Statistics
| Branch: | Revision:

root / hw / wdt_i6300esb.c @ d60efc6b

History | View | Annotate | Download (14.4 kB)

1
/*
2
 * Virtual hardware watchdog.
3
 *
4
 * Copyright (C) 2009 Red Hat Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
18
 *
19
 * By Richard W.M. Jones (rjones@redhat.com).
20
 */
21

    
22
#include <inttypes.h>
23

    
24
#include "qemu-common.h"
25
#include "qemu-timer.h"
26
#include "watchdog.h"
27
#include "hw.h"
28
#include "isa.h"
29
#include "pc.h"
30
#include "pci.h"
31

    
32
/*#define I6300ESB_DEBUG 1*/
33

    
34
#ifdef I6300ESB_DEBUG
35
#define i6300esb_debug(fs,...) \
36
    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
37
#else
38
#define i6300esb_debug(fs,...)
39
#endif
40

    
41
#ifndef PCI_DEVICE_ID_INTEL_ESB_9
42
#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
43
#endif
44

    
45
/* PCI configuration registers */
46
#define ESB_CONFIG_REG  0x60            /* Config register                   */
47
#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
48

    
49
/* Memory mapped registers (offset from base address) */
50
#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
51
#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
52
#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
53
#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
54

    
55
/* Lock register bits */
56
#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
57
#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
58
#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
59

    
60
/* Config register bits */
61
#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
62
#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
63
#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
64

    
65
/* Reload register bits */
66
#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
67

    
68
/* Magic constants */
69
#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
70
#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
71

    
72
/* Device state. */
73
struct I6300State {
74
    PCIDevice dev;              /* PCI device state, must be first field. */
75

    
76
    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
77
                                 * performed depends on the -watchdog-action
78
                                 * param passed on QEMU command line.
79
                                 */
80
    int clock_scale;            /* Clock scale. */
81
#define CLOCK_SCALE_1KHZ 0
82
#define CLOCK_SCALE_1MHZ 1
83

    
84
    int int_type;               /* Interrupt type generated. */
85
#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
86
#define INT_TYPE_SMI 2
87
#define INT_TYPE_DISABLED 3
88

    
89
    int free_run;               /* If true, reload timer on expiry. */
90
    int locked;                 /* If true, enabled field cannot be changed. */
91
    int enabled;                /* If true, watchdog is enabled. */
92

    
93
    QEMUTimer *timer;           /* The actual watchdog timer. */
94

    
95
    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
96
    uint32_t timer2_preload;
97
    int stage;                  /* Stage (1 or 2). */
98

    
99
    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
100
                                 * registers, and we transition through
101
                                 * states 0 -> 1 -> 2 when this happens.
102
                                 */
103

    
104
    int previous_reboot_flag;   /* If the watchdog caused the previous
105
                                 * reboot, this flag will be set.
106
                                 */
107
};
108

    
109
typedef struct I6300State I6300State;
110

    
111
/* This function is called when the watchdog has either been enabled
112
 * (hence it starts counting down) or has been keep-alived.
113
 */
114
static void i6300esb_restart_timer(I6300State *d, int stage)
115
{
116
    int64_t timeout;
117

    
118
    if (!d->enabled)
119
        return;
120

    
121
    d->stage = stage;
122

    
123
    if (d->stage <= 1)
124
        timeout = d->timer1_preload;
125
    else
126
        timeout = d->timer2_preload;
127

    
128
    if (d->clock_scale == CLOCK_SCALE_1KHZ)
129
        timeout <<= 15;
130
    else
131
        timeout <<= 5;
132

    
133
    /* Get the timeout in units of ticks_per_sec. */
134
    timeout = ticks_per_sec * timeout / 33000000;
135

    
136
    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
137

    
138
    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
139
}
140

    
141
/* This is called when the guest disables the watchdog. */
142
static void i6300esb_disable_timer(I6300State *d)
143
{
144
    i6300esb_debug("timer disabled\n");
145

    
146
    qemu_del_timer(d->timer);
147
}
148

    
149
static void i6300esb_reset(I6300State *d)
150
{
151
    /* XXX We should probably reset other parts of the state here,
152
     * but we should also reset our state on general machine reset
153
     * too.  For now just disable the timer so it doesn't fire
154
     * again after the reboot.
155
     */
156
    i6300esb_disable_timer(d);
157
}
158

    
159
/* This function is called when the watchdog expires.  Note that
160
 * the hardware has two timers, and so expiry happens in two stages.
161
 * If d->stage == 1 then we perform the first stage action (usually,
162
 * sending an interrupt) and then restart the timer again for the
163
 * second stage.  If the second stage expires then the watchdog
164
 * really has run out.
165
 */
166
static void i6300esb_timer_expired(void *vp)
167
{
168
    I6300State *d = (I6300State *) vp;
169

    
170
    i6300esb_debug("stage %d\n", d->stage);
171

    
172
    if (d->stage == 1) {
173
        /* What to do at the end of stage 1? */
174
        switch (d->int_type) {
175
        case INT_TYPE_IRQ:
176
            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
177
            break;
178
        case INT_TYPE_SMI:
179
            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
180
            break;
181
        }
182

    
183
        /* Start the second stage. */
184
        i6300esb_restart_timer(d, 2);
185
    } else {
186
        /* Second stage expired, reboot for real. */
187
        if (d->reboot_enabled) {
188
            d->previous_reboot_flag = 1;
189
            watchdog_perform_action(); /* This reboots, exits, etc */
190
            i6300esb_reset(d);
191
        }
192

    
193
        /* In "free running mode" we start stage 1 again. */
194
        if (d->free_run)
195
            i6300esb_restart_timer(d, 1);
196
    }
197
}
198

    
199
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
200
                                  uint32_t data, int len)
201
{
202
    I6300State *d = (I6300State *) dev;
203
    int old;
204

    
205
    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
206

    
207
    if (addr == ESB_CONFIG_REG && len == 2) {
208
        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
209
        d->clock_scale =
210
            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
211
        d->int_type = (data & ESB_WDT_INTTYPE);
212
    } else if (addr == ESB_LOCK_REG && len == 1) {
213
        if (!d->locked) {
214
            d->locked = (data & ESB_WDT_LOCK) != 0;
215
            d->free_run = (data & ESB_WDT_FUNC) != 0;
216
            old = d->enabled;
217
            d->enabled = (data & ESB_WDT_ENABLE) != 0;
218
            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
219
                i6300esb_restart_timer(d, 1);
220
            else if (!d->enabled)
221
                i6300esb_disable_timer(d);
222
        }
223
    } else {
224
        pci_default_write_config(dev, addr, data, len);
225
    }
226
}
227

    
228
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
229
{
230
    I6300State *d = (I6300State *) dev;
231
    uint32_t data;
232

    
233
    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
234

    
235
    if (addr == ESB_CONFIG_REG && len == 2) {
236
        data =
237
            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
238
            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
239
            d->int_type;
240
        return data;
241
    } else if (addr == ESB_LOCK_REG && len == 1) {
242
        data =
243
            (d->free_run ? ESB_WDT_FUNC : 0) |
244
            (d->locked ? ESB_WDT_LOCK : 0) |
245
            (d->enabled ? ESB_WDT_ENABLE : 0);
246
        return data;
247
    } else {
248
        return pci_default_read_config(dev, addr, len);
249
    }
250
}
251

    
252
static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
253
{
254
    i6300esb_debug ("addr = %x\n", (int) addr);
255

    
256
    return 0;
257
}
258

    
259
static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
260
{
261
    uint32_t data = 0;
262
    I6300State *d = (I6300State *) vp;
263

    
264
    i6300esb_debug("addr = %x\n", (int) addr);
265

    
266
    if (addr == 0xc) {
267
        /* The previous reboot flag is really bit 9, but there is
268
         * a bug in the Linux driver where it thinks it's bit 12.
269
         * Set both.
270
         */
271
        data = d->previous_reboot_flag ? 0x1200 : 0;
272
    }
273

    
274
    return data;
275
}
276

    
277
static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
278
{
279
    i6300esb_debug("addr = %x\n", (int) addr);
280

    
281
    return 0;
282
}
283

    
284
static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
285
{
286
    I6300State *d = (I6300State *) vp;
287

    
288
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
289

    
290
    if (addr == 0xc && val == 0x80)
291
        d->unlock_state = 1;
292
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
293
        d->unlock_state = 2;
294
}
295

    
296
static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
297
{
298
    I6300State *d = (I6300State *) vp;
299

    
300
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
301

    
302
    if (addr == 0xc && val == 0x80)
303
        d->unlock_state = 1;
304
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
305
        d->unlock_state = 2;
306
    else {
307
        if (d->unlock_state == 2) {
308
            if (addr == 0xc) {
309
                if ((val & 0x100) != 0)
310
                    /* This is the "ping" from the userspace watchdog in
311
                     * the guest ...
312
                     */
313
                    i6300esb_restart_timer(d, 1);
314

    
315
                /* Setting bit 9 resets the previous reboot flag.
316
                 * There's a bug in the Linux driver where it sets
317
                 * bit 12 instead.
318
                 */
319
                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
320
                    d->previous_reboot_flag = 0;
321
                }
322
            }
323

    
324
            d->unlock_state = 0;
325
        }
326
    }
327
}
328

    
329
static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
330
{
331
    I6300State *d = (I6300State *) vp;
332

    
333
    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
334

    
335
    if (addr == 0xc && val == 0x80)
336
        d->unlock_state = 1;
337
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
338
        d->unlock_state = 2;
339
    else {
340
        if (d->unlock_state == 2) {
341
            if (addr == 0)
342
                d->timer1_preload = val & 0xfffff;
343
            else if (addr == 4)
344
                d->timer2_preload = val & 0xfffff;
345

    
346
            d->unlock_state = 0;
347
        }
348
    }
349
}
350

    
351
static void i6300esb_map(PCIDevice *dev, int region_num,
352
                         uint32_t addr, uint32_t size, int type)
353
{
354
    static CPUReadMemoryFunc * const mem_read[3] = {
355
        i6300esb_mem_readb,
356
        i6300esb_mem_readw,
357
        i6300esb_mem_readl,
358
    };
359
    static CPUWriteMemoryFunc * const mem_write[3] = {
360
        i6300esb_mem_writeb,
361
        i6300esb_mem_writew,
362
        i6300esb_mem_writel,
363
    };
364
    I6300State *d = (I6300State *) dev;
365
    int io_mem;
366

    
367
    i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
368

    
369
    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
370
    cpu_register_physical_memory (addr, 0x10, io_mem);
371
    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
372
}
373

    
374
static void i6300esb_save(QEMUFile *f, void *vp)
375
{
376
    I6300State *d = (I6300State *) vp;
377

    
378
    pci_device_save(&d->dev, f);
379
    qemu_put_be32(f, d->reboot_enabled);
380
    qemu_put_be32(f, d->clock_scale);
381
    qemu_put_be32(f, d->int_type);
382
    qemu_put_be32(f, d->free_run);
383
    qemu_put_be32(f, d->locked);
384
    qemu_put_be32(f, d->enabled);
385
    qemu_put_timer(f, d->timer);
386
    qemu_put_be32(f, d->timer1_preload);
387
    qemu_put_be32(f, d->timer2_preload);
388
    qemu_put_be32(f, d->stage);
389
    qemu_put_be32(f, d->unlock_state);
390
    qemu_put_be32(f, d->previous_reboot_flag);
391
}
392

    
393
static int i6300esb_load(QEMUFile *f, void *vp, int version)
394
{
395
    I6300State *d = (I6300State *) vp;
396

    
397
    if (version != sizeof (I6300State))
398
        return -EINVAL;
399

    
400
    pci_device_load(&d->dev, f);
401
    d->reboot_enabled = qemu_get_be32(f);
402
    d->clock_scale = qemu_get_be32(f);
403
    d->int_type = qemu_get_be32(f);
404
    d->free_run = qemu_get_be32(f);
405
    d->locked = qemu_get_be32(f);
406
    d->enabled = qemu_get_be32(f);
407
    qemu_get_timer(f, d->timer);
408
    d->timer1_preload = qemu_get_be32(f);
409
    d->timer2_preload = qemu_get_be32(f);
410
    d->stage = qemu_get_be32(f);
411
    d->unlock_state = qemu_get_be32(f);
412
    d->previous_reboot_flag = qemu_get_be32(f);
413

    
414
    return 0;
415
}
416

    
417
/* Create and initialize a virtual Intel 6300ESB during PC creation. */
418
static void i6300esb_pc_init(PCIBus *pci_bus)
419
{
420
    I6300State *d;
421
    uint8_t *pci_conf;
422

    
423
    if (!pci_bus) {
424
        fprintf(stderr, "wdt_i6300esb: no PCI bus in this machine\n");
425
        return;
426
    }
427

    
428
    d = (I6300State *)
429
        pci_register_device (pci_bus, "i6300esb_wdt", sizeof (I6300State),
430
                             -1,
431
                             i6300esb_config_read, i6300esb_config_write);
432

    
433
    d->reboot_enabled = 1;
434
    d->clock_scale = CLOCK_SCALE_1KHZ;
435
    d->int_type = INT_TYPE_IRQ;
436
    d->free_run = 0;
437
    d->locked = 0;
438
    d->enabled = 0;
439
    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
440
    d->timer1_preload = 0xfffff;
441
    d->timer2_preload = 0xfffff;
442
    d->stage = 1;
443
    d->unlock_state = 0;
444
    d->previous_reboot_flag = 0;
445

    
446
    pci_conf = d->dev.config;
447
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
448
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
449
    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
450
    pci_conf[0x0e] = 0x00;
451

    
452
    pci_register_bar(&d->dev, 0, 0x10,
453
                            PCI_ADDRESS_SPACE_MEM, i6300esb_map);
454

    
455
    register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
456
                     i6300esb_save, i6300esb_load, d);
457
}
458

    
459
static WatchdogTimerModel model = {
460
    .wdt_name = "i6300esb",
461
    .wdt_description = "Intel 6300ESB",
462
    .wdt_pc_init = i6300esb_pc_init,
463
};
464

    
465
void wdt_i6300esb_init(void)
466
{
467
    watchdog_add_model(&model);
468
}