Statistics
| Branch: | Revision:

root / kvm-all.c @ d549db5a

History | View | Annotate | Download (27.5 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "sysemu.h"
25
#include "hw/hw.h"
26
#include "gdbstub.h"
27
#include "kvm.h"
28

    
29
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30
#define PAGE_SIZE TARGET_PAGE_SIZE
31

    
32
//#define DEBUG_KVM
33

    
34
#ifdef DEBUG_KVM
35
#define dprintf(fmt, ...) \
36
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37
#else
38
#define dprintf(fmt, ...) \
39
    do { } while (0)
40
#endif
41

    
42
typedef struct KVMSlot
43
{
44
    target_phys_addr_t start_addr;
45
    ram_addr_t memory_size;
46
    ram_addr_t phys_offset;
47
    int slot;
48
    int flags;
49
} KVMSlot;
50

    
51
typedef struct kvm_dirty_log KVMDirtyLog;
52

    
53
int kvm_allowed = 0;
54

    
55
struct KVMState
56
{
57
    KVMSlot slots[32];
58
    int fd;
59
    int vmfd;
60
    int regs_modified;
61
    int coalesced_mmio;
62
    int broken_set_mem_region;
63
    int migration_log;
64
#ifdef KVM_CAP_SET_GUEST_DEBUG
65
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66
#endif
67
    int irqchip_in_kernel;
68
    int pit_in_kernel;
69
};
70

    
71
static KVMState *kvm_state;
72

    
73
static KVMSlot *kvm_alloc_slot(KVMState *s)
74
{
75
    int i;
76

    
77
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78
        /* KVM private memory slots */
79
        if (i >= 8 && i < 12)
80
            continue;
81
        if (s->slots[i].memory_size == 0)
82
            return &s->slots[i];
83
    }
84

    
85
    fprintf(stderr, "%s: no free slot available\n", __func__);
86
    abort();
87
}
88

    
89
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90
                                         target_phys_addr_t start_addr,
91
                                         target_phys_addr_t end_addr)
92
{
93
    int i;
94

    
95
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96
        KVMSlot *mem = &s->slots[i];
97

    
98
        if (start_addr == mem->start_addr &&
99
            end_addr == mem->start_addr + mem->memory_size) {
100
            return mem;
101
        }
102
    }
103

    
104
    return NULL;
105
}
106

    
107
/*
108
 * Find overlapping slot with lowest start address
109
 */
110
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111
                                            target_phys_addr_t start_addr,
112
                                            target_phys_addr_t end_addr)
113
{
114
    KVMSlot *found = NULL;
115
    int i;
116

    
117
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118
        KVMSlot *mem = &s->slots[i];
119

    
120
        if (mem->memory_size == 0 ||
121
            (found && found->start_addr < mem->start_addr)) {
122
            continue;
123
        }
124

    
125
        if (end_addr > mem->start_addr &&
126
            start_addr < mem->start_addr + mem->memory_size) {
127
            found = mem;
128
        }
129
    }
130

    
131
    return found;
132
}
133

    
134
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
135
{
136
    struct kvm_userspace_memory_region mem;
137

    
138
    mem.slot = slot->slot;
139
    mem.guest_phys_addr = slot->start_addr;
140
    mem.memory_size = slot->memory_size;
141
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142
    mem.flags = slot->flags;
143
    if (s->migration_log) {
144
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
145
    }
146
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
147
}
148

    
149
static void kvm_reset_vcpu(void *opaque)
150
{
151
    CPUState *env = opaque;
152

    
153
    if (kvm_arch_put_registers(env)) {
154
        fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155
        abort();
156
    }
157
}
158

    
159
int kvm_irqchip_in_kernel(void)
160
{
161
    return kvm_state->irqchip_in_kernel;
162
}
163

    
164
int kvm_pit_in_kernel(void)
165
{
166
    return kvm_state->pit_in_kernel;
167
}
168

    
169

    
170
int kvm_init_vcpu(CPUState *env)
171
{
172
    KVMState *s = kvm_state;
173
    long mmap_size;
174
    int ret;
175

    
176
    dprintf("kvm_init_vcpu\n");
177

    
178
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179
    if (ret < 0) {
180
        dprintf("kvm_create_vcpu failed\n");
181
        goto err;
182
    }
183

    
184
    env->kvm_fd = ret;
185
    env->kvm_state = s;
186

    
187
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188
    if (mmap_size < 0) {
189
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190
        goto err;
191
    }
192

    
193
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194
                        env->kvm_fd, 0);
195
    if (env->kvm_run == MAP_FAILED) {
196
        ret = -errno;
197
        dprintf("mmap'ing vcpu state failed\n");
198
        goto err;
199
    }
200

    
201
    ret = kvm_arch_init_vcpu(env);
202
    if (ret == 0) {
203
        qemu_register_reset(kvm_reset_vcpu, env);
204
        ret = kvm_arch_put_registers(env);
205
    }
206
err:
207
    return ret;
208
}
209

    
210
int kvm_put_mp_state(CPUState *env)
211
{
212
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
213

    
214
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
215
}
216

    
217
int kvm_get_mp_state(CPUState *env)
218
{
219
    struct kvm_mp_state mp_state;
220
    int ret;
221

    
222
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
223
    if (ret < 0) {
224
        return ret;
225
    }
226
    env->mp_state = mp_state.mp_state;
227
    return 0;
228
}
229

    
230
/*
231
 * dirty pages logging control
232
 */
233
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
234
                                      ram_addr_t size, int flags, int mask)
235
{
236
    KVMState *s = kvm_state;
237
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
238
    int old_flags;
239

    
240
    if (mem == NULL)  {
241
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
242
                    TARGET_FMT_plx "\n", __func__, phys_addr,
243
                    (target_phys_addr_t)(phys_addr + size - 1));
244
            return -EINVAL;
245
    }
246

    
247
    old_flags = mem->flags;
248

    
249
    flags = (mem->flags & ~mask) | flags;
250
    mem->flags = flags;
251

    
252
    /* If nothing changed effectively, no need to issue ioctl */
253
    if (s->migration_log) {
254
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
255
    }
256
    if (flags == old_flags) {
257
            return 0;
258
    }
259

    
260
    return kvm_set_user_memory_region(s, mem);
261
}
262

    
263
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
264
{
265
        return kvm_dirty_pages_log_change(phys_addr, size,
266
                                          KVM_MEM_LOG_DIRTY_PAGES,
267
                                          KVM_MEM_LOG_DIRTY_PAGES);
268
}
269

    
270
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
271
{
272
        return kvm_dirty_pages_log_change(phys_addr, size,
273
                                          0,
274
                                          KVM_MEM_LOG_DIRTY_PAGES);
275
}
276

    
277
int kvm_set_migration_log(int enable)
278
{
279
    KVMState *s = kvm_state;
280
    KVMSlot *mem;
281
    int i, err;
282

    
283
    s->migration_log = enable;
284

    
285
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
286
        mem = &s->slots[i];
287

    
288
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
289
            continue;
290
        }
291
        err = kvm_set_user_memory_region(s, mem);
292
        if (err) {
293
            return err;
294
        }
295
    }
296
    return 0;
297
}
298

    
299
static int test_le_bit(unsigned long nr, unsigned char *addr)
300
{
301
    return (addr[nr >> 3] >> (nr & 7)) & 1;
302
}
303

    
304
/**
305
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
306
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
307
 * This means all bits are set to dirty.
308
 *
309
 * @start_add: start of logged region.
310
 * @end_addr: end of logged region.
311
 */
312
int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
313
                                   target_phys_addr_t end_addr)
314
{
315
    KVMState *s = kvm_state;
316
    unsigned long size, allocated_size = 0;
317
    target_phys_addr_t phys_addr;
318
    ram_addr_t addr;
319
    KVMDirtyLog d;
320
    KVMSlot *mem;
321
    int ret = 0;
322

    
323
    d.dirty_bitmap = NULL;
324
    while (start_addr < end_addr) {
325
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
326
        if (mem == NULL) {
327
            break;
328
        }
329

    
330
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
331
        if (!d.dirty_bitmap) {
332
            d.dirty_bitmap = qemu_malloc(size);
333
        } else if (size > allocated_size) {
334
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
335
        }
336
        allocated_size = size;
337
        memset(d.dirty_bitmap, 0, allocated_size);
338

    
339
        d.slot = mem->slot;
340

    
341
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
342
            dprintf("ioctl failed %d\n", errno);
343
            ret = -1;
344
            break;
345
        }
346

    
347
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
348
             phys_addr < mem->start_addr + mem->memory_size;
349
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
350
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
351
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
352

    
353
            if (test_le_bit(nr, bitmap)) {
354
                cpu_physical_memory_set_dirty(addr);
355
            }
356
        }
357
        start_addr = phys_addr;
358
    }
359
    qemu_free(d.dirty_bitmap);
360

    
361
    return ret;
362
}
363

    
364
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
365
{
366
    int ret = -ENOSYS;
367
#ifdef KVM_CAP_COALESCED_MMIO
368
    KVMState *s = kvm_state;
369

    
370
    if (s->coalesced_mmio) {
371
        struct kvm_coalesced_mmio_zone zone;
372

    
373
        zone.addr = start;
374
        zone.size = size;
375

    
376
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
377
    }
378
#endif
379

    
380
    return ret;
381
}
382

    
383
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
384
{
385
    int ret = -ENOSYS;
386
#ifdef KVM_CAP_COALESCED_MMIO
387
    KVMState *s = kvm_state;
388

    
389
    if (s->coalesced_mmio) {
390
        struct kvm_coalesced_mmio_zone zone;
391

    
392
        zone.addr = start;
393
        zone.size = size;
394

    
395
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
396
    }
397
#endif
398

    
399
    return ret;
400
}
401

    
402
int kvm_check_extension(KVMState *s, unsigned int extension)
403
{
404
    int ret;
405

    
406
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
407
    if (ret < 0) {
408
        ret = 0;
409
    }
410

    
411
    return ret;
412
}
413

    
414
int kvm_init(int smp_cpus)
415
{
416
    static const char upgrade_note[] =
417
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
418
        "(see http://sourceforge.net/projects/kvm).\n";
419
    KVMState *s;
420
    int ret;
421
    int i;
422

    
423
    if (smp_cpus > 1) {
424
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
425
        return -EINVAL;
426
    }
427

    
428
    s = qemu_mallocz(sizeof(KVMState));
429

    
430
#ifdef KVM_CAP_SET_GUEST_DEBUG
431
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
432
#endif
433
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
434
        s->slots[i].slot = i;
435

    
436
    s->vmfd = -1;
437
    s->fd = open("/dev/kvm", O_RDWR);
438
    if (s->fd == -1) {
439
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
440
        ret = -errno;
441
        goto err;
442
    }
443

    
444
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
445
    if (ret < KVM_API_VERSION) {
446
        if (ret > 0)
447
            ret = -EINVAL;
448
        fprintf(stderr, "kvm version too old\n");
449
        goto err;
450
    }
451

    
452
    if (ret > KVM_API_VERSION) {
453
        ret = -EINVAL;
454
        fprintf(stderr, "kvm version not supported\n");
455
        goto err;
456
    }
457

    
458
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
459
    if (s->vmfd < 0)
460
        goto err;
461

    
462
    /* initially, KVM allocated its own memory and we had to jump through
463
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
464
     * just use a user allocated buffer so we can use regular pages
465
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
466
     */
467
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
468
        ret = -EINVAL;
469
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
470
                upgrade_note);
471
        goto err;
472
    }
473

    
474
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
475
     * destroyed properly.  Since we rely on this capability, refuse to work
476
     * with any kernel without this capability. */
477
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
478
        ret = -EINVAL;
479

    
480
        fprintf(stderr,
481
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
482
                upgrade_note);
483
        goto err;
484
    }
485

    
486
#ifdef KVM_CAP_COALESCED_MMIO
487
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
488
#else
489
    s->coalesced_mmio = 0;
490
#endif
491

    
492
    s->broken_set_mem_region = 1;
493
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
494
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
495
    if (ret > 0) {
496
        s->broken_set_mem_region = 0;
497
    }
498
#endif
499

    
500
    ret = kvm_arch_init(s, smp_cpus);
501
    if (ret < 0)
502
        goto err;
503

    
504
    kvm_state = s;
505

    
506
    return 0;
507

    
508
err:
509
    if (s) {
510
        if (s->vmfd != -1)
511
            close(s->vmfd);
512
        if (s->fd != -1)
513
            close(s->fd);
514
    }
515
    qemu_free(s);
516

    
517
    return ret;
518
}
519

    
520
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
521
                         uint32_t count)
522
{
523
    int i;
524
    uint8_t *ptr = data;
525

    
526
    for (i = 0; i < count; i++) {
527
        if (direction == KVM_EXIT_IO_IN) {
528
            switch (size) {
529
            case 1:
530
                stb_p(ptr, cpu_inb(port));
531
                break;
532
            case 2:
533
                stw_p(ptr, cpu_inw(port));
534
                break;
535
            case 4:
536
                stl_p(ptr, cpu_inl(port));
537
                break;
538
            }
539
        } else {
540
            switch (size) {
541
            case 1:
542
                cpu_outb(port, ldub_p(ptr));
543
                break;
544
            case 2:
545
                cpu_outw(port, lduw_p(ptr));
546
                break;
547
            case 4:
548
                cpu_outl(port, ldl_p(ptr));
549
                break;
550
            }
551
        }
552

    
553
        ptr += size;
554
    }
555

    
556
    return 1;
557
}
558

    
559
static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
560
{
561
#ifdef KVM_CAP_COALESCED_MMIO
562
    KVMState *s = kvm_state;
563
    if (s->coalesced_mmio) {
564
        struct kvm_coalesced_mmio_ring *ring;
565

    
566
        ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
567
        while (ring->first != ring->last) {
568
            struct kvm_coalesced_mmio *ent;
569

    
570
            ent = &ring->coalesced_mmio[ring->first];
571

    
572
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
573
            /* FIXME smp_wmb() */
574
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
575
        }
576
    }
577
#endif
578
}
579

    
580
void kvm_cpu_synchronize_state(CPUState *env)
581
{
582
    if (!env->kvm_state->regs_modified) {
583
        kvm_arch_get_registers(env);
584
        env->kvm_state->regs_modified = 1;
585
    }
586
}
587

    
588
int kvm_cpu_exec(CPUState *env)
589
{
590
    struct kvm_run *run = env->kvm_run;
591
    int ret;
592

    
593
    dprintf("kvm_cpu_exec()\n");
594

    
595
    do {
596
        if (env->exit_request) {
597
            dprintf("interrupt exit requested\n");
598
            ret = 0;
599
            break;
600
        }
601

    
602
        if (env->kvm_state->regs_modified) {
603
            kvm_arch_put_registers(env);
604
            env->kvm_state->regs_modified = 0;
605
        }
606

    
607
        kvm_arch_pre_run(env, run);
608
        qemu_mutex_unlock_iothread();
609
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
610
        qemu_mutex_lock_iothread();
611
        kvm_arch_post_run(env, run);
612

    
613
        if (ret == -EINTR || ret == -EAGAIN) {
614
            dprintf("io window exit\n");
615
            ret = 0;
616
            break;
617
        }
618

    
619
        if (ret < 0) {
620
            dprintf("kvm run failed %s\n", strerror(-ret));
621
            abort();
622
        }
623

    
624
        kvm_run_coalesced_mmio(env, run);
625

    
626
        ret = 0; /* exit loop */
627
        switch (run->exit_reason) {
628
        case KVM_EXIT_IO:
629
            dprintf("handle_io\n");
630
            ret = kvm_handle_io(run->io.port,
631
                                (uint8_t *)run + run->io.data_offset,
632
                                run->io.direction,
633
                                run->io.size,
634
                                run->io.count);
635
            break;
636
        case KVM_EXIT_MMIO:
637
            dprintf("handle_mmio\n");
638
            cpu_physical_memory_rw(run->mmio.phys_addr,
639
                                   run->mmio.data,
640
                                   run->mmio.len,
641
                                   run->mmio.is_write);
642
            ret = 1;
643
            break;
644
        case KVM_EXIT_IRQ_WINDOW_OPEN:
645
            dprintf("irq_window_open\n");
646
            break;
647
        case KVM_EXIT_SHUTDOWN:
648
            dprintf("shutdown\n");
649
            qemu_system_reset_request();
650
            ret = 1;
651
            break;
652
        case KVM_EXIT_UNKNOWN:
653
            dprintf("kvm_exit_unknown\n");
654
            break;
655
        case KVM_EXIT_FAIL_ENTRY:
656
            dprintf("kvm_exit_fail_entry\n");
657
            break;
658
        case KVM_EXIT_EXCEPTION:
659
            dprintf("kvm_exit_exception\n");
660
            break;
661
        case KVM_EXIT_DEBUG:
662
            dprintf("kvm_exit_debug\n");
663
#ifdef KVM_CAP_SET_GUEST_DEBUG
664
            if (kvm_arch_debug(&run->debug.arch)) {
665
                gdb_set_stop_cpu(env);
666
                vm_stop(EXCP_DEBUG);
667
                env->exception_index = EXCP_DEBUG;
668
                return 0;
669
            }
670
            /* re-enter, this exception was guest-internal */
671
            ret = 1;
672
#endif /* KVM_CAP_SET_GUEST_DEBUG */
673
            break;
674
        default:
675
            dprintf("kvm_arch_handle_exit\n");
676
            ret = kvm_arch_handle_exit(env, run);
677
            break;
678
        }
679
    } while (ret > 0);
680

    
681
    if (env->exit_request) {
682
        env->exit_request = 0;
683
        env->exception_index = EXCP_INTERRUPT;
684
    }
685

    
686
    return ret;
687
}
688

    
689
void kvm_set_phys_mem(target_phys_addr_t start_addr,
690
                      ram_addr_t size,
691
                      ram_addr_t phys_offset)
692
{
693
    KVMState *s = kvm_state;
694
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
695
    KVMSlot *mem, old;
696
    int err;
697

    
698
    if (start_addr & ~TARGET_PAGE_MASK) {
699
        if (flags >= IO_MEM_UNASSIGNED) {
700
            if (!kvm_lookup_overlapping_slot(s, start_addr,
701
                                             start_addr + size)) {
702
                return;
703
            }
704
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
705
        } else {
706
            fprintf(stderr, "Only page-aligned memory slots supported\n");
707
        }
708
        abort();
709
    }
710

    
711
    /* KVM does not support read-only slots */
712
    phys_offset &= ~IO_MEM_ROM;
713

    
714
    while (1) {
715
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
716
        if (!mem) {
717
            break;
718
        }
719

    
720
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
721
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
722
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
723
            /* The new slot fits into the existing one and comes with
724
             * identical parameters - nothing to be done. */
725
            return;
726
        }
727

    
728
        old = *mem;
729

    
730
        /* unregister the overlapping slot */
731
        mem->memory_size = 0;
732
        err = kvm_set_user_memory_region(s, mem);
733
        if (err) {
734
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
735
                    __func__, strerror(-err));
736
            abort();
737
        }
738

    
739
        /* Workaround for older KVM versions: we can't join slots, even not by
740
         * unregistering the previous ones and then registering the larger
741
         * slot. We have to maintain the existing fragmentation. Sigh.
742
         *
743
         * This workaround assumes that the new slot starts at the same
744
         * address as the first existing one. If not or if some overlapping
745
         * slot comes around later, we will fail (not seen in practice so far)
746
         * - and actually require a recent KVM version. */
747
        if (s->broken_set_mem_region &&
748
            old.start_addr == start_addr && old.memory_size < size &&
749
            flags < IO_MEM_UNASSIGNED) {
750
            mem = kvm_alloc_slot(s);
751
            mem->memory_size = old.memory_size;
752
            mem->start_addr = old.start_addr;
753
            mem->phys_offset = old.phys_offset;
754
            mem->flags = 0;
755

    
756
            err = kvm_set_user_memory_region(s, mem);
757
            if (err) {
758
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
759
                        strerror(-err));
760
                abort();
761
            }
762

    
763
            start_addr += old.memory_size;
764
            phys_offset += old.memory_size;
765
            size -= old.memory_size;
766
            continue;
767
        }
768

    
769
        /* register prefix slot */
770
        if (old.start_addr < start_addr) {
771
            mem = kvm_alloc_slot(s);
772
            mem->memory_size = start_addr - old.start_addr;
773
            mem->start_addr = old.start_addr;
774
            mem->phys_offset = old.phys_offset;
775
            mem->flags = 0;
776

    
777
            err = kvm_set_user_memory_region(s, mem);
778
            if (err) {
779
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
780
                        __func__, strerror(-err));
781
                abort();
782
            }
783
        }
784

    
785
        /* register suffix slot */
786
        if (old.start_addr + old.memory_size > start_addr + size) {
787
            ram_addr_t size_delta;
788

    
789
            mem = kvm_alloc_slot(s);
790
            mem->start_addr = start_addr + size;
791
            size_delta = mem->start_addr - old.start_addr;
792
            mem->memory_size = old.memory_size - size_delta;
793
            mem->phys_offset = old.phys_offset + size_delta;
794
            mem->flags = 0;
795

    
796
            err = kvm_set_user_memory_region(s, mem);
797
            if (err) {
798
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
799
                        __func__, strerror(-err));
800
                abort();
801
            }
802
        }
803
    }
804

    
805
    /* in case the KVM bug workaround already "consumed" the new slot */
806
    if (!size)
807
        return;
808

    
809
    /* KVM does not need to know about this memory */
810
    if (flags >= IO_MEM_UNASSIGNED)
811
        return;
812

    
813
    mem = kvm_alloc_slot(s);
814
    mem->memory_size = size;
815
    mem->start_addr = start_addr;
816
    mem->phys_offset = phys_offset;
817
    mem->flags = 0;
818

    
819
    err = kvm_set_user_memory_region(s, mem);
820
    if (err) {
821
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
822
                strerror(-err));
823
        abort();
824
    }
825
}
826

    
827
int kvm_ioctl(KVMState *s, int type, ...)
828
{
829
    int ret;
830
    void *arg;
831
    va_list ap;
832

    
833
    va_start(ap, type);
834
    arg = va_arg(ap, void *);
835
    va_end(ap);
836

    
837
    ret = ioctl(s->fd, type, arg);
838
    if (ret == -1)
839
        ret = -errno;
840

    
841
    return ret;
842
}
843

    
844
int kvm_vm_ioctl(KVMState *s, int type, ...)
845
{
846
    int ret;
847
    void *arg;
848
    va_list ap;
849

    
850
    va_start(ap, type);
851
    arg = va_arg(ap, void *);
852
    va_end(ap);
853

    
854
    ret = ioctl(s->vmfd, type, arg);
855
    if (ret == -1)
856
        ret = -errno;
857

    
858
    return ret;
859
}
860

    
861
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
862
{
863
    int ret;
864
    void *arg;
865
    va_list ap;
866

    
867
    va_start(ap, type);
868
    arg = va_arg(ap, void *);
869
    va_end(ap);
870

    
871
    ret = ioctl(env->kvm_fd, type, arg);
872
    if (ret == -1)
873
        ret = -errno;
874

    
875
    return ret;
876
}
877

    
878
int kvm_has_sync_mmu(void)
879
{
880
#ifdef KVM_CAP_SYNC_MMU
881
    KVMState *s = kvm_state;
882

    
883
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
884
#else
885
    return 0;
886
#endif
887
}
888

    
889
void kvm_setup_guest_memory(void *start, size_t size)
890
{
891
    if (!kvm_has_sync_mmu()) {
892
#ifdef MADV_DONTFORK
893
        int ret = madvise(start, size, MADV_DONTFORK);
894

    
895
        if (ret) {
896
            perror("madvice");
897
            exit(1);
898
        }
899
#else
900
        fprintf(stderr,
901
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
902
        exit(1);
903
#endif
904
    }
905
}
906

    
907
#ifdef KVM_CAP_SET_GUEST_DEBUG
908
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
909
{
910
#ifdef CONFIG_IOTHREAD
911
    if (env == cpu_single_env) {
912
        func(data);
913
        return;
914
    }
915
    abort();
916
#else
917
    func(data);
918
#endif
919
}
920

    
921
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
922
                                                 target_ulong pc)
923
{
924
    struct kvm_sw_breakpoint *bp;
925

    
926
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
927
        if (bp->pc == pc)
928
            return bp;
929
    }
930
    return NULL;
931
}
932

    
933
int kvm_sw_breakpoints_active(CPUState *env)
934
{
935
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
936
}
937

    
938
struct kvm_set_guest_debug_data {
939
    struct kvm_guest_debug dbg;
940
    CPUState *env;
941
    int err;
942
};
943

    
944
static void kvm_invoke_set_guest_debug(void *data)
945
{
946
    struct kvm_set_guest_debug_data *dbg_data = data;
947
    CPUState *env = dbg_data->env;
948

    
949
    if (env->kvm_state->regs_modified) {
950
        kvm_arch_put_registers(env);
951
        env->kvm_state->regs_modified = 0;
952
    }
953
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
954
}
955

    
956
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
957
{
958
    struct kvm_set_guest_debug_data data;
959

    
960
    data.dbg.control = 0;
961
    if (env->singlestep_enabled)
962
        data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
963

    
964
    kvm_arch_update_guest_debug(env, &data.dbg);
965
    data.dbg.control |= reinject_trap;
966
    data.env = env;
967

    
968
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
969
    return data.err;
970
}
971

    
972
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
973
                          target_ulong len, int type)
974
{
975
    struct kvm_sw_breakpoint *bp;
976
    CPUState *env;
977
    int err;
978

    
979
    if (type == GDB_BREAKPOINT_SW) {
980
        bp = kvm_find_sw_breakpoint(current_env, addr);
981
        if (bp) {
982
            bp->use_count++;
983
            return 0;
984
        }
985

    
986
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
987
        if (!bp)
988
            return -ENOMEM;
989

    
990
        bp->pc = addr;
991
        bp->use_count = 1;
992
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
993
        if (err) {
994
            free(bp);
995
            return err;
996
        }
997

    
998
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
999
                          bp, entry);
1000
    } else {
1001
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1002
        if (err)
1003
            return err;
1004
    }
1005

    
1006
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1007
        err = kvm_update_guest_debug(env, 0);
1008
        if (err)
1009
            return err;
1010
    }
1011
    return 0;
1012
}
1013

    
1014
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1015
                          target_ulong len, int type)
1016
{
1017
    struct kvm_sw_breakpoint *bp;
1018
    CPUState *env;
1019
    int err;
1020

    
1021
    if (type == GDB_BREAKPOINT_SW) {
1022
        bp = kvm_find_sw_breakpoint(current_env, addr);
1023
        if (!bp)
1024
            return -ENOENT;
1025

    
1026
        if (bp->use_count > 1) {
1027
            bp->use_count--;
1028
            return 0;
1029
        }
1030

    
1031
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1032
        if (err)
1033
            return err;
1034

    
1035
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1036
        qemu_free(bp);
1037
    } else {
1038
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1039
        if (err)
1040
            return err;
1041
    }
1042

    
1043
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1044
        err = kvm_update_guest_debug(env, 0);
1045
        if (err)
1046
            return err;
1047
    }
1048
    return 0;
1049
}
1050

    
1051
void kvm_remove_all_breakpoints(CPUState *current_env)
1052
{
1053
    struct kvm_sw_breakpoint *bp, *next;
1054
    KVMState *s = current_env->kvm_state;
1055
    CPUState *env;
1056

    
1057
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1058
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1059
            /* Try harder to find a CPU that currently sees the breakpoint. */
1060
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1061
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1062
                    break;
1063
            }
1064
        }
1065
    }
1066
    kvm_arch_remove_all_hw_breakpoints();
1067

    
1068
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1069
        kvm_update_guest_debug(env, 0);
1070
}
1071

    
1072
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1073

    
1074
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1075
{
1076
    return -EINVAL;
1077
}
1078

    
1079
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1080
                          target_ulong len, int type)
1081
{
1082
    return -EINVAL;
1083
}
1084

    
1085
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1086
                          target_ulong len, int type)
1087
{
1088
    return -EINVAL;
1089
}
1090

    
1091
void kvm_remove_all_breakpoints(CPUState *current_env)
1092
{
1093
}
1094
#endif /* !KVM_CAP_SET_GUEST_DEBUG */