{
1452
    int ret = 0;
1453
    unsigned long reinject_trap = 0;
1454

    
1455
    if (!kvm_has_vcpu_events()) {
1456
        if (env->exception_injected == 1) {
1457
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1458
        } else if (env->exception_injected == 3) {
1459
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1460
        }
1461
        env->exception_injected = -1;
1462
    }
1463

    
1464
    /*
1465
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1466
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1467
     * by updating the debug state once again if single-stepping is on.
1468
     * Another reason to call kvm_update_guest_debug here is a pending debug
1469
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1470
     * reinject them via SET_GUEST_DEBUG.
1471
     */
1472
    if (reinject_trap ||
1473
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1474
        ret = kvm_update_guest_debug(env, reinject_trap);
1475
    }
1476
    return ret;
1477
}
1478

    
1479
static int kvm_put_debugregs(CPUState *env)
1480
{
1481
    struct kvm_debugregs dbgregs;
1482
    int i;
1483

    
1484
    if (!kvm_has_debugregs()) {
1485
        return 0;
1486
    }
1487

    
1488
    for (i = 0; i < 4; i++) {
1489
        dbgregs.db[i] = env->dr[i];
1490
    }
1491
    dbgregs.dr6 = env->dr[6];
1492
    dbgregs.dr7 = env->dr[7];
1493
    dbgregs.flags = 0;
1494

    
1495
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1496
}
1497

    
1498
static int kvm_get_debugregs(CPUState *env)
1499
{
1500
    struct kvm_debugregs dbgregs;
1501
    int i, ret;
1502

    
1503
    if (!kvm_has_debugregs()) {
1504
        return 0;
1505
    }
1506

    
1507
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1508
    if (ret < 0) {
1509
        return ret;
1510
    }
1511
    for (i = 0; i < 4; i++) {
1512
        env->dr[i] = dbgregs.db[i];
1513
    }
1514
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1515
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1516

    
1517
    return 0;
1518
}
1519

    
1520
int kvm_arch_put_registers(CPUState *env, int level)
1521
{
1522
    int ret;
1523

    
1524
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1525

    
1526
    ret = kvm_getput_regs(env, 1);
1527
    if (ret < 0) {
1528
        return ret;
1529
    }
1530
    ret = kvm_put_xsave(env);
1531
    if (ret < 0) {
1532
        return ret;
1533
    }
1534
    ret = kvm_put_xcrs(env);
1535
    if (ret < 0) {
1536
        return ret;
1537
    }
1538
    ret = kvm_put_sregs(env);
1539
    if (ret < 0) {
1540
        return ret;
1541
    }
1542
    /* must be before kvm_put_msrs */
1543
    ret = kvm_inject_mce_oldstyle(env);
1544
    if (ret < 0) {
1545
        return ret;
1546
    }
1547
    ret = kvm_put_msrs(env, level);
1548
    if (ret < 0) {
1549
        return ret;
1550
    }
1551
    if (level >= KVM_PUT_RESET_STATE) {
1552
        ret = kvm_put_mp_state(env);
1553
        if (ret < 0) {
1554
            return ret;
1555
        }
1556
        ret = kvm_put_apic(env);
1557
        if (ret < 0) {
1558
            return ret;
1559
        }
1560
    }
1561
    ret = kvm_put_vcpu_events(env, level);
1562
    if (ret < 0) {
1563
        return ret;
1564
    }
1565
    ret = kvm_put_debugregs(env);
1566
    if (ret < 0) {
1567
        return ret;
1568
    }
1569
    /* must be last */
1570
    ret = kvm_guest_debug_workarounds(env);
1571
    if (ret < 0) {
1572
        return ret;
1573
    }
1574
    return 0;
1575
}
1576

    
1577
int kvm_arch_get_registers(CPUState *env)
1578
{
1579
    int ret;
1580

    
1581
    assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1582

    
1583
    ret = kvm_getput_regs(env, 0);
1584
    if (ret < 0) {
1585
        return ret;
1586
    }
1587
    ret = kvm_get_xsave(env);
1588
    if (ret < 0) {
1589
        return ret;
1590
    }
1591
    ret = kvm_get_xcrs(env);
1592
    if (ret < 0) {
1593
        return ret;
1594
    }
1595
    ret = kvm_get_sregs(env);
1596
    if (ret < 0) {
1597
        return ret;
1598
    }
1599
    ret = kvm_get_msrs(env);
1600
    if (ret < 0) {
1601
        return ret;
1602
    }
1603
    ret = kvm_get_mp_state(env);
1604
    if (ret < 0) {
1605
        return ret;
1606
    }
1607
    ret = kvm_get_apic(env);
1608
    if (ret < 0) {
1609
        return ret;
1610
    }
1611
    ret = kvm_get_vcpu_events(env);
1612
    if (ret < 0) {
1613
        return ret;
1614
    }
1615
    ret = kvm_get_debugregs(env);
1616
    if (ret < 0) {
1617
        return ret;
1618
    }
1619
    return 0;
1620
}
1621

    
1622
void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1623
{
1624
    int ret;
1625

    
1626
    /* Inject NMI */
1627
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1628
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1629
        DPRINTF("injected NMI\n");
1630
        ret = kvm_vcpu_ioctl(env, KVM_NMI);
1631
        if (ret < 0) {
1632
            fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1633
                    strerror(-ret));
1634
        }
1635
    }
1636

    
1637
    if (!kvm_irqchip_in_kernel()) {
1638
        /* Force the VCPU out of its inner loop to process any INIT requests
1639
         * or pending TPR access reports. */
1640
        if (env->interrupt_request &
1641
            (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1642
            env->exit_request = 1;
1643
        }
1644

    
1645
        /* Try to inject an interrupt if the guest can accept it */
1646
        if (run->ready_for_interrupt_injection &&
1647
            (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1648
            (env->eflags & IF_MASK)) {
1649
            int irq;
1650

    
1651
            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1652
            irq = cpu_get_pic_interrupt(env);
1653
            if (irq >= 0) {
1654
                struct kvm_interrupt intr;
1655

    
1656
                intr.irq = irq;
1657
                DPRINTF("injected interrupt %d\n", irq);
1658
                ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1659
                if (ret < 0) {
1660
                    fprintf(stderr,
1661
                            "KVM: injection failed, interrupt lost (%s)\n",
1662
                            strerror(-ret));
1663
                }
1664
            }
1665
        }
1666

    
1667
        /* If we have an interrupt but the guest is not ready to receive an
1668
         * interrupt, request an interrupt window exit.  This will
1669
         * cause a return to userspace as soon as the guest is ready to
1670
         * receive interrupts. */
1671
        if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1672
            run->request_interrupt_window = 1;
1673
        } else {
1674
            run->request_interrupt_window = 0;
1675
        }
1676

    
1677
        DPRINTF("setting tpr\n");
1678
        run->cr8 = cpu_get_apic_tpr(env->apic_state);
1679
    }
1680
}
1681

    
1682
void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1683
{
1684
    if (run->if_flag) {
1685
        env->eflags |= IF_MASK;
1686
    } else {
1687
        env->eflags &= ~IF_MASK;
1688
    }
1689
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1690
    cpu_set_apic_base(env->apic_state, run->apic_base);
1691
}
1692

    
1693
int kvm_arch_process_async_events(CPUState *env)
1694
{
1695
    if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1696
        /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1697
        assert(env->mcg_cap);
1698

    
1699
        env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1700

    
1701
        kvm_cpu_synchronize_state(env);
1702

    
1703
        if (env->exception_injected == EXCP08_DBLE) {
1704
            /* this means triple fault */
1705
            qemu_system_reset_request();
1706
            env->exit_request = 1;
1707
            return 0;
1708
        }
1709
        env->exception_injected = EXCP12_MCHK;
1710
        env->has_error_code = 0;
1711

    
1712
        env->halted = 0;
1713
        if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1714
            env->mp_state = KVM_MP_STATE_RUNNABLE;
1715
        }
1716
    }
1717

    
1718
    if (kvm_irqchip_in_kernel()) {
1719
        return 0;
1720
    }
1721

    
1722
    if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1723
         (env->eflags & IF_MASK)) ||
1724
        (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1725
        env->halted = 0;
1726
    }
1727
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1728
        kvm_cpu_synchronize_state(env);
1729
        do_cpu_init(env);
1730
    }
1731
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1732
        kvm_cpu_synchronize_state(env);
1733
        do_cpu_sipi(env);
1734
    }
1735
    if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1736
        env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1737
        kvm_cpu_synchronize_state(env);
1738
        apic_handle_tpr_access_report(env->apic_state, env->eip,
1739
                                      env->tpr_access_type);
1740
    }
1741

    
1742
    return env->halted;
1743
}
1744

    
1745
static int kvm_handle_halt(CPUState *env)
1746
{
1747
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1748
          (env->eflags & IF_MASK)) &&
1749
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1750
        env->halted = 1;
1751
        return EXCP_HLT;
1752
    }
1753

    
1754
    return 0;
1755
}
1756

    
1757
static int kvm_handle_tpr_access(CPUState *env)
1758
{
1759
    struct kvm_run *run = env->kvm_run;
1760

    
1761
    apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1762
                                  run->tpr_access.is_write ? TPR_ACCESS_WRITE
1763
                                                           : TPR_ACCESS_READ);
1764
    return 1;
1765
}
1766

    
1767
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1768
{
1769
    static const uint8_t int3 = 0xcc;
1770

    
1771
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1772
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1773
        return -EINVAL;
1774
    }
1775
    return 0;
1776
}
1777

    
1778
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1779
{
1780
    uint8_t int3;
1781

    
1782
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1783
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1784
        return -EINVAL;
1785
    }
1786
    return 0;
1787
}
1788

    
1789
static struct {
1790
    target_ulong addr;
1791
    int len;
1792
    int type;
1793
} hw_breakpoint[4];
1794

    
1795
static int nb_hw_breakpoint;
1796

    
1797
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1798
{
1799
    int n;
1800

    
1801
    for (n = 0; n < nb_hw_breakpoint; n++) {
1802
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1803
            (hw_breakpoint[n].len == len || len == -1)) {
1804
            return n;
1805
        }
1806
    }
1807
    return -1;
1808
}
1809

    
1810
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1811
                                  target_ulong len, int type)
1812
{
1813
    switch (type) {
1814
    case GDB_BREAKPOINT_HW:
1815
        len = 1;
1816
        break;
1817
    case GDB_WATCHPOINT_WRITE:
1818
    case GDB_WATCHPOINT_ACCESS:
1819
        switch (len) {
1820
        case 1:
1821
            break;
1822
        case 2:
1823
        case 4:
1824
        case 8:
1825
            if (addr & (len - 1)) {
1826
                return -EINVAL;
1827
            }
1828
            break;
1829
        default:
1830
            return -EINVAL;
1831
        }
1832
        break;
1833
    default:
1834
        return -ENOSYS;
1835
    }
1836

    
1837
    if (nb_hw_breakpoint == 4) {
1838
        return -ENOBUFS;
1839
    }
1840
    if (find_hw_breakpoint(addr, len, type) >= 0) {
1841
        return -EEXIST;
1842
    }
1843
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1844
    hw_breakpoint[nb_hw_breakpoint].len = len;
1845
    hw_breakpoint[nb_hw_breakpoint].type = type;
1846
    nb_hw_breakpoint++;
1847

    
1848
    return 0;
1849
}
1850

    
1851
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1852
                                  target_ulong len, int type)
1853
{
1854
    int n;
1855

    
1856
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1857
    if (n < 0) {
1858
        return -ENOENT;
1859
    }
1860
    nb_hw_breakpoint--;
1861
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1862

    
1863
    return 0;
1864
}
1865

    
1866
void kvm_arch_remove_all_hw_breakpoints(void)
1867
{
1868
    nb_hw_breakpoint = 0;
1869
}
1870

    
1871
static CPUWatchpoint hw_watchpoint;
1872

    
1873
static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1874
{
1875
    int ret = 0;
1876
    int n;
1877

    
1878
    if (arch_info->exception == 1) {
1879
        if (arch_info->dr6 & (1 << 14)) {
1880
            if (cpu_single_env->singlestep_enabled) {
1881
                ret = EXCP_DEBUG;
1882
            }
1883
        } else {
1884
            for (n = 0; n < 4; n++) {
1885
                if (arch_info->dr6 & (1 << n)) {
1886
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1887
                    case 0x0:
1888
                        ret = EXCP_DEBUG;
1889
                        break;
1890
                    case 0x1:
1891
                        ret = EXCP_DEBUG;
1892
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1893
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1894
                        hw_watchpoint.flags = BP_MEM_WRITE;
1895
                        break;
1896
                    case 0x3:
1897
                        ret = EXCP_DEBUG;
1898
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1899
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1900
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1901
                        break;
1902
                    }
1903
                }
1904
            }
1905
        }
1906
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1907
        ret = EXCP_DEBUG;
1908
    }
1909
    if (ret == 0) {
1910
        cpu_synchronize_state(cpu_single_env);
1911
        assert(cpu_single_env->exception_injected == -1);
1912

    
1913
        /* pass to guest */
1914
        cpu_single_env->exception_injected = arch_info->exception;
1915
        cpu_single_env->has_error_code = 0;
1916
    }
1917

    
1918
    return ret;
1919
}
1920

    
1921
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1922
{
1923
    const uint8_t type_code[] = {
1924
        [GDB_BREAKPOINT_HW] = 0x0,
1925
        [GDB_WATCHPOINT_WRITE] = 0x1,
1926
        [GDB_WATCHPOINT_ACCESS] = 0x3
1927
    };
1928
    const uint8_t len_code[] = {
1929
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1930
    };
1931
    int n;
1932

    
1933
    if (kvm_sw_breakpoints_active(env)) {
1934
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1935
    }
1936
    if (nb_hw_breakpoint > 0) {
1937
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1938
        dbg->arch.debugreg[7] = 0x0600;
1939
        for (n = 0; n < nb_hw_breakpoint; n++) {
1940
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1941
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1942
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1943
                ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1944
        }
1945
    }
1946
}
1947

    
1948
static bool host_supports_vmx(void)
1949
{
1950
    uint32_t ecx, unused;
1951

    
1952
    host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1953
    return ecx & CPUID_EXT_VMX;
1954
}
1955

    
1956
#define VMX_INVALID_GUEST_STATE 0x80000021
1957

    
1958
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1959
{
1960
    uint64_t code;
1961
    int ret;
1962

    
1963
    switch (run->exit_reason) {
1964
    case KVM_EXIT_HLT:
1965
        DPRINTF("handle_hlt\n");
1966
        ret = kvm_handle_halt(env);
1967
        break;
1968
    case KVM_EXIT_SET_TPR:
1969
        ret = 0;
1970
        break;
1971
    case KVM_EXIT_TPR_ACCESS:
1972
        ret = kvm_handle_tpr_access(env);
1973
        break;
1974
    case KVM_EXIT_FAIL_ENTRY:
1975
        code = run->fail_entry.hardware_entry_failure_reason;
1976
        fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1977
                code);
1978
        if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1979
            fprintf(stderr,
1980
                    "\nIf you're running a guest on an Intel machine without "
1981
                        "unrestricted mode\n"
1982
                    "support, the failure can be most likely due to the guest "
1983
                        "entering an invalid\n"
1984
                    "state for Intel VT. For example, the guest maybe running "
1985
                        "in big real mode\n"
1986
                    "which is not supported on less recent Intel processors."
1987
                        "\n\n");
1988
        }
1989
        ret = -1;
1990
        break;
1991
    case KVM_EXIT_EXCEPTION:
1992
        fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1993
                run->ex.exception, run->ex.error_code);
1994
        ret = -1;
1995
        break;
1996
    case KVM_EXIT_DEBUG:
1997
        DPRINTF("kvm_exit_debug\n");
1998
        ret = kvm_handle_debug(&run->debug.arch);
1999
        break;
2000
    default:
2001
        fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2002
        ret = -1;
2003
        break;
2004
    }
2005

    
2006
    return ret;
2007
}
2008

    
2009
bool kvm_arch_stop_on_emulation_error(CPUState *env)
2010
{
2011
    kvm_cpu_synchronize_state(env);
2012
    return !(env->cr[0] & CR0_PE_MASK) ||
2013
           ((env->segs[R_CS].selector  & 3) != 3);
2014
}
2015

    
2016
void kvm_arch_init_irq_routing(KVMState *s)
2017
{
2018
    if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2019
        /* If kernel can't do irq routing, interrupt source
2020
         * override 0->2 cannot be set up as required by HPET.
2021
         * So we have to disable it.
2022
         */
2023
        no_hpet = 1;
2024
    }
2025
}