Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ d537cf6c

History | View | Annotate | Download (7.9 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
//#define DEBUG_TIMER
27

    
28
#ifdef DEBUG_TIMER
29
#define DPRINTF(fmt, args...) \
30
do { printf("TIMER: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of hardware timer in sun4m.
37
 *
38
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 * 
42
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
43
 * are zero. Bit 31 is 1 when count has been reached.
44
 *
45
 * Per-CPU timers interrupt local CPU, system timer uses normal
46
 * interrupt routing.
47
 *
48
 */
49

    
50
typedef struct SLAVIO_TIMERState {
51
    uint32_t limit, count, counthigh;
52
    int64_t count_load_time;
53
    int64_t expire_time;
54
    int64_t stop_time, tick_offset;
55
    QEMUTimer *irq_timer;
56
    int irq;
57
    int reached, stopped;
58
    int mode; // 0 = processor, 1 = user, 2 = system
59
    unsigned int cpu;
60
    void *intctl;
61
} SLAVIO_TIMERState;
62

    
63
#define TIMER_MAXADDR 0x1f
64
#define CNT_FREQ 2000000
65

    
66
// Update count, set irq, update expire_time
67
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
68
{
69
    int out;
70
    int64_t diff, ticks, count;
71
    uint32_t limit;
72

    
73
    // There are three clock tick units: CPU ticks, register units
74
    // (nanoseconds), and counter ticks (500 ns).
75
    if (s->mode == 1 && s->stopped)
76
        ticks = s->stop_time;
77
    else
78
        ticks = qemu_get_clock(vm_clock) - s->tick_offset;
79

    
80
    out = (ticks > s->expire_time);
81
    if (out)
82
        s->reached = 0x80000000;
83
    if (!s->limit)
84
        limit = 0x7fffffff;
85
    else
86
        limit = s->limit;
87

    
88
    // Convert register units to counter ticks
89
    limit = limit >> 9;
90

    
91
    // Convert cpu ticks to counter ticks
92
    diff = muldiv64(ticks - s->count_load_time, CNT_FREQ, ticks_per_sec);
93

    
94
    // Calculate what the counter should be, convert to register
95
    // units
96
    count = diff % limit;
97
    s->count = count << 9;
98
    s->counthigh = count >> 22;
99

    
100
    // Expire time: CPU ticks left to next interrupt
101
    // Convert remaining counter ticks to CPU ticks
102
    s->expire_time = ticks + muldiv64(limit - count, ticks_per_sec, CNT_FREQ);
103

    
104
    DPRINTF("irq %d limit %d reached %d d %" PRId64 " count %d s->c %x diff %" PRId64 " stopped %d mode %d\n", s->irq, limit, s->reached?1:0, (ticks-s->count_load_time), count, s->count, s->expire_time - ticks, s->stopped, s->mode);
105

    
106
    if (s->mode != 1)
107
        pic_set_irq_cpu(s->intctl, s->irq, out, s->cpu);
108
}
109

    
110
// timer callback
111
static void slavio_timer_irq(void *opaque)
112
{
113
    SLAVIO_TIMERState *s = opaque;
114

    
115
    if (!s->irq_timer)
116
        return;
117
    slavio_timer_get_out(s);
118
    if (s->mode != 1)
119
        qemu_mod_timer(s->irq_timer, s->expire_time);
120
}
121

    
122
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
123
{
124
    SLAVIO_TIMERState *s = opaque;
125
    uint32_t saddr;
126

    
127
    saddr = (addr & TIMER_MAXADDR) >> 2;
128
    switch (saddr) {
129
    case 0:
130
        // read limit (system counter mode) or read most signifying
131
        // part of counter (user mode)
132
        if (s->mode != 1) {
133
            // clear irq
134
            pic_set_irq_cpu(s->intctl, s->irq, 0, s->cpu);
135
            s->reached = 0;
136
            return s->limit;
137
        }
138
        else {
139
            slavio_timer_get_out(s);
140
            return s->counthigh & 0x7fffffff;
141
        }
142
    case 1:
143
        // read counter and reached bit (system mode) or read lsbits
144
        // of counter (user mode)
145
        slavio_timer_get_out(s);
146
        if (s->mode != 1)
147
            return (s->count & 0x7fffffff) | s->reached;
148
        else
149
            return s->count;
150
    case 3:
151
        // read start/stop status
152
        return s->stopped;
153
    case 4:
154
        // read user/system mode
155
        return s->mode & 1;
156
    default:
157
        return 0;
158
    }
159
}
160

    
161
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
162
{
163
    SLAVIO_TIMERState *s = opaque;
164
    uint32_t saddr;
165

    
166
    saddr = (addr & TIMER_MAXADDR) >> 2;
167
    switch (saddr) {
168
    case 0:
169
        // set limit, reset counter
170
        s->count_load_time = qemu_get_clock(vm_clock);
171
        // fall through
172
    case 2:
173
        // set limit without resetting counter
174
        if (!val)
175
            s->limit = 0x7fffffff;
176
        else
177
            s->limit = val & 0x7fffffff;
178
        slavio_timer_irq(s);
179
        break;
180
    case 3:
181
        // start/stop user counter
182
        if (s->mode == 1) {
183
            if (val & 1) {
184
                s->stop_time = qemu_get_clock(vm_clock);
185
                s->stopped = 1;
186
            }
187
            else {
188
                if (s->stopped)
189
                    s->tick_offset += qemu_get_clock(vm_clock) - s->stop_time;
190
                s->stopped = 0;
191
            }
192
        }
193
        break;
194
    case 4:
195
        // bit 0: user (1) or system (0) counter mode
196
        if (s->mode == 0 || s->mode == 1)
197
            s->mode = val & 1;
198
        break;
199
    default:
200
        break;
201
    }
202
}
203

    
204
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
205
    slavio_timer_mem_readl,
206
    slavio_timer_mem_readl,
207
    slavio_timer_mem_readl,
208
};
209

    
210
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
211
    slavio_timer_mem_writel,
212
    slavio_timer_mem_writel,
213
    slavio_timer_mem_writel,
214
};
215

    
216
static void slavio_timer_save(QEMUFile *f, void *opaque)
217
{
218
    SLAVIO_TIMERState *s = opaque;
219

    
220
    qemu_put_be32s(f, &s->limit);
221
    qemu_put_be32s(f, &s->count);
222
    qemu_put_be32s(f, &s->counthigh);
223
    qemu_put_be64s(f, &s->count_load_time);
224
    qemu_put_be64s(f, &s->expire_time);
225
    qemu_put_be64s(f, &s->stop_time);
226
    qemu_put_be64s(f, &s->tick_offset);
227
    qemu_put_be32s(f, &s->irq);
228
    qemu_put_be32s(f, &s->reached);
229
    qemu_put_be32s(f, &s->stopped);
230
    qemu_put_be32s(f, &s->mode);
231
}
232

    
233
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
234
{
235
    SLAVIO_TIMERState *s = opaque;
236
    
237
    if (version_id != 1)
238
        return -EINVAL;
239

    
240
    qemu_get_be32s(f, &s->limit);
241
    qemu_get_be32s(f, &s->count);
242
    qemu_get_be32s(f, &s->counthigh);
243
    qemu_get_be64s(f, &s->count_load_time);
244
    qemu_get_be64s(f, &s->expire_time);
245
    qemu_get_be64s(f, &s->stop_time);
246
    qemu_get_be64s(f, &s->tick_offset);
247
    qemu_get_be32s(f, &s->irq);
248
    qemu_get_be32s(f, &s->reached);
249
    qemu_get_be32s(f, &s->stopped);
250
    qemu_get_be32s(f, &s->mode);
251
    return 0;
252
}
253

    
254
static void slavio_timer_reset(void *opaque)
255
{
256
    SLAVIO_TIMERState *s = opaque;
257

    
258
    s->limit = 0;
259
    s->count = 0;
260
    s->count_load_time = qemu_get_clock(vm_clock);;
261
    s->stop_time = s->count_load_time;
262
    s->tick_offset = 0;
263
    s->reached = 0;
264
    s->mode &= 2;
265
    s->stopped = 1;
266
    slavio_timer_get_out(s);
267
}
268

    
269
void slavio_timer_init(uint32_t addr, int irq, int mode, unsigned int cpu,
270
                       void *intctl)
271
{
272
    int slavio_timer_io_memory;
273
    SLAVIO_TIMERState *s;
274

    
275
    s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
276
    if (!s)
277
        return;
278
    s->irq = irq;
279
    s->mode = mode;
280
    s->cpu = cpu;
281
    s->irq_timer = qemu_new_timer(vm_clock, slavio_timer_irq, s);
282
    s->intctl = intctl;
283

    
284
    slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
285
                                                    slavio_timer_mem_write, s);
286
    cpu_register_physical_memory(addr, TIMER_MAXADDR, slavio_timer_io_memory);
287
    register_savevm("slavio_timer", addr, 1, slavio_timer_save, slavio_timer_load, s);
288
    qemu_register_reset(slavio_timer_reset, s);
289
    slavio_timer_reset(s);
290
}