Statistics
| Branch: | Revision:

root / hw / mc146818rtc.c @ d537cf6c

History | View | Annotate | Download (14.2 kB)

1
/*
2
 * QEMU MC146818 RTC emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_CMOS
27

    
28
#define RTC_SECONDS             0
29
#define RTC_SECONDS_ALARM       1
30
#define RTC_MINUTES             2
31
#define RTC_MINUTES_ALARM       3
32
#define RTC_HOURS               4
33
#define RTC_HOURS_ALARM         5
34
#define RTC_ALARM_DONT_CARE    0xC0
35

    
36
#define RTC_DAY_OF_WEEK         6
37
#define RTC_DAY_OF_MONTH        7
38
#define RTC_MONTH               8
39
#define RTC_YEAR                9
40

    
41
#define RTC_REG_A               10
42
#define RTC_REG_B               11
43
#define RTC_REG_C               12
44
#define RTC_REG_D               13
45

    
46
#define REG_A_UIP 0x80
47

    
48
#define REG_B_SET 0x80
49
#define REG_B_PIE 0x40
50
#define REG_B_AIE 0x20
51
#define REG_B_UIE 0x10
52

    
53
struct RTCState {
54
    uint8_t cmos_data[128];
55
    uint8_t cmos_index;
56
    struct tm current_tm;
57
    qemu_irq irq;
58
    /* periodic timer */
59
    QEMUTimer *periodic_timer;
60
    int64_t next_periodic_time;
61
    /* second update */
62
    int64_t next_second_time;
63
    QEMUTimer *second_timer;
64
    QEMUTimer *second_timer2;
65
};
66

    
67
static void rtc_set_time(RTCState *s);
68
static void rtc_copy_date(RTCState *s);
69

    
70
static void rtc_timer_update(RTCState *s, int64_t current_time)
71
{
72
    int period_code, period;
73
    int64_t cur_clock, next_irq_clock;
74

    
75
    period_code = s->cmos_data[RTC_REG_A] & 0x0f;
76
    if (period_code != 0 && 
77
        (s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
78
        if (period_code <= 2)
79
            period_code += 7;
80
        /* period in 32 Khz cycles */
81
        period = 1 << (period_code - 1);
82
        /* compute 32 khz clock */
83
        cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
84
        next_irq_clock = (cur_clock & ~(period - 1)) + period;
85
        s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
86
        qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
87
    } else {
88
        qemu_del_timer(s->periodic_timer);
89
    }
90
}
91

    
92
static void rtc_periodic_timer(void *opaque)
93
{
94
    RTCState *s = opaque;
95

    
96
    rtc_timer_update(s, s->next_periodic_time);
97
    s->cmos_data[RTC_REG_C] |= 0xc0;
98
    qemu_irq_raise(s->irq);
99
}
100

    
101
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
102
{
103
    RTCState *s = opaque;
104

    
105
    if ((addr & 1) == 0) {
106
        s->cmos_index = data & 0x7f;
107
    } else {
108
#ifdef DEBUG_CMOS
109
        printf("cmos: write index=0x%02x val=0x%02x\n",
110
               s->cmos_index, data);
111
#endif        
112
        switch(s->cmos_index) {
113
        case RTC_SECONDS_ALARM:
114
        case RTC_MINUTES_ALARM:
115
        case RTC_HOURS_ALARM:
116
            /* XXX: not supported */
117
            s->cmos_data[s->cmos_index] = data;
118
            break;
119
        case RTC_SECONDS:
120
        case RTC_MINUTES:
121
        case RTC_HOURS:
122
        case RTC_DAY_OF_WEEK:
123
        case RTC_DAY_OF_MONTH:
124
        case RTC_MONTH:
125
        case RTC_YEAR:
126
            s->cmos_data[s->cmos_index] = data;
127
            /* if in set mode, do not update the time */
128
            if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
129
                rtc_set_time(s);
130
            }
131
            break;
132
        case RTC_REG_A:
133
            /* UIP bit is read only */
134
            s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
135
                (s->cmos_data[RTC_REG_A] & REG_A_UIP);
136
            rtc_timer_update(s, qemu_get_clock(vm_clock));
137
            break;
138
        case RTC_REG_B:
139
            if (data & REG_B_SET) {
140
                /* set mode: reset UIP mode */
141
                s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
142
                data &= ~REG_B_UIE;
143
            } else {
144
                /* if disabling set mode, update the time */
145
                if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
146
                    rtc_set_time(s);
147
                }
148
            }
149
            s->cmos_data[RTC_REG_B] = data;
150
            rtc_timer_update(s, qemu_get_clock(vm_clock));
151
            break;
152
        case RTC_REG_C:
153
        case RTC_REG_D:
154
            /* cannot write to them */
155
            break;
156
        default:
157
            s->cmos_data[s->cmos_index] = data;
158
            break;
159
        }
160
    }
161
}
162

    
163
static inline int to_bcd(RTCState *s, int a)
164
{
165
    if (s->cmos_data[RTC_REG_B] & 0x04) {
166
        return a;
167
    } else {
168
        return ((a / 10) << 4) | (a % 10);
169
    }
170
}
171

    
172
static inline int from_bcd(RTCState *s, int a)
173
{
174
    if (s->cmos_data[RTC_REG_B] & 0x04) {
175
        return a;
176
    } else {
177
        return ((a >> 4) * 10) + (a & 0x0f);
178
    }
179
}
180

    
181
static void rtc_set_time(RTCState *s)
182
{
183
    struct tm *tm = &s->current_tm;
184

    
185
    tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
186
    tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
187
    tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
188
    if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
189
        (s->cmos_data[RTC_HOURS] & 0x80)) {
190
        tm->tm_hour += 12;
191
    }
192
    tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
193
    tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
194
    tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
195
    tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
196
}
197

    
198
static void rtc_copy_date(RTCState *s)
199
{
200
    const struct tm *tm = &s->current_tm;
201

    
202
    s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
203
    s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
204
    if (s->cmos_data[RTC_REG_B] & 0x02) {
205
        /* 24 hour format */
206
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
207
    } else {
208
        /* 12 hour format */
209
        s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
210
        if (tm->tm_hour >= 12)
211
            s->cmos_data[RTC_HOURS] |= 0x80;
212
    }
213
    s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
214
    s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
215
    s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
216
    s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
217
}
218

    
219
/* month is between 0 and 11. */
220
static int get_days_in_month(int month, int year)
221
{
222
    static const int days_tab[12] = { 
223
        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 
224
    };
225
    int d;
226
    if ((unsigned )month >= 12)
227
        return 31;
228
    d = days_tab[month];
229
    if (month == 1) {
230
        if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
231
            d++;
232
    }
233
    return d;
234
}
235

    
236
/* update 'tm' to the next second */
237
static void rtc_next_second(struct tm *tm)
238
{
239
    int days_in_month;
240

    
241
    tm->tm_sec++;
242
    if ((unsigned)tm->tm_sec >= 60) {
243
        tm->tm_sec = 0;
244
        tm->tm_min++;
245
        if ((unsigned)tm->tm_min >= 60) {
246
            tm->tm_min = 0;
247
            tm->tm_hour++;
248
            if ((unsigned)tm->tm_hour >= 24) {
249
                tm->tm_hour = 0;
250
                /* next day */
251
                tm->tm_wday++;
252
                if ((unsigned)tm->tm_wday >= 7)
253
                    tm->tm_wday = 0;
254
                days_in_month = get_days_in_month(tm->tm_mon, 
255
                                                  tm->tm_year + 1900);
256
                tm->tm_mday++;
257
                if (tm->tm_mday < 1) {
258
                    tm->tm_mday = 1;
259
                } else if (tm->tm_mday > days_in_month) {
260
                    tm->tm_mday = 1;
261
                    tm->tm_mon++;
262
                    if (tm->tm_mon >= 12) {
263
                        tm->tm_mon = 0;
264
                        tm->tm_year++;
265
                    }
266
                }
267
            }
268
        }
269
    }
270
}
271

    
272

    
273
static void rtc_update_second(void *opaque)
274
{
275
    RTCState *s = opaque;
276
    int64_t delay;
277

    
278
    /* if the oscillator is not in normal operation, we do not update */
279
    if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
280
        s->next_second_time += ticks_per_sec;
281
        qemu_mod_timer(s->second_timer, s->next_second_time);
282
    } else {
283
        rtc_next_second(&s->current_tm);
284
        
285
        if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
286
            /* update in progress bit */
287
            s->cmos_data[RTC_REG_A] |= REG_A_UIP;
288
        }
289
        /* should be 244 us = 8 / 32768 seconds, but currently the
290
           timers do not have the necessary resolution. */
291
        delay = (ticks_per_sec * 1) / 100;
292
        if (delay < 1)
293
            delay = 1;
294
        qemu_mod_timer(s->second_timer2, 
295
                       s->next_second_time + delay);
296
    }
297
}
298

    
299
static void rtc_update_second2(void *opaque)
300
{
301
    RTCState *s = opaque;
302

    
303
    if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
304
        rtc_copy_date(s);
305
    }
306

    
307
    /* check alarm */
308
    if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
309
        if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
310
             s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
311
            ((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
312
             s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
313
            ((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
314
             s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
315

    
316
            s->cmos_data[RTC_REG_C] |= 0xa0; 
317
            qemu_irq_raise(s->irq);
318
        }
319
    }
320

    
321
    /* update ended interrupt */
322
    if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
323
        s->cmos_data[RTC_REG_C] |= 0x90; 
324
        qemu_irq_raise(s->irq);
325
    }
326

    
327
    /* clear update in progress bit */
328
    s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
329

    
330
    s->next_second_time += ticks_per_sec;
331
    qemu_mod_timer(s->second_timer, s->next_second_time);
332
}
333

    
334
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
335
{
336
    RTCState *s = opaque;
337
    int ret;
338
    if ((addr & 1) == 0) {
339
        return 0xff;
340
    } else {
341
        switch(s->cmos_index) {
342
        case RTC_SECONDS:
343
        case RTC_MINUTES:
344
        case RTC_HOURS:
345
        case RTC_DAY_OF_WEEK:
346
        case RTC_DAY_OF_MONTH:
347
        case RTC_MONTH:
348
        case RTC_YEAR:
349
            ret = s->cmos_data[s->cmos_index];
350
            break;
351
        case RTC_REG_A:
352
            ret = s->cmos_data[s->cmos_index];
353
            break;
354
        case RTC_REG_C:
355
            ret = s->cmos_data[s->cmos_index];
356
            qemu_irq_lower(s->irq);
357
            s->cmos_data[RTC_REG_C] = 0x00; 
358
            break;
359
        default:
360
            ret = s->cmos_data[s->cmos_index];
361
            break;
362
        }
363
#ifdef DEBUG_CMOS
364
        printf("cmos: read index=0x%02x val=0x%02x\n",
365
               s->cmos_index, ret);
366
#endif
367
        return ret;
368
    }
369
}
370

    
371
void rtc_set_memory(RTCState *s, int addr, int val)
372
{
373
    if (addr >= 0 && addr <= 127)
374
        s->cmos_data[addr] = val;
375
}
376

    
377
void rtc_set_date(RTCState *s, const struct tm *tm)
378
{
379
    s->current_tm = *tm;
380
    rtc_copy_date(s);
381
}
382

    
383
/* PC cmos mappings */
384
#define REG_IBM_CENTURY_BYTE        0x32
385
#define REG_IBM_PS2_CENTURY_BYTE    0x37
386

    
387
void rtc_set_date_from_host(RTCState *s)
388
{
389
    time_t ti;
390
    struct tm *tm;
391
    int val;
392

    
393
    /* set the CMOS date */
394
    time(&ti);
395
    if (rtc_utc)
396
        tm = gmtime(&ti);
397
    else
398
        tm = localtime(&ti);
399
    rtc_set_date(s, tm);
400

    
401
    val = to_bcd(s, (tm->tm_year / 100) + 19);
402
    rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
403
    rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
404
}
405

    
406
static void rtc_save(QEMUFile *f, void *opaque)
407
{
408
    RTCState *s = opaque;
409

    
410
    qemu_put_buffer(f, s->cmos_data, 128);
411
    qemu_put_8s(f, &s->cmos_index);
412
    
413
    qemu_put_be32s(f, &s->current_tm.tm_sec);
414
    qemu_put_be32s(f, &s->current_tm.tm_min);
415
    qemu_put_be32s(f, &s->current_tm.tm_hour);
416
    qemu_put_be32s(f, &s->current_tm.tm_wday);
417
    qemu_put_be32s(f, &s->current_tm.tm_mday);
418
    qemu_put_be32s(f, &s->current_tm.tm_mon);
419
    qemu_put_be32s(f, &s->current_tm.tm_year);
420

    
421
    qemu_put_timer(f, s->periodic_timer);
422
    qemu_put_be64s(f, &s->next_periodic_time);
423

    
424
    qemu_put_be64s(f, &s->next_second_time);
425
    qemu_put_timer(f, s->second_timer);
426
    qemu_put_timer(f, s->second_timer2);
427
}
428

    
429
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
430
{
431
    RTCState *s = opaque;
432

    
433
    if (version_id != 1)
434
        return -EINVAL;
435

    
436
    qemu_get_buffer(f, s->cmos_data, 128);
437
    qemu_get_8s(f, &s->cmos_index);
438

    
439
    qemu_get_be32s(f, &s->current_tm.tm_sec);
440
    qemu_get_be32s(f, &s->current_tm.tm_min);
441
    qemu_get_be32s(f, &s->current_tm.tm_hour);
442
    qemu_get_be32s(f, &s->current_tm.tm_wday);
443
    qemu_get_be32s(f, &s->current_tm.tm_mday);
444
    qemu_get_be32s(f, &s->current_tm.tm_mon);
445
    qemu_get_be32s(f, &s->current_tm.tm_year);
446

    
447
    qemu_get_timer(f, s->periodic_timer);
448
    qemu_get_be64s(f, &s->next_periodic_time);
449

    
450
    qemu_get_be64s(f, &s->next_second_time);
451
    qemu_get_timer(f, s->second_timer);
452
    qemu_get_timer(f, s->second_timer2);
453
    return 0;
454
}
455

    
456
RTCState *rtc_init(int base, qemu_irq irq)
457
{
458
    RTCState *s;
459

    
460
    s = qemu_mallocz(sizeof(RTCState));
461
    if (!s)
462
        return NULL;
463

    
464
    s->irq = irq;
465
    s->cmos_data[RTC_REG_A] = 0x26;
466
    s->cmos_data[RTC_REG_B] = 0x02;
467
    s->cmos_data[RTC_REG_C] = 0x00;
468
    s->cmos_data[RTC_REG_D] = 0x80;
469

    
470
    rtc_set_date_from_host(s);
471

    
472
    s->periodic_timer = qemu_new_timer(vm_clock, 
473
                                       rtc_periodic_timer, s);
474
    s->second_timer = qemu_new_timer(vm_clock, 
475
                                     rtc_update_second, s);
476
    s->second_timer2 = qemu_new_timer(vm_clock, 
477
                                      rtc_update_second2, s);
478

    
479
    s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
480
    qemu_mod_timer(s->second_timer2, s->next_second_time);
481

    
482
    register_ioport_write(base, 2, 1, cmos_ioport_write, s);
483
    register_ioport_read(base, 2, 1, cmos_ioport_read, s);
484

    
485
    register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
486
    return s;
487
}
488