Statistics
| Branch: | Revision:

root / hw / eepro100.c @ d78f3995

History | View | Annotate | Download (56.4 kB)

1
/*
2
 * QEMU i8255x (PRO100) emulation
3
 *
4
 * Copyright (c) 2006-2007 Stefan Weil
5
 *
6
 * Portions of the code are copies from grub / etherboot eepro100.c
7
 * and linux e100.c.
8
 *
9
 * This program is free software; you can redistribute it and/or modify
10
 * it under the terms of the GNU General Public License as published by
11
 * the Free Software Foundation; either version 2 of the License, or
12
 * (at your option) any later version.
13
 *
14
 * This program is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17
 * GNU General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU General Public License
20
 * along with this program; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
22
 *
23
 * Tested features (i82559):
24
 *      PXE boot (i386) no valid link
25
 *      Linux networking (i386) ok
26
 *
27
 * Untested:
28
 *      non-i386 platforms
29
 *      Windows networking
30
 *
31
 * References:
32
 *
33
 * Intel 8255x 10/100 Mbps Ethernet Controller Family
34
 * Open Source Software Developer Manual
35
 */
36

    
37
#if defined(TARGET_I386)
38
# warning "PXE boot still not working!"
39
#endif
40

    
41
#include <assert.h>
42
#include <stddef.h>             /* offsetof */
43
#include "hw.h"
44
#include "pci.h"
45
#include "net.h"
46
#include "eeprom93xx.h"
47

    
48
/* Common declarations for all PCI devices. */
49

    
50
#define PCI_DEVICE_ID           0x02    /* 16 bits */
51
#define PCI_COMMAND             0x04    /* 16 bits */
52
#define PCI_STATUS              0x06    /* 16 bits */
53

    
54
#define PCI_REVISION_ID         0x08    /* 8 bits  */
55

    
56
#define PCI_CONFIG_8(offset, value) \
57
    (pci_conf[offset] = (value))
58
#define PCI_CONFIG_16(offset, value) \
59
    (*(uint16_t *)&pci_conf[offset] = cpu_to_le16(value))
60
#define PCI_CONFIG_32(offset, value) \
61
    (*(uint32_t *)&pci_conf[offset] = cpu_to_le32(value))
62

    
63
#define KiB 1024
64

    
65
/* debug EEPRO100 card */
66
//~ #define DEBUG_EEPRO100
67

    
68
#ifdef DEBUG_EEPRO100
69
#define logout(fmt, args...) fprintf(stderr, "EE100\t%-24s" fmt, __func__, ##args)
70
#else
71
#define logout(fmt, args...) ((void)0)
72
#endif
73

    
74
/* Set flags to 0 to disable debug output. */
75
#define MDI     0
76

    
77
#define TRACE(flag, command) ((flag) ? (command) : (void)0)
78

    
79
#define missing(text)       assert(!"feature is missing in this emulation: " text)
80

    
81
#define MAX_ETH_FRAME_SIZE 1514
82

    
83
/* This driver supports several different devices which are declared here. */
84
#define i82551          0x82551
85
#define i82557B         0x82557b
86
#define i82557C         0x82557c
87
#define i82558B         0x82558b
88
#define i82559C         0x82559c
89
#define i82559ER        0x82559e
90
#define i82562          0x82562
91

    
92
#define EEPROM_SIZE     64
93

    
94
#define PCI_MEM_SIZE            (4 * KiB)
95
#define PCI_IO_SIZE             64
96
#define PCI_FLASH_SIZE          (128 * KiB)
97

    
98
#define BIT(n) (1 << (n))
99
#define BITS(n, m) (((0xffffffffU << (31 - n)) >> (31 - n + m)) << m)
100

    
101
/* The SCB accepts the following controls for the Tx and Rx units: */
102
#define  CU_NOP         0x0000  /* No operation. */
103
#define  CU_START       0x0010  /* CU start. */
104
#define  CU_RESUME      0x0020  /* CU resume. */
105
#define  CU_STATSADDR   0x0040  /* Load dump counters address. */
106
#define  CU_SHOWSTATS   0x0050  /* Dump statistical counters. */
107
#define  CU_CMD_BASE    0x0060  /* Load CU base address. */
108
#define  CU_DUMPSTATS   0x0070  /* Dump and reset statistical counters. */
109
#define  CU_SRESUME     0x00a0  /* CU static resume. */
110

    
111
#define  RU_NOP         0x0000
112
#define  RX_START       0x0001
113
#define  RX_RESUME      0x0002
114
#define  RX_ABORT       0x0004
115
#define  RX_ADDR_LOAD   0x0006
116
#define  RX_RESUMENR    0x0007
117
#define INT_MASK        0x0100
118
#define DRVR_INT        0x0200  /* Driver generated interrupt. */
119

    
120
typedef unsigned char bool;
121

    
122
/* Offsets to the various registers.
123
   All accesses need not be longword aligned. */
124
enum speedo_offsets {
125
    SCBStatus = 0,
126
    SCBAck = 1,
127
    SCBCmd = 2,                 /* Rx/Command Unit command and status. */
128
    SCBIntmask = 3,
129
    SCBPointer = 4,             /* General purpose pointer. */
130
    SCBPort = 8,                /* Misc. commands and operands.  */
131
    SCBflash = 12, SCBeeprom = 14,      /* EEPROM and flash memory control. */
132
    SCBCtrlMDI = 16,            /* MDI interface control. */
133
    SCBEarlyRx = 20,            /* Early receive byte count. */
134
    SCBFlow = 24,
135
};
136

    
137
/* A speedo3 transmit buffer descriptor with two buffers... */
138
typedef struct {
139
    uint16_t status;
140
    uint16_t command;
141
    uint32_t link;              /* void * */
142
    uint32_t tx_desc_addr;      /* transmit buffer decsriptor array address. */
143
    uint16_t tcb_bytes;         /* transmit command block byte count (in lower 14 bits */
144
    uint8_t tx_threshold;       /* transmit threshold */
145
    uint8_t tbd_count;          /* TBD number */
146
    //~ /* This constitutes two "TBD" entries: hdr and data */
147
    //~ uint32_t tx_buf_addr0;  /* void *, header of frame to be transmitted.  */
148
    //~ int32_t  tx_buf_size0;  /* Length of Tx hdr. */
149
    //~ uint32_t tx_buf_addr1;  /* void *, data to be transmitted.  */
150
    //~ int32_t  tx_buf_size1;  /* Length of Tx data. */
151
} eepro100_tx_t;
152

    
153
/* Receive frame descriptor. */
154
typedef struct {
155
    int16_t status;
156
    uint16_t command;
157
    uint32_t link;              /* struct RxFD * */
158
    uint32_t rx_buf_addr;       /* void * */
159
    uint16_t count;
160
    uint16_t size;
161
    char packet[MAX_ETH_FRAME_SIZE + 4];
162
} eepro100_rx_t;
163

    
164
typedef struct {
165
    uint32_t tx_good_frames, tx_max_collisions, tx_late_collisions,
166
        tx_underruns, tx_lost_crs, tx_deferred, tx_single_collisions,
167
        tx_multiple_collisions, tx_total_collisions;
168
    uint32_t rx_good_frames, rx_crc_errors, rx_alignment_errors,
169
        rx_resource_errors, rx_overrun_errors, rx_cdt_errors,
170
        rx_short_frame_errors;
171
    uint32_t fc_xmt_pause, fc_rcv_pause, fc_rcv_unsupported;
172
    uint16_t xmt_tco_frames, rcv_tco_frames;
173
    uint32_t complete;
174
} eepro100_stats_t;
175

    
176
typedef enum {
177
    cu_idle = 0,
178
    cu_suspended = 1,
179
    cu_active = 2,
180
    cu_lpq_active = 2,
181
    cu_hqp_active = 3
182
} cu_state_t;
183

    
184
typedef enum {
185
    ru_idle = 0,
186
    ru_suspended = 1,
187
    ru_no_resources = 2,
188
    ru_ready = 4
189
} ru_state_t;
190

    
191
typedef struct {
192
#if 1
193
    uint8_t cmd;
194
    uint32_t start;
195
    uint32_t stop;
196
    uint8_t boundary;
197
    uint8_t tsr;
198
    uint8_t tpsr;
199
    uint16_t tcnt;
200
    uint16_t rcnt;
201
    uint32_t rsar;
202
    uint8_t rsr;
203
    uint8_t rxcr;
204
    uint8_t isr;
205
    uint8_t dcfg;
206
    uint8_t imr;
207
    uint8_t phys[6];            /* mac address */
208
    uint8_t curpag;
209
    uint8_t mult[8];            /* multicast mask array */
210
    int mmio_index;
211
    PCIDevice *pci_dev;
212
    VLANClientState *vc;
213
#endif
214
    uint8_t scb_stat;           /* SCB stat/ack byte */
215
    uint8_t int_stat;           /* PCI interrupt status */
216
    uint32_t region[3];         /* PCI region addresses */
217
    uint8_t macaddr[6];
218
    uint32_t statcounter[19];
219
    uint16_t mdimem[32];
220
    eeprom_t *eeprom;
221
    uint32_t device;            /* device variant */
222
    uint32_t pointer;
223
    /* (cu_base + cu_offset) address the next command block in the command block list. */
224
    uint32_t cu_base;           /* CU base address */
225
    uint32_t cu_offset;         /* CU address offset */
226
    /* (ru_base + ru_offset) address the RFD in the Receive Frame Area. */
227
    uint32_t ru_base;           /* RU base address */
228
    uint32_t ru_offset;         /* RU address offset */
229
    uint32_t statsaddr;         /* pointer to eepro100_stats_t */
230
    eepro100_stats_t statistics;        /* statistical counters */
231
#if 0
232
    uint16_t status;
233
#endif
234

    
235
    /* Configuration bytes. */
236
    uint8_t configuration[22];
237

    
238
    /* Data in mem is always in the byte order of the controller (le). */
239
    uint8_t mem[PCI_MEM_SIZE];
240
} EEPRO100State;
241

    
242
/* Default values for MDI (PHY) registers */
243
static const uint16_t eepro100_mdi_default[] = {
244
    /* MDI Registers 0 - 6, 7 */
245
    0x3000, 0x780d, 0x02a8, 0x0154, 0x05e1, 0x0000, 0x0000, 0x0000,
246
    /* MDI Registers 8 - 15 */
247
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
248
    /* MDI Registers 16 - 31 */
249
    0x0003, 0x0000, 0x0001, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
250
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
251
};
252

    
253
/* Readonly mask for MDI (PHY) registers */
254
static const uint16_t eepro100_mdi_mask[] = {
255
    0x0000, 0xffff, 0xffff, 0xffff, 0xc01f, 0xffff, 0xffff, 0x0000,
256
    0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
257
    0x0fff, 0x0000, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
258
    0xffff, 0xffff, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
259
};
260

    
261
#define POLYNOMIAL 0x04c11db6
262

    
263
/* From FreeBSD */
264
/* XXX: optimize */
265
static int compute_mcast_idx(const uint8_t * ep)
266
{
267
    uint32_t crc;
268
    int carry, i, j;
269
    uint8_t b;
270

    
271
    crc = 0xffffffff;
272
    for (i = 0; i < 6; i++) {
273
        b = *ep++;
274
        for (j = 0; j < 8; j++) {
275
            carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
276
            crc <<= 1;
277
            b >>= 1;
278
            if (carry)
279
                crc = ((crc ^ POLYNOMIAL) | carry);
280
        }
281
    }
282
    return (crc >> 26);
283
}
284

    
285
#if defined(DEBUG_EEPRO100)
286
static const char *nic_dump(const uint8_t * buf, unsigned size)
287
{
288
    static char dump[3 * 16 + 1];
289
    char *p = &dump[0];
290
    if (size > 16)
291
        size = 16;
292
    while (size-- > 0) {
293
        p += sprintf(p, " %02x", *buf++);
294
    }
295
    return dump;
296
}
297
#endif                          /* DEBUG_EEPRO100 */
298

    
299
enum scb_stat_ack {
300
    stat_ack_not_ours = 0x00,
301
    stat_ack_sw_gen = 0x04,
302
    stat_ack_rnr = 0x10,
303
    stat_ack_cu_idle = 0x20,
304
    stat_ack_frame_rx = 0x40,
305
    stat_ack_cu_cmd_done = 0x80,
306
    stat_ack_not_present = 0xFF,
307
    stat_ack_rx = (stat_ack_sw_gen | stat_ack_rnr | stat_ack_frame_rx),
308
    stat_ack_tx = (stat_ack_cu_idle | stat_ack_cu_cmd_done),
309
};
310

    
311
static void disable_interrupt(EEPRO100State * s)
312
{
313
    if (s->int_stat) {
314
        logout("interrupt disabled\n");
315
        qemu_irq_lower(s->pci_dev->irq[0]);
316
        s->int_stat = 0;
317
    }
318
}
319

    
320
static void enable_interrupt(EEPRO100State * s)
321
{
322
    if (!s->int_stat) {
323
        logout("interrupt enabled\n");
324
        qemu_irq_raise(s->pci_dev->irq[0]);
325
        s->int_stat = 1;
326
    }
327
}
328

    
329
static void eepro100_acknowledge(EEPRO100State * s)
330
{
331
    s->scb_stat &= ~s->mem[SCBAck];
332
    s->mem[SCBAck] = s->scb_stat;
333
    if (s->scb_stat == 0) {
334
        disable_interrupt(s);
335
    }
336
}
337

    
338
static void eepro100_interrupt(EEPRO100State * s, uint8_t stat)
339
{
340
    uint8_t mask = ~s->mem[SCBIntmask];
341
    s->mem[SCBAck] |= stat;
342
    stat = s->scb_stat = s->mem[SCBAck];
343
    stat &= (mask | 0x0f);
344
    //~ stat &= (~s->mem[SCBIntmask] | 0x0xf);
345
    if (stat && (mask & 0x01)) {
346
        /* SCB mask and SCB Bit M do not disable interrupt. */
347
        enable_interrupt(s);
348
    } else if (s->int_stat) {
349
        disable_interrupt(s);
350
    }
351
}
352

    
353
static void eepro100_cx_interrupt(EEPRO100State * s)
354
{
355
    /* CU completed action command. */
356
    /* Transmit not ok (82557 only, not in emulation). */
357
    eepro100_interrupt(s, 0x80);
358
}
359

    
360
static void eepro100_cna_interrupt(EEPRO100State * s)
361
{
362
    /* CU left the active state. */
363
    eepro100_interrupt(s, 0x20);
364
}
365

    
366
static void eepro100_fr_interrupt(EEPRO100State * s)
367
{
368
    /* RU received a complete frame. */
369
    eepro100_interrupt(s, 0x40);
370
}
371

    
372
#if 0
373
static void eepro100_rnr_interrupt(EEPRO100State * s)
374
{
375
    /* RU is not ready. */
376
    eepro100_interrupt(s, 0x10);
377
}
378
#endif
379

    
380
static void eepro100_mdi_interrupt(EEPRO100State * s)
381
{
382
    /* MDI completed read or write cycle. */
383
    eepro100_interrupt(s, 0x08);
384
}
385

    
386
static void eepro100_swi_interrupt(EEPRO100State * s)
387
{
388
    /* Software has requested an interrupt. */
389
    eepro100_interrupt(s, 0x04);
390
}
391

    
392
#if 0
393
static void eepro100_fcp_interrupt(EEPRO100State * s)
394
{
395
    /* Flow control pause interrupt (82558 and later). */
396
    eepro100_interrupt(s, 0x01);
397
}
398
#endif
399

    
400
static void pci_reset(EEPRO100State * s)
401
{
402
    uint32_t device = s->device;
403
    uint8_t *pci_conf = s->pci_dev->config;
404

    
405
    logout("%p\n", s);
406

    
407
    /* PCI Vendor ID */
408
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
409
    /* PCI Device ID */
410
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_82551IT);
411
    /* PCI Command */
412
    PCI_CONFIG_16(PCI_COMMAND, 0x0000);
413
    /* PCI Status */
414
    PCI_CONFIG_16(PCI_STATUS, 0x2800);
415
    /* PCI Revision ID */
416
    PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
417
    /* PCI Class Code */
418
    PCI_CONFIG_8(0x09, 0x00);
419
    pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
420
    /* PCI Cache Line Size */
421
    /* check cache line size!!! */
422
    //~ PCI_CONFIG_8(0x0c, 0x00);
423
    /* PCI Latency Timer */
424
    PCI_CONFIG_8(0x0d, 0x20);   // latency timer = 32 clocks
425
    /* PCI Header Type */
426
    /* BIST (built-in self test) */
427
#if defined(TARGET_I386)
428
// !!! workaround for buggy bios
429
//~ #define PCI_ADDRESS_SPACE_MEM_PREFETCH 0
430
#endif
431
#if 0
432
    /* PCI Base Address Registers */
433
    /* CSR Memory Mapped Base Address */
434
    PCI_CONFIG_32(PCI_BASE_ADDRESS_0,
435
                  PCI_ADDRESS_SPACE_MEM | PCI_ADDRESS_SPACE_MEM_PREFETCH);
436
    /* CSR I/O Mapped Base Address */
437
    PCI_CONFIG_32(PCI_BASE_ADDRESS_1, PCI_ADDRESS_SPACE_IO);
438
#if 0
439
    /* Flash Memory Mapped Base Address */
440
    PCI_CONFIG_32(PCI_BASE_ADDRESS_2, 0xfffe0000 | PCI_ADDRESS_SPACE_MEM);
441
#endif
442
#endif
443
    /* Expansion ROM Base Address (depends on boot disable!!!) */
444
    PCI_CONFIG_32(0x30, 0x00000000);
445
    /* Capability Pointer */
446
    PCI_CONFIG_8(0x34, 0xdc);
447
    /* Interrupt Pin */
448
    PCI_CONFIG_8(0x3d, 1);      // interrupt pin 0
449
    /* Minimum Grant */
450
    PCI_CONFIG_8(0x3e, 0x08);
451
    /* Maximum Latency */
452
    PCI_CONFIG_8(0x3f, 0x18);
453
    /* Power Management Capabilities / Next Item Pointer / Capability ID */
454
    PCI_CONFIG_32(0xdc, 0x7e210001);
455

    
456
    switch (device) {
457
    case i82551:
458
        //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209);
459
        PCI_CONFIG_8(PCI_REVISION_ID, 0x0f);
460
        break;
461
    case i82557B:
462
        PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
463
        PCI_CONFIG_8(PCI_REVISION_ID, 0x02);
464
        break;
465
    case i82557C:
466
        PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
467
        PCI_CONFIG_8(PCI_REVISION_ID, 0x03);
468
        break;
469
    case i82558B:
470
        PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
471
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
472
        PCI_CONFIG_8(PCI_REVISION_ID, 0x05);
473
        break;
474
    case i82559C:
475
        PCI_CONFIG_16(PCI_DEVICE_ID, 0x1229);
476
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
477
        //~ PCI_CONFIG_8(PCI_REVISION_ID, 0x08);
478
        break;
479
    case i82559ER:
480
        //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1209);
481
        PCI_CONFIG_16(PCI_STATUS, 0x2810);
482
        PCI_CONFIG_8(PCI_REVISION_ID, 0x09);
483
        break;
484
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1029);
485
    //~ PCI_CONFIG_16(PCI_DEVICE_ID, 0x1030);       /* 82559 InBusiness 10/100 */
486
    default:
487
        logout("Device %X is undefined!\n", device);
488
    }
489

    
490
    if (device == i82557C || device == i82558B || device == i82559C) {
491
        logout("Get device id and revision from EEPROM!!!\n");
492
    }
493
}
494

    
495
static void nic_selective_reset(EEPRO100State * s)
496
{
497
    size_t i;
498
    uint16_t *eeprom_contents = eeprom93xx_data(s->eeprom);
499
    //~ eeprom93xx_reset(s->eeprom);
500
    memcpy(eeprom_contents, s->macaddr, 6);
501
    eeprom_contents[0xa] = 0x4000;
502
    uint16_t sum = 0;
503
    for (i = 0; i < EEPROM_SIZE - 1; i++) {
504
        sum += eeprom_contents[i];
505
    }
506
    eeprom_contents[EEPROM_SIZE - 1] = 0xbaba - sum;
507

    
508
    memset(s->mem, 0, sizeof(s->mem));
509
    uint32_t val = BIT(21);
510
    memcpy(&s->mem[SCBCtrlMDI], &val, sizeof(val));
511

    
512
    assert(sizeof(s->mdimem) == sizeof(eepro100_mdi_default));
513
    memcpy(&s->mdimem[0], &eepro100_mdi_default[0], sizeof(s->mdimem));
514
}
515

    
516
static void nic_reset(void *opaque)
517
{
518
    EEPRO100State *s = (EEPRO100State *) opaque;
519
    logout("%p\n", s);
520
    static int first;
521
    if (!first) {
522
        first = 1;
523
    }
524
    nic_selective_reset(s);
525
}
526

    
527
#if defined(DEBUG_EEPRO100)
528
static const char *reg[PCI_IO_SIZE / 4] = {
529
    "Command/Status",
530
    "General Pointer",
531
    "Port",
532
    "EEPROM/Flash Control",
533
    "MDI Control",
534
    "Receive DMA Byte Count",
535
    "Flow control register",
536
    "General Status/Control"
537
};
538

    
539
static char *regname(uint32_t addr)
540
{
541
    static char buf[16];
542
    if (addr < PCI_IO_SIZE) {
543
        const char *r = reg[addr / 4];
544
        if (r != 0) {
545
            sprintf(buf, "%s+%u", r, addr % 4);
546
        } else {
547
            sprintf(buf, "0x%02x", addr);
548
        }
549
    } else {
550
        sprintf(buf, "??? 0x%08x", addr);
551
    }
552
    return buf;
553
}
554
#endif                          /* DEBUG_EEPRO100 */
555

    
556
#if 0
557
static uint16_t eepro100_read_status(EEPRO100State * s)
558
{
559
    uint16_t val = s->status;
560
    logout("val=0x%04x\n", val);
561
    return val;
562
}
563

564
static void eepro100_write_status(EEPRO100State * s, uint16_t val)
565
{
566
    logout("val=0x%04x\n", val);
567
    s->status = val;
568
}
569
#endif
570

    
571
/*****************************************************************************
572
 *
573
 * Command emulation.
574
 *
575
 ****************************************************************************/
576

    
577
#if 0
578
static uint16_t eepro100_read_command(EEPRO100State * s)
579
{
580
    uint16_t val = 0xffff;
581
    //~ logout("val=0x%04x\n", val);
582
    return val;
583
}
584
#endif
585

    
586
/* Commands that can be put in a command list entry. */
587
enum commands {
588
    CmdNOp = 0,
589
    CmdIASetup = 1,
590
    CmdConfigure = 2,
591
    CmdMulticastList = 3,
592
    CmdTx = 4,
593
    CmdTDR = 5,                 /* load microcode */
594
    CmdDump = 6,
595
    CmdDiagnose = 7,
596

    
597
    /* And some extra flags: */
598
    CmdSuspend = 0x4000,        /* Suspend after completion. */
599
    CmdIntr = 0x2000,           /* Interrupt after completion. */
600
    CmdTxFlex = 0x0008,         /* Use "Flexible mode" for CmdTx command. */
601
};
602

    
603
static cu_state_t get_cu_state(EEPRO100State * s)
604
{
605
    return ((s->mem[SCBStatus] >> 6) & 0x03);
606
}
607

    
608
static void set_cu_state(EEPRO100State * s, cu_state_t state)
609
{
610
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0x3f) + (state << 6);
611
}
612

    
613
static ru_state_t get_ru_state(EEPRO100State * s)
614
{
615
    return ((s->mem[SCBStatus] >> 2) & 0x0f);
616
}
617

    
618
static void set_ru_state(EEPRO100State * s, ru_state_t state)
619
{
620
    s->mem[SCBStatus] = (s->mem[SCBStatus] & 0xc3) + (state << 2);
621
}
622

    
623
static void dump_statistics(EEPRO100State * s)
624
{
625
    /* Dump statistical data. Most data is never changed by the emulation
626
     * and always 0, so we first just copy the whole block and then those
627
     * values which really matter.
628
     * Number of data should check configuration!!!
629
     */
630
    cpu_physical_memory_write(s->statsaddr, (uint8_t *) & s->statistics, 64);
631
    stl_phys(s->statsaddr + 0, s->statistics.tx_good_frames);
632
    stl_phys(s->statsaddr + 36, s->statistics.rx_good_frames);
633
    stl_phys(s->statsaddr + 48, s->statistics.rx_resource_errors);
634
    stl_phys(s->statsaddr + 60, s->statistics.rx_short_frame_errors);
635
    //~ stw_phys(s->statsaddr + 76, s->statistics.xmt_tco_frames);
636
    //~ stw_phys(s->statsaddr + 78, s->statistics.rcv_tco_frames);
637
    //~ missing("CU dump statistical counters");
638
}
639

    
640
static void eepro100_cu_command(EEPRO100State * s, uint8_t val)
641
{
642
    eepro100_tx_t tx;
643
    uint32_t cb_address;
644
    switch (val) {
645
    case CU_NOP:
646
        /* No operation. */
647
        break;
648
    case CU_START:
649
        if (get_cu_state(s) != cu_idle) {
650
            /* Intel documentation says that CU must be idle for the CU
651
             * start command. Intel driver for Linux also starts the CU
652
             * from suspended state. */
653
            logout("CU state is %u, should be %u\n", get_cu_state(s), cu_idle);
654
            //~ assert(!"wrong CU state");
655
        }
656
        set_cu_state(s, cu_active);
657
        s->cu_offset = s->pointer;
658
      next_command:
659
        cb_address = s->cu_base + s->cu_offset;
660
        cpu_physical_memory_read(cb_address, (uint8_t *) & tx, sizeof(tx));
661
        uint16_t status = le16_to_cpu(tx.status);
662
        uint16_t command = le16_to_cpu(tx.command);
663
        logout
664
            ("val=0x%02x (cu start), status=0x%04x, command=0x%04x, link=0x%08x\n",
665
             val, status, command, tx.link);
666
        bool bit_el = ((command & 0x8000) != 0);
667
        bool bit_s = ((command & 0x4000) != 0);
668
        bool bit_i = ((command & 0x2000) != 0);
669
        bool bit_nc = ((command & 0x0010) != 0);
670
        //~ bool bit_sf = ((command & 0x0008) != 0);
671
        uint16_t cmd = command & 0x0007;
672
        s->cu_offset = le32_to_cpu(tx.link);
673
        switch (cmd) {
674
        case CmdNOp:
675
            /* Do nothing. */
676
            break;
677
        case CmdIASetup:
678
            cpu_physical_memory_read(cb_address + 8, &s->macaddr[0], 6);
679
            logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
680
            break;
681
        case CmdConfigure:
682
            cpu_physical_memory_read(cb_address + 8, &s->configuration[0],
683
                                     sizeof(s->configuration));
684
            logout("configuration: %s\n", nic_dump(&s->configuration[0], 16));
685
            break;
686
        case CmdMulticastList:
687
            //~ missing("multicast list");
688
            break;
689
        case CmdTx:
690
            (void)0;
691
            uint32_t tbd_array = le32_to_cpu(tx.tx_desc_addr);
692
            uint16_t tcb_bytes = (le16_to_cpu(tx.tcb_bytes) & 0x3fff);
693
            logout
694
                ("transmit, TBD array address 0x%08x, TCB byte count 0x%04x, TBD count %u\n",
695
                 tbd_array, tcb_bytes, tx.tbd_count);
696
            assert(!bit_nc);
697
            //~ assert(!bit_sf);
698
            assert(tcb_bytes <= 2600);
699
            /* Next assertion fails for local configuration. */
700
            //~ assert((tcb_bytes > 0) || (tbd_array != 0xffffffff));
701
            if (!((tcb_bytes > 0) || (tbd_array != 0xffffffff))) {
702
                logout
703
                    ("illegal values of TBD array address and TCB byte count!\n");
704
            }
705
            uint8_t buf[MAX_ETH_FRAME_SIZE + 4];
706
            uint16_t size = 0;
707
            uint32_t tbd_address = cb_address + 0x10;
708
            assert(tcb_bytes <= sizeof(buf));
709
            while (size < tcb_bytes) {
710
                uint32_t tx_buffer_address = ldl_phys(tbd_address);
711
                uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
712
                //~ uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
713
                tbd_address += 8;
714
                logout
715
                    ("TBD (simplified mode): buffer address 0x%08x, size 0x%04x\n",
716
                     tx_buffer_address, tx_buffer_size);
717
                cpu_physical_memory_read(tx_buffer_address, &buf[size],
718
                                         tx_buffer_size);
719
                size += tx_buffer_size;
720
            }
721
            if (tbd_array == 0xffffffff) {
722
                /* Simplified mode. Was already handled by code above. */
723
            } else {
724
                /* Flexible mode. */
725
                uint8_t tbd_count = 0;
726
                if (!(s->configuration[6] & BIT(4))) {
727
                    /* Extended TCB. */
728
                    assert(tcb_bytes == 0);
729
                    for (; tbd_count < 2; tbd_count++) {
730
                        uint32_t tx_buffer_address = ldl_phys(tbd_address);
731
                        uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
732
                        uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
733
                        tbd_address += 8;
734
                        logout
735
                            ("TBD (extended mode): buffer address 0x%08x, size 0x%04x\n",
736
                             tx_buffer_address, tx_buffer_size);
737
                        cpu_physical_memory_read(tx_buffer_address, &buf[size],
738
                                                 tx_buffer_size);
739
                        size += tx_buffer_size;
740
                        if (tx_buffer_el & 1) {
741
                            break;
742
                        }
743
                    }
744
                }
745
                tbd_address = tbd_array;
746
                for (; tbd_count < tx.tbd_count; tbd_count++) {
747
                    uint32_t tx_buffer_address = ldl_phys(tbd_address);
748
                    uint16_t tx_buffer_size = lduw_phys(tbd_address + 4);
749
                    uint16_t tx_buffer_el = lduw_phys(tbd_address + 6);
750
                    tbd_address += 8;
751
                    logout
752
                        ("TBD (flexible mode): buffer address 0x%08x, size 0x%04x\n",
753
                         tx_buffer_address, tx_buffer_size);
754
                    cpu_physical_memory_read(tx_buffer_address, &buf[size],
755
                                             tx_buffer_size);
756
                    size += tx_buffer_size;
757
                    if (tx_buffer_el & 1) {
758
                        break;
759
                    }
760
                }
761
            }
762
            qemu_send_packet(s->vc, buf, size);
763
            s->statistics.tx_good_frames++;
764
            /* Transmit with bad status would raise an CX/TNO interrupt.
765
             * (82557 only). Emulation never has bad status. */
766
            //~ eepro100_cx_interrupt(s);
767
            break;
768
        case CmdTDR:
769
            logout("load microcode\n");
770
            /* Starting with offset 8, the command contains
771
             * 64 dwords microcode which we just ignore here. */
772
            break;
773
        default:
774
            missing("undefined command");
775
        }
776
        /* Write new status (success). */
777
        stw_phys(cb_address, status | 0x8000 | 0x2000);
778
        if (bit_i) {
779
            /* CU completed action. */
780
            eepro100_cx_interrupt(s);
781
        }
782
        if (bit_el) {
783
            /* CU becomes idle. */
784
            set_cu_state(s, cu_idle);
785
            eepro100_cna_interrupt(s);
786
        } else if (bit_s) {
787
            /* CU becomes suspended. */
788
            set_cu_state(s, cu_suspended);
789
            eepro100_cna_interrupt(s);
790
        } else {
791
            /* More entries in list. */
792
            logout("CU list with at least one more entry\n");
793
            goto next_command;
794
        }
795
        logout("CU list empty\n");
796
        /* List is empty. Now CU is idle or suspended. */
797
        break;
798
    case CU_RESUME:
799
        if (get_cu_state(s) != cu_suspended) {
800
            logout("bad CU resume from CU state %u\n", get_cu_state(s));
801
            /* Workaround for bad Linux eepro100 driver which resumes
802
             * from idle state. */
803
            //~ missing("cu resume");
804
            set_cu_state(s, cu_suspended);
805
        }
806
        if (get_cu_state(s) == cu_suspended) {
807
            logout("CU resuming\n");
808
            set_cu_state(s, cu_active);
809
            goto next_command;
810
        }
811
        break;
812
    case CU_STATSADDR:
813
        /* Load dump counters address. */
814
        s->statsaddr = s->pointer;
815
        logout("val=0x%02x (status address)\n", val);
816
        break;
817
    case CU_SHOWSTATS:
818
        /* Dump statistical counters. */
819
        dump_statistics(s);
820
        break;
821
    case CU_CMD_BASE:
822
        /* Load CU base. */
823
        logout("val=0x%02x (CU base address)\n", val);
824
        s->cu_base = s->pointer;
825
        break;
826
    case CU_DUMPSTATS:
827
        /* Dump and reset statistical counters. */
828
        dump_statistics(s);
829
        memset(&s->statistics, 0, sizeof(s->statistics));
830
        break;
831
    case CU_SRESUME:
832
        /* CU static resume. */
833
        missing("CU static resume");
834
        break;
835
    default:
836
        missing("Undefined CU command");
837
    }
838
}
839

    
840
static void eepro100_ru_command(EEPRO100State * s, uint8_t val)
841
{
842
    switch (val) {
843
    case RU_NOP:
844
        /* No operation. */
845
        break;
846
    case RX_START:
847
        /* RU start. */
848
        if (get_ru_state(s) != ru_idle) {
849
            logout("RU state is %u, should be %u\n", get_ru_state(s), ru_idle);
850
            //~ assert(!"wrong RU state");
851
        }
852
        set_ru_state(s, ru_ready);
853
        s->ru_offset = s->pointer;
854
        logout("val=0x%02x (rx start)\n", val);
855
        break;
856
    case RX_RESUME:
857
        /* Restart RU. */
858
        if (get_ru_state(s) != ru_suspended) {
859
            logout("RU state is %u, should be %u\n", get_ru_state(s),
860
                   ru_suspended);
861
            //~ assert(!"wrong RU state");
862
        }
863
        set_ru_state(s, ru_ready);
864
        break;
865
    case RX_ADDR_LOAD:
866
        /* Load RU base. */
867
        logout("val=0x%02x (RU base address)\n", val);
868
        s->ru_base = s->pointer;
869
        break;
870
    default:
871
        logout("val=0x%02x (undefined RU command)\n", val);
872
        missing("Undefined SU command");
873
    }
874
}
875

    
876
static void eepro100_write_command(EEPRO100State * s, uint8_t val)
877
{
878
    eepro100_ru_command(s, val & 0x0f);
879
    eepro100_cu_command(s, val & 0xf0);
880
    if ((val) == 0) {
881
        logout("val=0x%02x\n", val);
882
    }
883
    /* Clear command byte after command was accepted. */
884
    s->mem[SCBCmd] = 0;
885
}
886

    
887
/*****************************************************************************
888
 *
889
 * EEPROM emulation.
890
 *
891
 ****************************************************************************/
892

    
893
#define EEPROM_CS       0x02
894
#define EEPROM_SK       0x01
895
#define EEPROM_DI       0x04
896
#define EEPROM_DO       0x08
897

    
898
static uint16_t eepro100_read_eeprom(EEPRO100State * s)
899
{
900
    uint16_t val;
901
    memcpy(&val, &s->mem[SCBeeprom], sizeof(val));
902
    if (eeprom93xx_read(s->eeprom)) {
903
        val |= EEPROM_DO;
904
    } else {
905
        val &= ~EEPROM_DO;
906
    }
907
    return val;
908
}
909

    
910
static void eepro100_write_eeprom(eeprom_t * eeprom, uint8_t val)
911
{
912
    logout("write val=0x%02x\n", val);
913

    
914
    /* mask unwriteable bits */
915
    //~ val = SET_MASKED(val, 0x31, eeprom->value);
916

    
917
    int eecs = ((val & EEPROM_CS) != 0);
918
    int eesk = ((val & EEPROM_SK) != 0);
919
    int eedi = ((val & EEPROM_DI) != 0);
920
    eeprom93xx_write(eeprom, eecs, eesk, eedi);
921
}
922

    
923
static void eepro100_write_pointer(EEPRO100State * s, uint32_t val)
924
{
925
    s->pointer = le32_to_cpu(val);
926
    logout("val=0x%08x\n", val);
927
}
928

    
929
/*****************************************************************************
930
 *
931
 * MDI emulation.
932
 *
933
 ****************************************************************************/
934

    
935
#if defined(DEBUG_EEPRO100)
936
static const char *mdi_op_name[] = {
937
    "opcode 0",
938
    "write",
939
    "read",
940
    "opcode 3"
941
};
942

    
943
static const char *mdi_reg_name[] = {
944
    "Control",
945
    "Status",
946
    "PHY Identification (Word 1)",
947
    "PHY Identification (Word 2)",
948
    "Auto-Negotiation Advertisement",
949
    "Auto-Negotiation Link Partner Ability",
950
    "Auto-Negotiation Expansion"
951
};
952
#endif                          /* DEBUG_EEPRO100 */
953

    
954
static uint32_t eepro100_read_mdi(EEPRO100State * s)
955
{
956
    uint32_t val;
957
    memcpy(&val, &s->mem[0x10], sizeof(val));
958

    
959
#ifdef DEBUG_EEPRO100
960
    uint8_t raiseint = (val & BIT(29)) >> 29;
961
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
962
    uint8_t phy = (val & BITS(25, 21)) >> 21;
963
    uint8_t reg = (val & BITS(20, 16)) >> 16;
964
    uint16_t data = (val & BITS(15, 0));
965
#endif
966
    /* Emulation takes no time to finish MDI transaction. */
967
    val |= BIT(28);
968
    TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
969
                      val, raiseint, mdi_op_name[opcode], phy,
970
                      mdi_reg_name[reg], data));
971
    return val;
972
}
973

    
974
//~ #define BITS(val, upper, lower) (val & ???)
975
static void eepro100_write_mdi(EEPRO100State * s, uint32_t val)
976
{
977
    uint8_t raiseint = (val & BIT(29)) >> 29;
978
    uint8_t opcode = (val & BITS(27, 26)) >> 26;
979
    uint8_t phy = (val & BITS(25, 21)) >> 21;
980
    uint8_t reg = (val & BITS(20, 16)) >> 16;
981
    uint16_t data = (val & BITS(15, 0));
982
    if (phy != 1) {
983
        /* Unsupported PHY address. */
984
        //~ logout("phy must be 1 but is %u\n", phy);
985
        data = 0;
986
    } else if (opcode != 1 && opcode != 2) {
987
        /* Unsupported opcode. */
988
        logout("opcode must be 1 or 2 but is %u\n", opcode);
989
        data = 0;
990
    } else if (reg > 6) {
991
        /* Unsupported register. */
992
        logout("register must be 0...6 but is %u\n", reg);
993
        data = 0;
994
    } else {
995
        TRACE(MDI, logout("val=0x%08x (int=%u, %s, phy=%u, %s, data=0x%04x\n",
996
                          val, raiseint, mdi_op_name[opcode], phy,
997
                          mdi_reg_name[reg], data));
998
        if (opcode == 1) {
999
            /* MDI write */
1000
            switch (reg) {
1001
            case 0:            /* Control Register */
1002
                if (data & 0x8000) {
1003
                    /* Reset status and control registers to default. */
1004
                    s->mdimem[0] = eepro100_mdi_default[0];
1005
                    s->mdimem[1] = eepro100_mdi_default[1];
1006
                    data = s->mdimem[reg];
1007
                } else {
1008
                    /* Restart Auto Configuration = Normal Operation */
1009
                    data &= ~0x0200;
1010
                }
1011
                break;
1012
            case 1:            /* Status Register */
1013
                missing("not writable");
1014
                data = s->mdimem[reg];
1015
                break;
1016
            case 2:            /* PHY Identification Register (Word 1) */
1017
            case 3:            /* PHY Identification Register (Word 2) */
1018
                missing("not implemented");
1019
                break;
1020
            case 4:            /* Auto-Negotiation Advertisement Register */
1021
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1022
                break;
1023
            case 6:            /* Auto-Negotiation Expansion Register */
1024
            default:
1025
                missing("not implemented");
1026
            }
1027
            s->mdimem[reg] = data;
1028
        } else if (opcode == 2) {
1029
            /* MDI read */
1030
            switch (reg) {
1031
            case 0:            /* Control Register */
1032
                if (data & 0x8000) {
1033
                    /* Reset status and control registers to default. */
1034
                    s->mdimem[0] = eepro100_mdi_default[0];
1035
                    s->mdimem[1] = eepro100_mdi_default[1];
1036
                }
1037
                break;
1038
            case 1:            /* Status Register */
1039
                s->mdimem[reg] |= 0x0020;
1040
                break;
1041
            case 2:            /* PHY Identification Register (Word 1) */
1042
            case 3:            /* PHY Identification Register (Word 2) */
1043
            case 4:            /* Auto-Negotiation Advertisement Register */
1044
                break;
1045
            case 5:            /* Auto-Negotiation Link Partner Ability Register */
1046
                s->mdimem[reg] = 0x41fe;
1047
                break;
1048
            case 6:            /* Auto-Negotiation Expansion Register */
1049
                s->mdimem[reg] = 0x0001;
1050
                break;
1051
            }
1052
            data = s->mdimem[reg];
1053
        }
1054
        /* Emulation takes no time to finish MDI transaction.
1055
         * Set MDI bit in SCB status register. */
1056
        s->mem[SCBAck] |= 0x08;
1057
        val |= BIT(28);
1058
        if (raiseint) {
1059
            eepro100_mdi_interrupt(s);
1060
        }
1061
    }
1062
    val = (val & 0xffff0000) + data;
1063
    memcpy(&s->mem[0x10], &val, sizeof(val));
1064
}
1065

    
1066
/*****************************************************************************
1067
 *
1068
 * Port emulation.
1069
 *
1070
 ****************************************************************************/
1071

    
1072
#define PORT_SOFTWARE_RESET     0
1073
#define PORT_SELFTEST           1
1074
#define PORT_SELECTIVE_RESET    2
1075
#define PORT_DUMP               3
1076
#define PORT_SELECTION_MASK     3
1077

    
1078
typedef struct {
1079
    uint32_t st_sign;           /* Self Test Signature */
1080
    uint32_t st_result;         /* Self Test Results */
1081
} eepro100_selftest_t;
1082

    
1083
static uint32_t eepro100_read_port(EEPRO100State * s)
1084
{
1085
    return 0;
1086
}
1087

    
1088
static void eepro100_write_port(EEPRO100State * s, uint32_t val)
1089
{
1090
    val = le32_to_cpu(val);
1091
    uint32_t address = (val & ~PORT_SELECTION_MASK);
1092
    uint8_t selection = (val & PORT_SELECTION_MASK);
1093
    switch (selection) {
1094
    case PORT_SOFTWARE_RESET:
1095
        nic_reset(s);
1096
        break;
1097
    case PORT_SELFTEST:
1098
        logout("selftest address=0x%08x\n", address);
1099
        eepro100_selftest_t data;
1100
        cpu_physical_memory_read(address, (uint8_t *) & data, sizeof(data));
1101
        data.st_sign = 0xffffffff;
1102
        data.st_result = 0;
1103
        cpu_physical_memory_write(address, (uint8_t *) & data, sizeof(data));
1104
        break;
1105
    case PORT_SELECTIVE_RESET:
1106
        logout("selective reset, selftest address=0x%08x\n", address);
1107
        nic_selective_reset(s);
1108
        break;
1109
    default:
1110
        logout("val=0x%08x\n", val);
1111
        missing("unknown port selection");
1112
    }
1113
}
1114

    
1115
/*****************************************************************************
1116
 *
1117
 * General hardware emulation.
1118
 *
1119
 ****************************************************************************/
1120

    
1121
static uint8_t eepro100_read1(EEPRO100State * s, uint32_t addr)
1122
{
1123
    uint8_t val;
1124
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1125
        memcpy(&val, &s->mem[addr], sizeof(val));
1126
    }
1127

    
1128
    switch (addr) {
1129
    case SCBStatus:
1130
        //~ val = eepro100_read_status(s);
1131
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1132
        break;
1133
    case SCBAck:
1134
        //~ val = eepro100_read_status(s);
1135
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1136
        break;
1137
    case SCBCmd:
1138
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1139
        //~ val = eepro100_read_command(s);
1140
        break;
1141
    case SCBIntmask:
1142
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1143
        break;
1144
    case SCBPort + 3:
1145
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1146
        break;
1147
    case SCBeeprom:
1148
        val = eepro100_read_eeprom(s);
1149
        break;
1150
    case 0x1b:                 /* PMDR (power management driver register) */
1151
        val = 0;
1152
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1153
        break;
1154
    case 0x1d:                 /* general status register */
1155
        /* 100 Mbps full duplex, valid link */
1156
        val = 0x07;
1157
        logout("addr=General Status val=%02x\n", val);
1158
        break;
1159
    default:
1160
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1161
        missing("unknown byte read");
1162
    }
1163
    return val;
1164
}
1165

    
1166
static uint16_t eepro100_read2(EEPRO100State * s, uint32_t addr)
1167
{
1168
    uint16_t val;
1169
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1170
        memcpy(&val, &s->mem[addr], sizeof(val));
1171
    }
1172

    
1173
    logout("addr=%s val=0x%04x\n", regname(addr), val);
1174

    
1175
    switch (addr) {
1176
    case SCBStatus:
1177
        //~ val = eepro100_read_status(s);
1178
        break;
1179
    case SCBeeprom:
1180
        val = eepro100_read_eeprom(s);
1181
        break;
1182
    default:
1183
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1184
        missing("unknown word read");
1185
    }
1186
    return val;
1187
}
1188

    
1189
static uint32_t eepro100_read4(EEPRO100State * s, uint32_t addr)
1190
{
1191
    uint32_t val;
1192
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1193
        memcpy(&val, &s->mem[addr], sizeof(val));
1194
    }
1195

    
1196
    switch (addr) {
1197
    case SCBStatus:
1198
        //~ val = eepro100_read_status(s);
1199
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1200
        break;
1201
    case SCBPointer:
1202
        //~ val = eepro100_read_pointer(s);
1203
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1204
        break;
1205
    case SCBPort:
1206
        val = eepro100_read_port(s);
1207
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1208
        break;
1209
    case SCBCtrlMDI:
1210
        val = eepro100_read_mdi(s);
1211
        break;
1212
    default:
1213
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1214
        missing("unknown longword read");
1215
    }
1216
    return val;
1217
}
1218

    
1219
static void eepro100_write1(EEPRO100State * s, uint32_t addr, uint8_t val)
1220
{
1221
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1222
        memcpy(&s->mem[addr], &val, sizeof(val));
1223
    }
1224

    
1225
    logout("addr=%s val=0x%02x\n", regname(addr), val);
1226

    
1227
    switch (addr) {
1228
    case SCBStatus:
1229
        //~ eepro100_write_status(s, val);
1230
        break;
1231
    case SCBAck:
1232
        eepro100_acknowledge(s);
1233
        break;
1234
    case SCBCmd:
1235
        eepro100_write_command(s, val);
1236
        break;
1237
    case SCBIntmask:
1238
        if (val & BIT(1)) {
1239
            eepro100_swi_interrupt(s);
1240
        }
1241
        eepro100_interrupt(s, 0);
1242
        break;
1243
    case SCBPort + 3:
1244
    case SCBFlow:
1245
    case SCBFlow + 1:
1246
    case SCBFlow + 2:
1247
    case SCBFlow + 3:
1248
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1249
        break;
1250
    case SCBeeprom:
1251
        eepro100_write_eeprom(s->eeprom, val);
1252
        break;
1253
    default:
1254
        logout("addr=%s val=0x%02x\n", regname(addr), val);
1255
        missing("unknown byte write");
1256
    }
1257
}
1258

    
1259
static void eepro100_write2(EEPRO100State * s, uint32_t addr, uint16_t val)
1260
{
1261
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1262
        memcpy(&s->mem[addr], &val, sizeof(val));
1263
    }
1264

    
1265
    logout("addr=%s val=0x%04x\n", regname(addr), val);
1266

    
1267
    switch (addr) {
1268
    case SCBStatus:
1269
        //~ eepro100_write_status(s, val);
1270
        eepro100_acknowledge(s);
1271
        break;
1272
    case SCBCmd:
1273
        eepro100_write_command(s, val);
1274
        eepro100_write1(s, SCBIntmask, val >> 8);
1275
        break;
1276
    case SCBeeprom:
1277
        eepro100_write_eeprom(s->eeprom, val);
1278
        break;
1279
    default:
1280
        logout("addr=%s val=0x%04x\n", regname(addr), val);
1281
        missing("unknown word write");
1282
    }
1283
}
1284

    
1285
static void eepro100_write4(EEPRO100State * s, uint32_t addr, uint32_t val)
1286
{
1287
    if (addr <= sizeof(s->mem) - sizeof(val)) {
1288
        memcpy(&s->mem[addr], &val, sizeof(val));
1289
    }
1290

    
1291
    switch (addr) {
1292
    case SCBPointer:
1293
        eepro100_write_pointer(s, val);
1294
        break;
1295
    case SCBPort:
1296
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1297
        eepro100_write_port(s, val);
1298
        break;
1299
    case SCBCtrlMDI:
1300
        eepro100_write_mdi(s, val);
1301
        break;
1302
    default:
1303
        logout("addr=%s val=0x%08x\n", regname(addr), val);
1304
        missing("unknown longword write");
1305
    }
1306
}
1307

    
1308
static uint32_t ioport_read1(void *opaque, uint32_t addr)
1309
{
1310
    EEPRO100State *s = opaque;
1311
    //~ logout("addr=%s\n", regname(addr));
1312
    return eepro100_read1(s, addr - s->region[1]);
1313
}
1314

    
1315
static uint32_t ioport_read2(void *opaque, uint32_t addr)
1316
{
1317
    EEPRO100State *s = opaque;
1318
    return eepro100_read2(s, addr - s->region[1]);
1319
}
1320

    
1321
static uint32_t ioport_read4(void *opaque, uint32_t addr)
1322
{
1323
    EEPRO100State *s = opaque;
1324
    return eepro100_read4(s, addr - s->region[1]);
1325
}
1326

    
1327
static void ioport_write1(void *opaque, uint32_t addr, uint32_t val)
1328
{
1329
    EEPRO100State *s = opaque;
1330
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1331
    eepro100_write1(s, addr - s->region[1], val);
1332
}
1333

    
1334
static void ioport_write2(void *opaque, uint32_t addr, uint32_t val)
1335
{
1336
    EEPRO100State *s = opaque;
1337
    eepro100_write2(s, addr - s->region[1], val);
1338
}
1339

    
1340
static void ioport_write4(void *opaque, uint32_t addr, uint32_t val)
1341
{
1342
    EEPRO100State *s = opaque;
1343
    eepro100_write4(s, addr - s->region[1], val);
1344
}
1345

    
1346
/***********************************************************/
1347
/* PCI EEPRO100 definitions */
1348

    
1349
typedef struct PCIEEPRO100State {
1350
    PCIDevice dev;
1351
    EEPRO100State eepro100;
1352
} PCIEEPRO100State;
1353

    
1354
static void pci_map(PCIDevice * pci_dev, int region_num,
1355
                    uint32_t addr, uint32_t size, int type)
1356
{
1357
    PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev;
1358
    EEPRO100State *s = &d->eepro100;
1359

    
1360
    logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1361
           region_num, addr, size, type);
1362

    
1363
    assert(region_num == 1);
1364
    register_ioport_write(addr, size, 1, ioport_write1, s);
1365
    register_ioport_read(addr, size, 1, ioport_read1, s);
1366
    register_ioport_write(addr, size, 2, ioport_write2, s);
1367
    register_ioport_read(addr, size, 2, ioport_read2, s);
1368
    register_ioport_write(addr, size, 4, ioport_write4, s);
1369
    register_ioport_read(addr, size, 4, ioport_read4, s);
1370

    
1371
    s->region[region_num] = addr;
1372
}
1373

    
1374
static void pci_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1375
{
1376
    EEPRO100State *s = opaque;
1377
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1378
    eepro100_write1(s, addr, val);
1379
}
1380

    
1381
static void pci_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1382
{
1383
    EEPRO100State *s = opaque;
1384
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1385
    eepro100_write2(s, addr, val);
1386
}
1387

    
1388
static void pci_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1389
{
1390
    EEPRO100State *s = opaque;
1391
    //~ logout("addr=%s val=0x%02x\n", regname(addr), val);
1392
    eepro100_write4(s, addr, val);
1393
}
1394

    
1395
static uint32_t pci_mmio_readb(void *opaque, target_phys_addr_t addr)
1396
{
1397
    EEPRO100State *s = opaque;
1398
    //~ logout("addr=%s\n", regname(addr));
1399
    return eepro100_read1(s, addr);
1400
}
1401

    
1402
static uint32_t pci_mmio_readw(void *opaque, target_phys_addr_t addr)
1403
{
1404
    EEPRO100State *s = opaque;
1405
    //~ logout("addr=%s\n", regname(addr));
1406
    return eepro100_read2(s, addr);
1407
}
1408

    
1409
static uint32_t pci_mmio_readl(void *opaque, target_phys_addr_t addr)
1410
{
1411
    EEPRO100State *s = opaque;
1412
    //~ logout("addr=%s\n", regname(addr));
1413
    return eepro100_read4(s, addr);
1414
}
1415

    
1416
static CPUWriteMemoryFunc *pci_mmio_write[] = {
1417
    pci_mmio_writeb,
1418
    pci_mmio_writew,
1419
    pci_mmio_writel
1420
};
1421

    
1422
static CPUReadMemoryFunc *pci_mmio_read[] = {
1423
    pci_mmio_readb,
1424
    pci_mmio_readw,
1425
    pci_mmio_readl
1426
};
1427

    
1428
static void pci_mmio_map(PCIDevice * pci_dev, int region_num,
1429
                         uint32_t addr, uint32_t size, int type)
1430
{
1431
    PCIEEPRO100State *d = (PCIEEPRO100State *) pci_dev;
1432

    
1433
    logout("region %d, addr=0x%08x, size=0x%08x, type=%d\n",
1434
           region_num, addr, size, type);
1435

    
1436
    if (region_num == 0) {
1437
        /* Map control / status registers. */
1438
        cpu_register_physical_memory(addr, size, d->eepro100.mmio_index);
1439
        d->eepro100.region[region_num] = addr;
1440
    }
1441
}
1442

    
1443
static int nic_can_receive(void *opaque)
1444
{
1445
    EEPRO100State *s = opaque;
1446
    logout("%p\n", s);
1447
    return get_ru_state(s) == ru_ready;
1448
    //~ return !eepro100_buffer_full(s);
1449
}
1450

    
1451
static void nic_receive(void *opaque, const uint8_t * buf, int size)
1452
{
1453
    /* TODO:
1454
     * - Magic packets should set bit 30 in power management driver register.
1455
     * - Interesting packets should set bit 29 in power management driver register.
1456
     */
1457
    EEPRO100State *s = opaque;
1458
    uint16_t rfd_status = 0xa000;
1459
    static const uint8_t broadcast_macaddr[6] =
1460
        { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
1461

    
1462
    /* TODO: check multiple IA bit. */
1463
    assert(!(s->configuration[20] & BIT(6)));
1464

    
1465
    if (s->configuration[8] & 0x80) {
1466
        /* CSMA is disabled. */
1467
        logout("%p received while CSMA is disabled\n", s);
1468
        return;
1469
    } else if (size < 64 && (s->configuration[7] & 1)) {
1470
        /* Short frame and configuration byte 7/0 (discard short receive) set:
1471
         * Short frame is discarded */
1472
        logout("%p received short frame (%d byte)\n", s, size);
1473
        s->statistics.rx_short_frame_errors++;
1474
        //~ return;
1475
    } else if ((size > MAX_ETH_FRAME_SIZE + 4) && !(s->configuration[18] & 8)) {
1476
        /* Long frame and configuration byte 18/3 (long receive ok) not set:
1477
         * Long frames are discarded. */
1478
        logout("%p received long frame (%d byte), ignored\n", s, size);
1479
        return;
1480
    } else if (memcmp(buf, s->macaddr, 6) == 0) {       // !!!
1481
        /* Frame matches individual address. */
1482
        /* TODO: check configuration byte 15/4 (ignore U/L). */
1483
        logout("%p received frame for me, len=%d\n", s, size);
1484
    } else if (memcmp(buf, broadcast_macaddr, 6) == 0) {
1485
        /* Broadcast frame. */
1486
        logout("%p received broadcast, len=%d\n", s, size);
1487
        rfd_status |= 0x0002;
1488
    } else if (buf[0] & 0x01) { // !!!
1489
        /* Multicast frame. */
1490
        logout("%p received multicast, len=%d\n", s, size);
1491
        /* TODO: check multicast all bit. */
1492
        assert(!(s->configuration[21] & BIT(3)));
1493
        int mcast_idx = compute_mcast_idx(buf);
1494
        if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) {
1495
            return;
1496
        }
1497
        rfd_status |= 0x0002;
1498
    } else if (s->configuration[15] & 1) {
1499
        /* Promiscuous: receive all. */
1500
        logout("%p received frame in promiscuous mode, len=%d\n", s, size);
1501
        rfd_status |= 0x0004;
1502
    } else {
1503
        logout("%p received frame, ignored, len=%d,%s\n", s, size,
1504
               nic_dump(buf, size));
1505
        return;
1506
    }
1507

    
1508
    if (get_ru_state(s) != ru_ready) {
1509
        /* No ressources available. */
1510
        logout("no ressources, state=%u\n", get_ru_state(s));
1511
        s->statistics.rx_resource_errors++;
1512
        //~ assert(!"no ressources");
1513
        return;
1514
    }
1515
    //~ !!!
1516
//~ $3 = {status = 0x0, command = 0xc000, link = 0x2d220, rx_buf_addr = 0x207dc, count = 0x0, size = 0x5f8, packet = {0x0 <repeats 1518 times>}}
1517
    eepro100_rx_t rx;
1518
    cpu_physical_memory_read(s->ru_base + s->ru_offset, (uint8_t *) & rx,
1519
                             offsetof(eepro100_rx_t, packet));
1520
    uint16_t rfd_command = le16_to_cpu(rx.command);
1521
    uint16_t rfd_size = le16_to_cpu(rx.size);
1522
    assert(size <= rfd_size);
1523
    if (size < 64) {
1524
        rfd_status |= 0x0080;
1525
    }
1526
    logout("command 0x%04x, link 0x%08x, addr 0x%08x, size %u\n", rfd_command,
1527
           rx.link, rx.rx_buf_addr, rfd_size);
1528
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, status),
1529
             rfd_status);
1530
    stw_phys(s->ru_base + s->ru_offset + offsetof(eepro100_rx_t, count), size);
1531
    /* Early receive interrupt not supported. */
1532
    //~ eepro100_er_interrupt(s);
1533
    /* Receive CRC Transfer not supported. */
1534
    assert(!(s->configuration[18] & 4));
1535
    /* TODO: check stripping enable bit. */
1536
    //~ assert(!(s->configuration[17] & 1));
1537
    cpu_physical_memory_write(s->ru_base + s->ru_offset +
1538
                              offsetof(eepro100_rx_t, packet), buf, size);
1539
    s->statistics.rx_good_frames++;
1540
    eepro100_fr_interrupt(s);
1541
    s->ru_offset = le32_to_cpu(rx.link);
1542
    if (rfd_command & 0x8000) {
1543
        /* EL bit is set, so this was the last frame. */
1544
        assert(0);
1545
    }
1546
    if (rfd_command & 0x4000) {
1547
        /* S bit is set. */
1548
        set_ru_state(s, ru_suspended);
1549
    }
1550
}
1551

    
1552
static int nic_load(QEMUFile * f, void *opaque, int version_id)
1553
{
1554
    EEPRO100State *s = (EEPRO100State *) opaque;
1555
    int i;
1556
    int ret;
1557

    
1558
    if (version_id > 3)
1559
        return -EINVAL;
1560

    
1561
    if (s->pci_dev && version_id >= 3) {
1562
        ret = pci_device_load(s->pci_dev, f);
1563
        if (ret < 0)
1564
            return ret;
1565
    }
1566

    
1567
    if (version_id >= 2) {
1568
        qemu_get_8s(f, &s->rxcr);
1569
    } else {
1570
        s->rxcr = 0x0c;
1571
    }
1572

    
1573
    qemu_get_8s(f, &s->cmd);
1574
    qemu_get_be32s(f, &s->start);
1575
    qemu_get_be32s(f, &s->stop);
1576
    qemu_get_8s(f, &s->boundary);
1577
    qemu_get_8s(f, &s->tsr);
1578
    qemu_get_8s(f, &s->tpsr);
1579
    qemu_get_be16s(f, &s->tcnt);
1580
    qemu_get_be16s(f, &s->rcnt);
1581
    qemu_get_be32s(f, &s->rsar);
1582
    qemu_get_8s(f, &s->rsr);
1583
    qemu_get_8s(f, &s->isr);
1584
    qemu_get_8s(f, &s->dcfg);
1585
    qemu_get_8s(f, &s->imr);
1586
    qemu_get_buffer(f, s->phys, 6);
1587
    qemu_get_8s(f, &s->curpag);
1588
    qemu_get_buffer(f, s->mult, 8);
1589
    qemu_get_buffer(f, s->mem, sizeof(s->mem));
1590

    
1591
    /* Restore all members of struct between scv_stat and mem */
1592
    qemu_get_8s(f, &s->scb_stat);
1593
    qemu_get_8s(f, &s->int_stat);
1594
    for (i = 0; i < 3; i++)
1595
        qemu_get_be32s(f, &s->region[i]);
1596
    qemu_get_buffer(f, s->macaddr, 6);
1597
    for (i = 0; i < 19; i++)
1598
        qemu_get_be32s(f, &s->statcounter[i]);
1599
    for (i = 0; i < 32; i++)
1600
        qemu_get_be16s(f, &s->mdimem[i]);
1601
    /* The eeprom should be saved and restored by its own routines */
1602
    qemu_get_be32s(f, &s->device);
1603
    qemu_get_be32s(f, &s->pointer);
1604
    qemu_get_be32s(f, &s->cu_base);
1605
    qemu_get_be32s(f, &s->cu_offset);
1606
    qemu_get_be32s(f, &s->ru_base);
1607
    qemu_get_be32s(f, &s->ru_offset);
1608
    qemu_get_be32s(f, &s->statsaddr);
1609
    /* Restore epro100_stats_t statistics */
1610
    qemu_get_be32s(f, &s->statistics.tx_good_frames);
1611
    qemu_get_be32s(f, &s->statistics.tx_max_collisions);
1612
    qemu_get_be32s(f, &s->statistics.tx_late_collisions);
1613
    qemu_get_be32s(f, &s->statistics.tx_underruns);
1614
    qemu_get_be32s(f, &s->statistics.tx_lost_crs);
1615
    qemu_get_be32s(f, &s->statistics.tx_deferred);
1616
    qemu_get_be32s(f, &s->statistics.tx_single_collisions);
1617
    qemu_get_be32s(f, &s->statistics.tx_multiple_collisions);
1618
    qemu_get_be32s(f, &s->statistics.tx_total_collisions);
1619
    qemu_get_be32s(f, &s->statistics.rx_good_frames);
1620
    qemu_get_be32s(f, &s->statistics.rx_crc_errors);
1621
    qemu_get_be32s(f, &s->statistics.rx_alignment_errors);
1622
    qemu_get_be32s(f, &s->statistics.rx_resource_errors);
1623
    qemu_get_be32s(f, &s->statistics.rx_overrun_errors);
1624
    qemu_get_be32s(f, &s->statistics.rx_cdt_errors);
1625
    qemu_get_be32s(f, &s->statistics.rx_short_frame_errors);
1626
    qemu_get_be32s(f, &s->statistics.fc_xmt_pause);
1627
    qemu_get_be32s(f, &s->statistics.fc_rcv_pause);
1628
    qemu_get_be32s(f, &s->statistics.fc_rcv_unsupported);
1629
    qemu_get_be16s(f, &s->statistics.xmt_tco_frames);
1630
    qemu_get_be16s(f, &s->statistics.rcv_tco_frames);
1631
    qemu_get_be32s(f, &s->statistics.complete);
1632
#if 0
1633
    qemu_get_be16s(f, &s->status);
1634
#endif
1635

    
1636
    /* Configuration bytes. */
1637
    qemu_get_buffer(f, s->configuration, sizeof(s->configuration));
1638

    
1639
    return 0;
1640
}
1641

    
1642
static void nic_save(QEMUFile * f, void *opaque)
1643
{
1644
    EEPRO100State *s = (EEPRO100State *) opaque;
1645
    int i;
1646

    
1647
    if (s->pci_dev)
1648
        pci_device_save(s->pci_dev, f);
1649

    
1650
    qemu_put_8s(f, &s->rxcr);
1651

    
1652
    qemu_put_8s(f, &s->cmd);
1653
    qemu_put_be32s(f, &s->start);
1654
    qemu_put_be32s(f, &s->stop);
1655
    qemu_put_8s(f, &s->boundary);
1656
    qemu_put_8s(f, &s->tsr);
1657
    qemu_put_8s(f, &s->tpsr);
1658
    qemu_put_be16s(f, &s->tcnt);
1659
    qemu_put_be16s(f, &s->rcnt);
1660
    qemu_put_be32s(f, &s->rsar);
1661
    qemu_put_8s(f, &s->rsr);
1662
    qemu_put_8s(f, &s->isr);
1663
    qemu_put_8s(f, &s->dcfg);
1664
    qemu_put_8s(f, &s->imr);
1665
    qemu_put_buffer(f, s->phys, 6);
1666
    qemu_put_8s(f, &s->curpag);
1667
    qemu_put_buffer(f, s->mult, 8);
1668
    qemu_put_buffer(f, s->mem, sizeof(s->mem));
1669

    
1670
    /* Save all members of struct between scv_stat and mem */
1671
    qemu_put_8s(f, &s->scb_stat);
1672
    qemu_put_8s(f, &s->int_stat);
1673
    for (i = 0; i < 3; i++)
1674
        qemu_put_be32s(f, &s->region[i]);
1675
    qemu_put_buffer(f, s->macaddr, 6);
1676
    for (i = 0; i < 19; i++)
1677
        qemu_put_be32s(f, &s->statcounter[i]);
1678
    for (i = 0; i < 32; i++)
1679
        qemu_put_be16s(f, &s->mdimem[i]);
1680
    /* The eeprom should be saved and restored by its own routines */
1681
    qemu_put_be32s(f, &s->device);
1682
    qemu_put_be32s(f, &s->pointer);
1683
    qemu_put_be32s(f, &s->cu_base);
1684
    qemu_put_be32s(f, &s->cu_offset);
1685
    qemu_put_be32s(f, &s->ru_base);
1686
    qemu_put_be32s(f, &s->ru_offset);
1687
    qemu_put_be32s(f, &s->statsaddr);
1688
    /* Save epro100_stats_t statistics */
1689
    qemu_put_be32s(f, &s->statistics.tx_good_frames);
1690
    qemu_put_be32s(f, &s->statistics.tx_max_collisions);
1691
    qemu_put_be32s(f, &s->statistics.tx_late_collisions);
1692
    qemu_put_be32s(f, &s->statistics.tx_underruns);
1693
    qemu_put_be32s(f, &s->statistics.tx_lost_crs);
1694
    qemu_put_be32s(f, &s->statistics.tx_deferred);
1695
    qemu_put_be32s(f, &s->statistics.tx_single_collisions);
1696
    qemu_put_be32s(f, &s->statistics.tx_multiple_collisions);
1697
    qemu_put_be32s(f, &s->statistics.tx_total_collisions);
1698
    qemu_put_be32s(f, &s->statistics.rx_good_frames);
1699
    qemu_put_be32s(f, &s->statistics.rx_crc_errors);
1700
    qemu_put_be32s(f, &s->statistics.rx_alignment_errors);
1701
    qemu_put_be32s(f, &s->statistics.rx_resource_errors);
1702
    qemu_put_be32s(f, &s->statistics.rx_overrun_errors);
1703
    qemu_put_be32s(f, &s->statistics.rx_cdt_errors);
1704
    qemu_put_be32s(f, &s->statistics.rx_short_frame_errors);
1705
    qemu_put_be32s(f, &s->statistics.fc_xmt_pause);
1706
    qemu_put_be32s(f, &s->statistics.fc_rcv_pause);
1707
    qemu_put_be32s(f, &s->statistics.fc_rcv_unsupported);
1708
    qemu_put_be16s(f, &s->statistics.xmt_tco_frames);
1709
    qemu_put_be16s(f, &s->statistics.rcv_tco_frames);
1710
    qemu_put_be32s(f, &s->statistics.complete);
1711
#if 0
1712
    qemu_put_be16s(f, &s->status);
1713
#endif
1714

    
1715
    /* Configuration bytes. */
1716
    qemu_put_buffer(f, s->configuration, sizeof(s->configuration));
1717
}
1718

    
1719
static PCIDevice *nic_init(PCIBus * bus, NICInfo * nd,
1720
                     const char *name, uint32_t device)
1721
{
1722
    PCIEEPRO100State *d;
1723
    EEPRO100State *s;
1724

    
1725
    logout("\n");
1726

    
1727
    d = (PCIEEPRO100State *) pci_register_device(bus, name,
1728
                                                 sizeof(PCIEEPRO100State), -1,
1729
                                                 NULL, NULL);
1730

    
1731
    s = &d->eepro100;
1732
    s->device = device;
1733
    s->pci_dev = &d->dev;
1734

    
1735
    pci_reset(s);
1736

    
1737
    /* Add 64 * 2 EEPROM. i82557 and i82558 support a 64 word EEPROM,
1738
     * i82559 and later support 64 or 256 word EEPROM. */
1739
    s->eeprom = eeprom93xx_new(EEPROM_SIZE);
1740

    
1741
    /* Handler for memory-mapped I/O */
1742
    d->eepro100.mmio_index =
1743
        cpu_register_io_memory(0, pci_mmio_read, pci_mmio_write, s);
1744

    
1745
    pci_register_io_region(&d->dev, 0, PCI_MEM_SIZE,
1746
                           PCI_ADDRESS_SPACE_MEM |
1747
                           PCI_ADDRESS_SPACE_MEM_PREFETCH, pci_mmio_map);
1748
    pci_register_io_region(&d->dev, 1, PCI_IO_SIZE, PCI_ADDRESS_SPACE_IO,
1749
                           pci_map);
1750
    pci_register_io_region(&d->dev, 2, PCI_FLASH_SIZE, PCI_ADDRESS_SPACE_MEM,
1751
                           pci_mmio_map);
1752

    
1753
    memcpy(s->macaddr, nd->macaddr, 6);
1754
    logout("macaddr: %s\n", nic_dump(&s->macaddr[0], 6));
1755
    assert(s->region[1] == 0);
1756

    
1757
    nic_reset(s);
1758

    
1759
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
1760
                                 nic_receive, nic_can_receive, s);
1761

    
1762
    qemu_format_nic_info_str(s->vc, s->macaddr);
1763

    
1764
    qemu_register_reset(nic_reset, s);
1765

    
1766
    register_savevm(name, -1, 3, nic_save, nic_load, s);
1767
    return (PCIDevice *)d;
1768
}
1769

    
1770
PCIDevice *pci_i82551_init(PCIBus * bus, NICInfo * nd, int devfn)
1771
{
1772
    return nic_init(bus, nd, "i82551", i82551);
1773
    //~ uint8_t *pci_conf = d->dev.config;
1774
}
1775

    
1776
PCIDevice *pci_i82557b_init(PCIBus * bus, NICInfo * nd, int devfn)
1777
{
1778
    return nic_init(bus, nd, "i82557b", i82557B);
1779
}
1780

    
1781
PCIDevice *pci_i82559er_init(PCIBus * bus, NICInfo * nd, int devfn)
1782
{
1783
    return nic_init(bus, nd, "i82559er", i82559ER);
1784
}
1785

    
1786
/* eof */