Statistics
| Branch: | Revision:

root / hw / ne2000.c @ d537cf6c

History | View | Annotate | Download (24 kB)

1
/*
2
 * QEMU NE2000 emulation
3
 * 
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
/* debug NE2000 card */
27
//#define DEBUG_NE2000
28

    
29
#define MAX_ETH_FRAME_SIZE 1514
30

    
31
#define E8390_CMD        0x00  /* The command register (for all pages) */
32
/* Page 0 register offsets. */
33
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
34
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
35
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
36
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
37
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
38
#define EN0_TSR                0x04        /* Transmit status reg RD */
39
#define EN0_TPSR        0x04        /* Transmit starting page WR */
40
#define EN0_NCR                0x05        /* Number of collision reg RD */
41
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
42
#define EN0_FIFO        0x06        /* FIFO RD */
43
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
44
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
45
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
46
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
47
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
48
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
49
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
50
#define EN0_RTL8029ID0        0x0a        /* Realtek ID byte #1 RD */
51
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
52
#define EN0_RTL8029ID1        0x0b        /* Realtek ID byte #2 RD */
53
#define EN0_RSR                0x0c        /* rx status reg RD */
54
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
55
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
56
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
57
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
58
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
59
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
60
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
61

    
62
#define EN1_PHYS        0x11
63
#define EN1_CURPAG      0x17
64
#define EN1_MULT        0x18
65

    
66
#define EN2_STARTPG        0x21        /* Starting page of ring bfr RD */
67
#define EN2_STOPPG        0x22        /* Ending page +1 of ring bfr RD */
68

    
69
#define EN3_CONFIG0        0x33
70
#define EN3_CONFIG1        0x34
71
#define EN3_CONFIG2        0x35
72
#define EN3_CONFIG3        0x36
73

    
74
/*  Register accessed at EN_CMD, the 8390 base addr.  */
75
#define E8390_STOP        0x01        /* Stop and reset the chip */
76
#define E8390_START        0x02        /* Start the chip, clear reset */
77
#define E8390_TRANS        0x04        /* Transmit a frame */
78
#define E8390_RREAD        0x08        /* Remote read */
79
#define E8390_RWRITE        0x10        /* Remote write  */
80
#define E8390_NODMA        0x20        /* Remote DMA */
81
#define E8390_PAGE0        0x00        /* Select page chip registers */
82
#define E8390_PAGE1        0x40        /* using the two high-order bits */
83
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
84

    
85
/* Bits in EN0_ISR - Interrupt status register */
86
#define ENISR_RX        0x01        /* Receiver, no error */
87
#define ENISR_TX        0x02        /* Transmitter, no error */
88
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
89
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
90
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
91
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
92
#define ENISR_RDC        0x40        /* remote dma complete */
93
#define ENISR_RESET        0x80        /* Reset completed */
94
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
95

    
96
/* Bits in received packet status byte and EN0_RSR*/
97
#define ENRSR_RXOK        0x01        /* Received a good packet */
98
#define ENRSR_CRC        0x02        /* CRC error */
99
#define ENRSR_FAE        0x04        /* frame alignment error */
100
#define ENRSR_FO        0x08        /* FIFO overrun */
101
#define ENRSR_MPA        0x10        /* missed pkt */
102
#define ENRSR_PHY        0x20        /* physical/multicast address */
103
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
104
#define ENRSR_DEF        0x80        /* deferring */
105

    
106
/* Transmitted packet status, EN0_TSR. */
107
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
108
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
109
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
110
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
111
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
112
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
113
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
114
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
115

    
116
#define NE2000_PMEM_SIZE    (32*1024)
117
#define NE2000_PMEM_START   (16*1024)
118
#define NE2000_PMEM_END     (NE2000_PMEM_SIZE+NE2000_PMEM_START)
119
#define NE2000_MEM_SIZE     NE2000_PMEM_END
120

    
121
typedef struct NE2000State {
122
    uint8_t cmd;
123
    uint32_t start;
124
    uint32_t stop;
125
    uint8_t boundary;
126
    uint8_t tsr;
127
    uint8_t tpsr;
128
    uint16_t tcnt;
129
    uint16_t rcnt;
130
    uint32_t rsar;
131
    uint8_t rsr;
132
    uint8_t rxcr;
133
    uint8_t isr;
134
    uint8_t dcfg;
135
    uint8_t imr;
136
    uint8_t phys[6]; /* mac address */
137
    uint8_t curpag;
138
    uint8_t mult[8]; /* multicast mask array */
139
    qemu_irq irq;
140
    PCIDevice *pci_dev;
141
    VLANClientState *vc;
142
    uint8_t macaddr[6];
143
    uint8_t mem[NE2000_MEM_SIZE];
144
} NE2000State;
145

    
146
static void ne2000_reset(NE2000State *s)
147
{
148
    int i;
149

    
150
    s->isr = ENISR_RESET;
151
    memcpy(s->mem, s->macaddr, 6);
152
    s->mem[14] = 0x57;
153
    s->mem[15] = 0x57;
154

    
155
    /* duplicate prom data */
156
    for(i = 15;i >= 0; i--) {
157
        s->mem[2 * i] = s->mem[i];
158
        s->mem[2 * i + 1] = s->mem[i];
159
    }
160
}
161

    
162
static void ne2000_update_irq(NE2000State *s)
163
{
164
    int isr;
165
    isr = (s->isr & s->imr) & 0x7f;
166
#if defined(DEBUG_NE2000)
167
    printf("NE2000: Set IRQ to %d (%02x %02x)\n",
168
           isr ? 1 : 0, s->isr, s->imr);
169
#endif
170
    qemu_set_irq(s->irq, (isr != 0));
171
}
172

    
173
#define POLYNOMIAL 0x04c11db6
174

    
175
/* From FreeBSD */
176
/* XXX: optimize */
177
static int compute_mcast_idx(const uint8_t *ep)
178
{
179
    uint32_t crc;
180
    int carry, i, j;
181
    uint8_t b;
182

    
183
    crc = 0xffffffff;
184
    for (i = 0; i < 6; i++) {
185
        b = *ep++;
186
        for (j = 0; j < 8; j++) {
187
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
188
            crc <<= 1;
189
            b >>= 1;
190
            if (carry)
191
                crc = ((crc ^ POLYNOMIAL) | carry);
192
        }
193
    }
194
    return (crc >> 26);
195
}
196

    
197
static int ne2000_buffer_full(NE2000State *s)
198
{
199
    int avail, index, boundary;
200

    
201
    index = s->curpag << 8;
202
    boundary = s->boundary << 8;
203
    if (index < boundary)
204
        avail = boundary - index;
205
    else
206
        avail = (s->stop - s->start) - (index - boundary);
207
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
208
        return 1;
209
    return 0;
210
}
211

    
212
static int ne2000_can_receive(void *opaque)
213
{
214
    NE2000State *s = opaque;
215
    
216
    if (s->cmd & E8390_STOP)
217
        return 1;
218
    return !ne2000_buffer_full(s);
219
}
220

    
221
#define MIN_BUF_SIZE 60
222

    
223
static void ne2000_receive(void *opaque, const uint8_t *buf, int size)
224
{
225
    NE2000State *s = opaque;
226
    uint8_t *p;
227
    int total_len, next, avail, len, index, mcast_idx;
228
    uint8_t buf1[60];
229
    static const uint8_t broadcast_macaddr[6] = 
230
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
231
    
232
#if defined(DEBUG_NE2000)
233
    printf("NE2000: received len=%d\n", size);
234
#endif
235

    
236
    if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
237
        return;
238
    
239
    /* XXX: check this */
240
    if (s->rxcr & 0x10) {
241
        /* promiscuous: receive all */
242
    } else {
243
        if (!memcmp(buf,  broadcast_macaddr, 6)) {
244
            /* broadcast address */
245
            if (!(s->rxcr & 0x04))
246
                return;
247
        } else if (buf[0] & 0x01) {
248
            /* multicast */
249
            if (!(s->rxcr & 0x08))
250
                return;
251
            mcast_idx = compute_mcast_idx(buf);
252
            if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
253
                return;
254
        } else if (s->mem[0] == buf[0] &&
255
                   s->mem[2] == buf[1] &&                   
256
                   s->mem[4] == buf[2] &&            
257
                   s->mem[6] == buf[3] &&            
258
                   s->mem[8] == buf[4] &&            
259
                   s->mem[10] == buf[5]) {
260
            /* match */
261
        } else {
262
            return;
263
        }
264
    }
265

    
266

    
267
    /* if too small buffer, then expand it */
268
    if (size < MIN_BUF_SIZE) {
269
        memcpy(buf1, buf, size);
270
        memset(buf1 + size, 0, MIN_BUF_SIZE - size);
271
        buf = buf1;
272
        size = MIN_BUF_SIZE;
273
    }
274

    
275
    index = s->curpag << 8;
276
    /* 4 bytes for header */
277
    total_len = size + 4;
278
    /* address for next packet (4 bytes for CRC) */
279
    next = index + ((total_len + 4 + 255) & ~0xff);
280
    if (next >= s->stop)
281
        next -= (s->stop - s->start);
282
    /* prepare packet header */
283
    p = s->mem + index;
284
    s->rsr = ENRSR_RXOK; /* receive status */
285
    /* XXX: check this */
286
    if (buf[0] & 0x01)
287
        s->rsr |= ENRSR_PHY;
288
    p[0] = s->rsr;
289
    p[1] = next >> 8;
290
    p[2] = total_len;
291
    p[3] = total_len >> 8;
292
    index += 4;
293

    
294
    /* write packet data */
295
    while (size > 0) {
296
        avail = s->stop - index;
297
        len = size;
298
        if (len > avail)
299
            len = avail;
300
        memcpy(s->mem + index, buf, len);
301
        buf += len;
302
        index += len;
303
        if (index == s->stop)
304
            index = s->start;
305
        size -= len;
306
    }
307
    s->curpag = next >> 8;
308

    
309
    /* now we can signal we have received something */
310
    s->isr |= ENISR_RX;
311
    ne2000_update_irq(s);
312
}
313

    
314
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
315
{
316
    NE2000State *s = opaque;
317
    int offset, page, index;
318

    
319
    addr &= 0xf;
320
#ifdef DEBUG_NE2000
321
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
322
#endif
323
    if (addr == E8390_CMD) {
324
        /* control register */
325
        s->cmd = val;
326
        if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
327
            s->isr &= ~ENISR_RESET;
328
            /* test specific case: zero length transfert */
329
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
330
                s->rcnt == 0) {
331
                s->isr |= ENISR_RDC;
332
                ne2000_update_irq(s);
333
            }
334
            if (val & E8390_TRANS) {
335
                index = (s->tpsr << 8);
336
                /* XXX: next 2 lines are a hack to make netware 3.11 work */ 
337
                if (index >= NE2000_PMEM_END)
338
                    index -= NE2000_PMEM_SIZE;
339
                /* fail safe: check range on the transmitted length  */
340
                if (index + s->tcnt <= NE2000_PMEM_END) {
341
                    qemu_send_packet(s->vc, s->mem + index, s->tcnt);
342
                }
343
                /* signal end of transfert */
344
                s->tsr = ENTSR_PTX;
345
                s->isr |= ENISR_TX;
346
                s->cmd &= ~E8390_TRANS; 
347
                ne2000_update_irq(s);
348
            }
349
        }
350
    } else {
351
        page = s->cmd >> 6;
352
        offset = addr | (page << 4);
353
        switch(offset) {
354
        case EN0_STARTPG:
355
            s->start = val << 8;
356
            break;
357
        case EN0_STOPPG:
358
            s->stop = val << 8;
359
            break;
360
        case EN0_BOUNDARY:
361
            s->boundary = val;
362
            break;
363
        case EN0_IMR:
364
            s->imr = val;
365
            ne2000_update_irq(s);
366
            break;
367
        case EN0_TPSR:
368
            s->tpsr = val;
369
            break;
370
        case EN0_TCNTLO:
371
            s->tcnt = (s->tcnt & 0xff00) | val;
372
            break;
373
        case EN0_TCNTHI:
374
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
375
            break;
376
        case EN0_RSARLO:
377
            s->rsar = (s->rsar & 0xff00) | val;
378
            break;
379
        case EN0_RSARHI:
380
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
381
            break;
382
        case EN0_RCNTLO:
383
            s->rcnt = (s->rcnt & 0xff00) | val;
384
            break;
385
        case EN0_RCNTHI:
386
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
387
            break;
388
        case EN0_RXCR:
389
            s->rxcr = val;
390
            break;
391
        case EN0_DCFG:
392
            s->dcfg = val;
393
            break;
394
        case EN0_ISR:
395
            s->isr &= ~(val & 0x7f);
396
            ne2000_update_irq(s);
397
            break;
398
        case EN1_PHYS ... EN1_PHYS + 5:
399
            s->phys[offset - EN1_PHYS] = val;
400
            break;
401
        case EN1_CURPAG:
402
            s->curpag = val;
403
            break;
404
        case EN1_MULT ... EN1_MULT + 7:
405
            s->mult[offset - EN1_MULT] = val;
406
            break;
407
        }
408
    }
409
}
410

    
411
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
412
{
413
    NE2000State *s = opaque;
414
    int offset, page, ret;
415

    
416
    addr &= 0xf;
417
    if (addr == E8390_CMD) {
418
        ret = s->cmd;
419
    } else {
420
        page = s->cmd >> 6;
421
        offset = addr | (page << 4);
422
        switch(offset) {
423
        case EN0_TSR:
424
            ret = s->tsr;
425
            break;
426
        case EN0_BOUNDARY:
427
            ret = s->boundary;
428
            break;
429
        case EN0_ISR:
430
            ret = s->isr;
431
            break;
432
        case EN0_RSARLO:
433
            ret = s->rsar & 0x00ff;
434
            break;
435
        case EN0_RSARHI:
436
            ret = s->rsar >> 8;
437
            break;
438
        case EN1_PHYS ... EN1_PHYS + 5:
439
            ret = s->phys[offset - EN1_PHYS];
440
            break;
441
        case EN1_CURPAG:
442
            ret = s->curpag;
443
            break;
444
        case EN1_MULT ... EN1_MULT + 7:
445
            ret = s->mult[offset - EN1_MULT];
446
            break;
447
        case EN0_RSR:
448
            ret = s->rsr;
449
            break;
450
        case EN2_STARTPG:
451
            ret = s->start >> 8;
452
            break;
453
        case EN2_STOPPG:
454
            ret = s->stop >> 8;
455
            break;
456
        case EN0_RTL8029ID0:
457
            ret = 0x50;
458
            break;
459
        case EN0_RTL8029ID1:
460
            ret = 0x43;
461
            break;
462
        case EN3_CONFIG0:
463
            ret = 0;                /* 10baseT media */
464
            break;
465
        case EN3_CONFIG2:
466
            ret = 0x40;                /* 10baseT active */
467
            break;
468
        case EN3_CONFIG3:
469
            ret = 0x40;                /* Full duplex */
470
            break;
471
        default:
472
            ret = 0x00;
473
            break;
474
        }
475
    }
476
#ifdef DEBUG_NE2000
477
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
478
#endif
479
    return ret;
480
}
481

    
482
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, 
483
                                     uint32_t val)
484
{
485
    if (addr < 32 || 
486
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
487
        s->mem[addr] = val;
488
    }
489
}
490

    
491
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, 
492
                                     uint32_t val)
493
{
494
    addr &= ~1; /* XXX: check exact behaviour if not even */
495
    if (addr < 32 || 
496
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
497
        *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
498
    }
499
}
500

    
501
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, 
502
                                     uint32_t val)
503
{
504
    addr &= ~1; /* XXX: check exact behaviour if not even */
505
    if (addr < 32 || 
506
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
507
        cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
508
    }
509
}
510

    
511
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
512
{
513
    if (addr < 32 || 
514
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
515
        return s->mem[addr];
516
    } else {
517
        return 0xff;
518
    }
519
}
520

    
521
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
522
{
523
    addr &= ~1; /* XXX: check exact behaviour if not even */
524
    if (addr < 32 || 
525
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
526
        return le16_to_cpu(*(uint16_t *)(s->mem + addr));
527
    } else {
528
        return 0xffff;
529
    }
530
}
531

    
532
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
533
{
534
    addr &= ~1; /* XXX: check exact behaviour if not even */
535
    if (addr < 32 || 
536
        (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
537
        return le32_to_cpupu((uint32_t *)(s->mem + addr));
538
    } else {
539
        return 0xffffffff;
540
    }
541
}
542

    
543
static inline void ne2000_dma_update(NE2000State *s, int len)
544
{
545
    s->rsar += len;
546
    /* wrap */
547
    /* XXX: check what to do if rsar > stop */
548
    if (s->rsar == s->stop)
549
        s->rsar = s->start;
550

    
551
    if (s->rcnt <= len) {
552
        s->rcnt = 0;
553
        /* signal end of transfert */
554
        s->isr |= ENISR_RDC;
555
        ne2000_update_irq(s);
556
    } else {
557
        s->rcnt -= len;
558
    }
559
}
560

    
561
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
562
{
563
    NE2000State *s = opaque;
564

    
565
#ifdef DEBUG_NE2000
566
    printf("NE2000: asic write val=0x%04x\n", val);
567
#endif
568
    if (s->rcnt == 0)
569
        return;
570
    if (s->dcfg & 0x01) {
571
        /* 16 bit access */
572
        ne2000_mem_writew(s, s->rsar, val);
573
        ne2000_dma_update(s, 2);
574
    } else {
575
        /* 8 bit access */
576
        ne2000_mem_writeb(s, s->rsar, val);
577
        ne2000_dma_update(s, 1);
578
    }
579
}
580

    
581
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
582
{
583
    NE2000State *s = opaque;
584
    int ret;
585

    
586
    if (s->dcfg & 0x01) {
587
        /* 16 bit access */
588
        ret = ne2000_mem_readw(s, s->rsar);
589
        ne2000_dma_update(s, 2);
590
    } else {
591
        /* 8 bit access */
592
        ret = ne2000_mem_readb(s, s->rsar);
593
        ne2000_dma_update(s, 1);
594
    }
595
#ifdef DEBUG_NE2000
596
    printf("NE2000: asic read val=0x%04x\n", ret);
597
#endif
598
    return ret;
599
}
600

    
601
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
602
{
603
    NE2000State *s = opaque;
604

    
605
#ifdef DEBUG_NE2000
606
    printf("NE2000: asic writel val=0x%04x\n", val);
607
#endif
608
    if (s->rcnt == 0)
609
        return;
610
    /* 32 bit access */
611
    ne2000_mem_writel(s, s->rsar, val);
612
    ne2000_dma_update(s, 4);
613
}
614

    
615
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
616
{
617
    NE2000State *s = opaque;
618
    int ret;
619

    
620
    /* 32 bit access */
621
    ret = ne2000_mem_readl(s, s->rsar);
622
    ne2000_dma_update(s, 4);
623
#ifdef DEBUG_NE2000
624
    printf("NE2000: asic readl val=0x%04x\n", ret);
625
#endif
626
    return ret;
627
}
628

    
629
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
630
{
631
    /* nothing to do (end of reset pulse) */
632
}
633

    
634
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
635
{
636
    NE2000State *s = opaque;
637
    ne2000_reset(s);
638
    return 0;
639
}
640

    
641
static void ne2000_save(QEMUFile* f,void* opaque)
642
{
643
        NE2000State* s=(NE2000State*)opaque;
644
        int tmp;
645

    
646
        if (s->pci_dev)
647
            pci_device_save(s->pci_dev, f);
648

    
649
        qemu_put_8s(f, &s->rxcr);
650

    
651
        qemu_put_8s(f, &s->cmd);
652
        qemu_put_be32s(f, &s->start);
653
        qemu_put_be32s(f, &s->stop);
654
        qemu_put_8s(f, &s->boundary);
655
        qemu_put_8s(f, &s->tsr);
656
        qemu_put_8s(f, &s->tpsr);
657
        qemu_put_be16s(f, &s->tcnt);
658
        qemu_put_be16s(f, &s->rcnt);
659
        qemu_put_be32s(f, &s->rsar);
660
        qemu_put_8s(f, &s->rsr);
661
        qemu_put_8s(f, &s->isr);
662
        qemu_put_8s(f, &s->dcfg);
663
        qemu_put_8s(f, &s->imr);
664
        qemu_put_buffer(f, s->phys, 6);
665
        qemu_put_8s(f, &s->curpag);
666
        qemu_put_buffer(f, s->mult, 8);
667
        tmp = 0;
668
        qemu_put_be32s(f, &tmp); /* ignored, was irq */
669
        qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
670
}
671

    
672
static int ne2000_load(QEMUFile* f,void* opaque,int version_id)
673
{
674
        NE2000State* s=(NE2000State*)opaque;
675
        int ret;
676
        int tmp;
677

    
678
        if (version_id > 3)
679
            return -EINVAL;
680

    
681
        if (s->pci_dev && version_id >= 3) {
682
            ret = pci_device_load(s->pci_dev, f);
683
            if (ret < 0)
684
                return ret;
685
        }
686

    
687
        if (version_id >= 2) {
688
            qemu_get_8s(f, &s->rxcr);
689
        } else {
690
            s->rxcr = 0x0c;
691
        }
692

    
693
        qemu_get_8s(f, &s->cmd);
694
        qemu_get_be32s(f, &s->start);
695
        qemu_get_be32s(f, &s->stop);
696
        qemu_get_8s(f, &s->boundary);
697
        qemu_get_8s(f, &s->tsr);
698
        qemu_get_8s(f, &s->tpsr);
699
        qemu_get_be16s(f, &s->tcnt);
700
        qemu_get_be16s(f, &s->rcnt);
701
        qemu_get_be32s(f, &s->rsar);
702
        qemu_get_8s(f, &s->rsr);
703
        qemu_get_8s(f, &s->isr);
704
        qemu_get_8s(f, &s->dcfg);
705
        qemu_get_8s(f, &s->imr);
706
        qemu_get_buffer(f, s->phys, 6);
707
        qemu_get_8s(f, &s->curpag);
708
        qemu_get_buffer(f, s->mult, 8);
709
        qemu_get_be32s(f, &tmp); /* ignored */
710
        qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
711

    
712
        return 0;
713
}
714

    
715
void isa_ne2000_init(int base, qemu_irq irq, NICInfo *nd)
716
{
717
    NE2000State *s;
718
    
719
    s = qemu_mallocz(sizeof(NE2000State));
720
    if (!s)
721
        return;
722
    
723
    register_ioport_write(base, 16, 1, ne2000_ioport_write, s);
724
    register_ioport_read(base, 16, 1, ne2000_ioport_read, s);
725

    
726
    register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s);
727
    register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s);
728
    register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s);
729
    register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s);
730

    
731
    register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
732
    register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
733
    s->irq = irq;
734
    memcpy(s->macaddr, nd->macaddr, 6);
735

    
736
    ne2000_reset(s);
737

    
738
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
739
                                 ne2000_can_receive, s);
740

    
741
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
742
             "ne2000 macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
743
             s->macaddr[0],
744
             s->macaddr[1],
745
             s->macaddr[2],
746
             s->macaddr[3],
747
             s->macaddr[4],
748
             s->macaddr[5]);
749
             
750
    register_savevm("ne2000", 0, 2, ne2000_save, ne2000_load, s);
751
}
752

    
753
/***********************************************************/
754
/* PCI NE2000 definitions */
755

    
756
typedef struct PCINE2000State {
757
    PCIDevice dev;
758
    NE2000State ne2000;
759
} PCINE2000State;
760

    
761
static void ne2000_map(PCIDevice *pci_dev, int region_num, 
762
                       uint32_t addr, uint32_t size, int type)
763
{
764
    PCINE2000State *d = (PCINE2000State *)pci_dev;
765
    NE2000State *s = &d->ne2000;
766

    
767
    register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
768
    register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
769

    
770
    register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
771
    register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
772
    register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
773
    register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
774
    register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
775
    register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
776

    
777
    register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
778
    register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
779
}
780

    
781
void pci_ne2000_init(PCIBus *bus, NICInfo *nd, int devfn)
782
{
783
    PCINE2000State *d;
784
    NE2000State *s;
785
    uint8_t *pci_conf;
786
    
787
    d = (PCINE2000State *)pci_register_device(bus,
788
                                              "NE2000", sizeof(PCINE2000State),
789
                                              devfn, 
790
                                              NULL, NULL);
791
    pci_conf = d->dev.config;
792
    pci_conf[0x00] = 0xec; // Realtek 8029
793
    pci_conf[0x01] = 0x10;
794
    pci_conf[0x02] = 0x29;
795
    pci_conf[0x03] = 0x80;
796
    pci_conf[0x0a] = 0x00; // ethernet network controller 
797
    pci_conf[0x0b] = 0x02;
798
    pci_conf[0x0e] = 0x00; // header_type
799
    pci_conf[0x3d] = 1; // interrupt pin 0
800
    
801
    pci_register_io_region(&d->dev, 0, 0x100, 
802
                           PCI_ADDRESS_SPACE_IO, ne2000_map);
803
    s = &d->ne2000;
804
    s->irq = d->dev.irq[0];
805
    s->pci_dev = (PCIDevice *)d;
806
    memcpy(s->macaddr, nd->macaddr, 6);
807
    ne2000_reset(s);
808
    s->vc = qemu_new_vlan_client(nd->vlan, ne2000_receive,
809
                                 ne2000_can_receive, s);
810

    
811
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
812
             "ne2000 pci macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
813
             s->macaddr[0],
814
             s->macaddr[1],
815
             s->macaddr[2],
816
             s->macaddr[3],
817
             s->macaddr[4],
818
             s->macaddr[5]);
819
             
820
    /* XXX: instance number ? */
821
    register_savevm("ne2000", 0, 3, ne2000_save, ne2000_load, s);
822
}