Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ d9430add

History | View | Annotate | Download (111.4 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA  02110-1301 USA
19
 */
20
#include <string.h>
21
#include "exec.h"
22
#include "host-utils.h"
23
#include "helper.h"
24

    
25
#include "helper_regs.h"
26

    
27
//#define DEBUG_OP
28
//#define DEBUG_EXCEPTIONS
29
//#define DEBUG_SOFTWARE_TLB
30

    
31
/*****************************************************************************/
32
/* Exceptions processing helpers */
33

    
34
void helper_raise_exception_err (uint32_t exception, uint32_t error_code)
35
{
36
#if 0
37
    printf("Raise exception %3x code : %d\n", exception, error_code);
38
#endif
39
    env->exception_index = exception;
40
    env->error_code = error_code;
41
    cpu_loop_exit();
42
}
43

    
44
void helper_raise_exception (uint32_t exception)
45
{
46
    helper_raise_exception_err(exception, 0);
47
}
48

    
49
/*****************************************************************************/
50
/* Registers load and stores */
51
target_ulong helper_load_cr (void)
52
{
53
    return (env->crf[0] << 28) |
54
           (env->crf[1] << 24) |
55
           (env->crf[2] << 20) |
56
           (env->crf[3] << 16) |
57
           (env->crf[4] << 12) |
58
           (env->crf[5] << 8) |
59
           (env->crf[6] << 4) |
60
           (env->crf[7] << 0);
61
}
62

    
63
void helper_store_cr (target_ulong val, uint32_t mask)
64
{
65
    int i, sh;
66

    
67
    for (i = 0, sh = 7; i < 8; i++, sh--) {
68
        if (mask & (1 << sh))
69
            env->crf[i] = (val >> (sh * 4)) & 0xFUL;
70
    }
71
}
72

    
73
/*****************************************************************************/
74
/* SPR accesses */
75
void helper_load_dump_spr (uint32_t sprn)
76
{
77
    if (loglevel != 0) {
78
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
79
                sprn, sprn, env->spr[sprn]);
80
    }
81
}
82

    
83
void helper_store_dump_spr (uint32_t sprn)
84
{
85
    if (loglevel != 0) {
86
        fprintf(logfile, "Write SPR %d %03x <= " ADDRX "\n",
87
                sprn, sprn, env->spr[sprn]);
88
    }
89
}
90

    
91
target_ulong helper_load_tbl (void)
92
{
93
    return cpu_ppc_load_tbl(env);
94
}
95

    
96
target_ulong helper_load_tbu (void)
97
{
98
    return cpu_ppc_load_tbu(env);
99
}
100

    
101
target_ulong helper_load_atbl (void)
102
{
103
    return cpu_ppc_load_atbl(env);
104
}
105

    
106
target_ulong helper_load_atbu (void)
107
{
108
    return cpu_ppc_load_atbu(env);
109
}
110

    
111
target_ulong helper_load_601_rtcl (void)
112
{
113
    return cpu_ppc601_load_rtcl(env);
114
}
115

    
116
target_ulong helper_load_601_rtcu (void)
117
{
118
    return cpu_ppc601_load_rtcu(env);
119
}
120

    
121
#if !defined(CONFIG_USER_ONLY)
122
#if defined (TARGET_PPC64)
123
void helper_store_asr (target_ulong val)
124
{
125
    ppc_store_asr(env, val);
126
}
127
#endif
128

    
129
void helper_store_sdr1 (target_ulong val)
130
{
131
    ppc_store_sdr1(env, val);
132
}
133

    
134
void helper_store_tbl (target_ulong val)
135
{
136
    cpu_ppc_store_tbl(env, val);
137
}
138

    
139
void helper_store_tbu (target_ulong val)
140
{
141
    cpu_ppc_store_tbu(env, val);
142
}
143

    
144
void helper_store_atbl (target_ulong val)
145
{
146
    cpu_ppc_store_atbl(env, val);
147
}
148

    
149
void helper_store_atbu (target_ulong val)
150
{
151
    cpu_ppc_store_atbu(env, val);
152
}
153

    
154
void helper_store_601_rtcl (target_ulong val)
155
{
156
    cpu_ppc601_store_rtcl(env, val);
157
}
158

    
159
void helper_store_601_rtcu (target_ulong val)
160
{
161
    cpu_ppc601_store_rtcu(env, val);
162
}
163

    
164
target_ulong helper_load_decr (void)
165
{
166
    return cpu_ppc_load_decr(env);
167
}
168

    
169
void helper_store_decr (target_ulong val)
170
{
171
    cpu_ppc_store_decr(env, val);
172
}
173

    
174
void helper_store_hid0_601 (target_ulong val)
175
{
176
    target_ulong hid0;
177

    
178
    hid0 = env->spr[SPR_HID0];
179
    if ((val ^ hid0) & 0x00000008) {
180
        /* Change current endianness */
181
        env->hflags &= ~(1 << MSR_LE);
182
        env->hflags_nmsr &= ~(1 << MSR_LE);
183
        env->hflags_nmsr |= (1 << MSR_LE) & (((val >> 3) & 1) << MSR_LE);
184
        env->hflags |= env->hflags_nmsr;
185
        if (loglevel != 0) {
186
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
187
                    __func__, val & 0x8 ? 'l' : 'b', env->hflags);
188
        }
189
    }
190
    env->spr[SPR_HID0] = (uint32_t)val;
191
}
192

    
193
void helper_store_403_pbr (uint32_t num, target_ulong value)
194
{
195
    if (likely(env->pb[num] != value)) {
196
        env->pb[num] = value;
197
        /* Should be optimized */
198
        tlb_flush(env, 1);
199
    }
200
}
201

    
202
target_ulong helper_load_40x_pit (void)
203
{
204
    return load_40x_pit(env);
205
}
206

    
207
void helper_store_40x_pit (target_ulong val)
208
{
209
    store_40x_pit(env, val);
210
}
211

    
212
void helper_store_40x_dbcr0 (target_ulong val)
213
{
214
    store_40x_dbcr0(env, val);
215
}
216

    
217
void helper_store_40x_sler (target_ulong val)
218
{
219
    store_40x_sler(env, val);
220
}
221

    
222
void helper_store_booke_tcr (target_ulong val)
223
{
224
    store_booke_tcr(env, val);
225
}
226

    
227
void helper_store_booke_tsr (target_ulong val)
228
{
229
    store_booke_tsr(env, val);
230
}
231

    
232
void helper_store_ibatu (uint32_t nr, target_ulong val)
233
{
234
    ppc_store_ibatu(env, nr, val);
235
}
236

    
237
void helper_store_ibatl (uint32_t nr, target_ulong val)
238
{
239
    ppc_store_ibatl(env, nr, val);
240
}
241

    
242
void helper_store_dbatu (uint32_t nr, target_ulong val)
243
{
244
    ppc_store_dbatu(env, nr, val);
245
}
246

    
247
void helper_store_dbatl (uint32_t nr, target_ulong val)
248
{
249
    ppc_store_dbatl(env, nr, val);
250
}
251

    
252
void helper_store_601_batl (uint32_t nr, target_ulong val)
253
{
254
    ppc_store_ibatl_601(env, nr, val);
255
}
256

    
257
void helper_store_601_batu (uint32_t nr, target_ulong val)
258
{
259
    ppc_store_ibatu_601(env, nr, val);
260
}
261
#endif
262

    
263
/*****************************************************************************/
264
/* Memory load and stores */
265

    
266
static always_inline target_ulong addr_add(target_ulong addr, target_long arg)
267
{
268
#if defined(TARGET_PPC64)
269
        if (!msr_sf)
270
            return (uint32_t)(addr + arg);
271
        else
272
#endif
273
            return addr + arg;
274
}
275

    
276
void helper_lmw (target_ulong addr, uint32_t reg)
277
{
278
    for (; reg < 32; reg++) {
279
        if (msr_le)
280
            env->gpr[reg] = bswap32(ldl(addr));
281
        else
282
            env->gpr[reg] = ldl(addr);
283
        addr = addr_add(addr, 4);
284
    }
285
}
286

    
287
void helper_stmw (target_ulong addr, uint32_t reg)
288
{
289
    for (; reg < 32; reg++) {
290
        if (msr_le)
291
            stl(addr, bswap32((uint32_t)env->gpr[reg]));
292
        else
293
            stl(addr, (uint32_t)env->gpr[reg]);
294
        addr = addr_add(addr, 4);
295
    }
296
}
297

    
298
void helper_lsw(target_ulong addr, uint32_t nb, uint32_t reg)
299
{
300
    int sh;
301
    for (; nb > 3; nb -= 4) {
302
        env->gpr[reg] = ldl(addr);
303
        reg = (reg + 1) % 32;
304
        addr = addr_add(addr, 4);
305
    }
306
    if (unlikely(nb > 0)) {
307
        env->gpr[reg] = 0;
308
        for (sh = 24; nb > 0; nb--, sh -= 8) {
309
            env->gpr[reg] |= ldub(addr) << sh;
310
            addr = addr_add(addr, 1);
311
        }
312
    }
313
}
314
/* PPC32 specification says we must generate an exception if
315
 * rA is in the range of registers to be loaded.
316
 * In an other hand, IBM says this is valid, but rA won't be loaded.
317
 * For now, I'll follow the spec...
318
 */
319
void helper_lswx(target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
320
{
321
    if (likely(xer_bc != 0)) {
322
        if (unlikely((ra != 0 && reg < ra && (reg + xer_bc) > ra) ||
323
                     (reg < rb && (reg + xer_bc) > rb))) {
324
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
325
                                       POWERPC_EXCP_INVAL |
326
                                       POWERPC_EXCP_INVAL_LSWX);
327
        } else {
328
            helper_lsw(addr, xer_bc, reg);
329
        }
330
    }
331
}
332

    
333
void helper_stsw(target_ulong addr, uint32_t nb, uint32_t reg)
334
{
335
    int sh;
336
    for (; nb > 3; nb -= 4) {
337
        stl(addr, env->gpr[reg]);
338
        reg = (reg + 1) % 32;
339
        addr = addr_add(addr, 4);
340
    }
341
    if (unlikely(nb > 0)) {
342
        for (sh = 24; nb > 0; nb--, sh -= 8) {
343
            stb(addr, (env->gpr[reg] >> sh) & 0xFF);
344
            addr = addr_add(addr, 1);
345
        }
346
    }
347
}
348

    
349
static void do_dcbz(target_ulong addr, int dcache_line_size)
350
{
351
    addr &= ~(dcache_line_size - 1);
352
    int i;
353
    for (i = 0 ; i < dcache_line_size ; i += 4) {
354
        stl(addr + i , 0);
355
    }
356
    if (env->reserve == addr)
357
        env->reserve = (target_ulong)-1ULL;
358
}
359

    
360
void helper_dcbz(target_ulong addr)
361
{
362
    do_dcbz(addr, env->dcache_line_size);
363
}
364

    
365
void helper_dcbz_970(target_ulong addr)
366
{
367
    if (((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1)
368
        do_dcbz(addr, 32);
369
    else
370
        do_dcbz(addr, env->dcache_line_size);
371
}
372

    
373
void helper_icbi(target_ulong addr)
374
{
375
    uint32_t tmp;
376

    
377
    addr &= ~(env->dcache_line_size - 1);
378
    /* Invalidate one cache line :
379
     * PowerPC specification says this is to be treated like a load
380
     * (not a fetch) by the MMU. To be sure it will be so,
381
     * do the load "by hand".
382
     */
383
    tmp = ldl(addr);
384
    tb_invalidate_page_range(addr, addr + env->icache_line_size);
385
}
386

    
387
// XXX: to be tested
388
target_ulong helper_lscbx (target_ulong addr, uint32_t reg, uint32_t ra, uint32_t rb)
389
{
390
    int i, c, d;
391
    d = 24;
392
    for (i = 0; i < xer_bc; i++) {
393
        c = ldub(addr);
394
        addr = addr_add(addr, 1);
395
        /* ra (if not 0) and rb are never modified */
396
        if (likely(reg != rb && (ra == 0 || reg != ra))) {
397
            env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
398
        }
399
        if (unlikely(c == xer_cmp))
400
            break;
401
        if (likely(d != 0)) {
402
            d -= 8;
403
        } else {
404
            d = 24;
405
            reg++;
406
            reg = reg & 0x1F;
407
        }
408
    }
409
    return i;
410
}
411

    
412
/*****************************************************************************/
413
/* Fixed point operations helpers */
414
#if defined(TARGET_PPC64)
415

    
416
/* multiply high word */
417
uint64_t helper_mulhd (uint64_t arg1, uint64_t arg2)
418
{
419
    uint64_t tl, th;
420

    
421
    muls64(&tl, &th, arg1, arg2);
422
    return th;
423
}
424

    
425
/* multiply high word unsigned */
426
uint64_t helper_mulhdu (uint64_t arg1, uint64_t arg2)
427
{
428
    uint64_t tl, th;
429

    
430
    mulu64(&tl, &th, arg1, arg2);
431
    return th;
432
}
433

    
434
uint64_t helper_mulldo (uint64_t arg1, uint64_t arg2)
435
{
436
    int64_t th;
437
    uint64_t tl;
438

    
439
    muls64(&tl, (uint64_t *)&th, arg1, arg2);
440
    /* If th != 0 && th != -1, then we had an overflow */
441
    if (likely((uint64_t)(th + 1) <= 1)) {
442
        env->xer &= ~(1 << XER_OV);
443
    } else {
444
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
445
    }
446
    return (int64_t)tl;
447
}
448
#endif
449

    
450
target_ulong helper_cntlzw (target_ulong t)
451
{
452
    return clz32(t);
453
}
454

    
455
#if defined(TARGET_PPC64)
456
target_ulong helper_cntlzd (target_ulong t)
457
{
458
    return clz64(t);
459
}
460
#endif
461

    
462
/* shift right arithmetic helper */
463
target_ulong helper_sraw (target_ulong value, target_ulong shift)
464
{
465
    int32_t ret;
466

    
467
    if (likely(!(shift & 0x20))) {
468
        if (likely((uint32_t)shift != 0)) {
469
            shift &= 0x1f;
470
            ret = (int32_t)value >> shift;
471
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
472
                env->xer &= ~(1 << XER_CA);
473
            } else {
474
                env->xer |= (1 << XER_CA);
475
            }
476
        } else {
477
            ret = (int32_t)value;
478
            env->xer &= ~(1 << XER_CA);
479
        }
480
    } else {
481
        ret = (int32_t)value >> 31;
482
        if (ret) {
483
            env->xer |= (1 << XER_CA);
484
        } else {
485
            env->xer &= ~(1 << XER_CA);
486
        }
487
    }
488
    return (target_long)ret;
489
}
490

    
491
#if defined(TARGET_PPC64)
492
target_ulong helper_srad (target_ulong value, target_ulong shift)
493
{
494
    int64_t ret;
495

    
496
    if (likely(!(shift & 0x40))) {
497
        if (likely((uint64_t)shift != 0)) {
498
            shift &= 0x3f;
499
            ret = (int64_t)value >> shift;
500
            if (likely(ret >= 0 || (value & ((1 << shift) - 1)) == 0)) {
501
                env->xer &= ~(1 << XER_CA);
502
            } else {
503
                env->xer |= (1 << XER_CA);
504
            }
505
        } else {
506
            ret = (int64_t)value;
507
            env->xer &= ~(1 << XER_CA);
508
        }
509
    } else {
510
        ret = (int64_t)value >> 63;
511
        if (ret) {
512
            env->xer |= (1 << XER_CA);
513
        } else {
514
            env->xer &= ~(1 << XER_CA);
515
        }
516
    }
517
    return ret;
518
}
519
#endif
520

    
521
target_ulong helper_popcntb (target_ulong val)
522
{
523
    val = (val & 0x55555555) + ((val >>  1) & 0x55555555);
524
    val = (val & 0x33333333) + ((val >>  2) & 0x33333333);
525
    val = (val & 0x0f0f0f0f) + ((val >>  4) & 0x0f0f0f0f);
526
    return val;
527
}
528

    
529
#if defined(TARGET_PPC64)
530
target_ulong helper_popcntb_64 (target_ulong val)
531
{
532
    val = (val & 0x5555555555555555ULL) + ((val >>  1) & 0x5555555555555555ULL);
533
    val = (val & 0x3333333333333333ULL) + ((val >>  2) & 0x3333333333333333ULL);
534
    val = (val & 0x0f0f0f0f0f0f0f0fULL) + ((val >>  4) & 0x0f0f0f0f0f0f0f0fULL);
535
    return val;
536
}
537
#endif
538

    
539
/*****************************************************************************/
540
/* Floating point operations helpers */
541
uint64_t helper_float32_to_float64(uint32_t arg)
542
{
543
    CPU_FloatU f;
544
    CPU_DoubleU d;
545
    f.l = arg;
546
    d.d = float32_to_float64(f.f, &env->fp_status);
547
    return d.ll;
548
}
549

    
550
uint32_t helper_float64_to_float32(uint64_t arg)
551
{
552
    CPU_FloatU f;
553
    CPU_DoubleU d;
554
    d.ll = arg;
555
    f.f = float64_to_float32(d.d, &env->fp_status);
556
    return f.l;
557
}
558

    
559
static always_inline int isden (float64 d)
560
{
561
    CPU_DoubleU u;
562

    
563
    u.d = d;
564

    
565
    return ((u.ll >> 52) & 0x7FF) == 0;
566
}
567

    
568
uint32_t helper_compute_fprf (uint64_t arg, uint32_t set_fprf)
569
{
570
    CPU_DoubleU farg;
571
    int isneg;
572
    int ret;
573
    farg.ll = arg;
574
    isneg = float64_is_neg(farg.d);
575
    if (unlikely(float64_is_nan(farg.d))) {
576
        if (float64_is_signaling_nan(farg.d)) {
577
            /* Signaling NaN: flags are undefined */
578
            ret = 0x00;
579
        } else {
580
            /* Quiet NaN */
581
            ret = 0x11;
582
        }
583
    } else if (unlikely(float64_is_infinity(farg.d))) {
584
        /* +/- infinity */
585
        if (isneg)
586
            ret = 0x09;
587
        else
588
            ret = 0x05;
589
    } else {
590
        if (float64_is_zero(farg.d)) {
591
            /* +/- zero */
592
            if (isneg)
593
                ret = 0x12;
594
            else
595
                ret = 0x02;
596
        } else {
597
            if (isden(farg.d)) {
598
                /* Denormalized numbers */
599
                ret = 0x10;
600
            } else {
601
                /* Normalized numbers */
602
                ret = 0x00;
603
            }
604
            if (isneg) {
605
                ret |= 0x08;
606
            } else {
607
                ret |= 0x04;
608
            }
609
        }
610
    }
611
    if (set_fprf) {
612
        /* We update FPSCR_FPRF */
613
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
614
        env->fpscr |= ret << FPSCR_FPRF;
615
    }
616
    /* We just need fpcc to update Rc1 */
617
    return ret & 0xF;
618
}
619

    
620
/* Floating-point invalid operations exception */
621
static always_inline uint64_t fload_invalid_op_excp (int op)
622
{
623
    uint64_t ret = 0;
624
    int ve;
625

    
626
    ve = fpscr_ve;
627
    switch (op) {
628
    case POWERPC_EXCP_FP_VXSNAN:
629
        env->fpscr |= 1 << FPSCR_VXSNAN;
630
        break;
631
    case POWERPC_EXCP_FP_VXSOFT:
632
        env->fpscr |= 1 << FPSCR_VXSOFT;
633
        break;
634
    case POWERPC_EXCP_FP_VXISI:
635
        /* Magnitude subtraction of infinities */
636
        env->fpscr |= 1 << FPSCR_VXISI;
637
        goto update_arith;
638
    case POWERPC_EXCP_FP_VXIDI:
639
        /* Division of infinity by infinity */
640
        env->fpscr |= 1 << FPSCR_VXIDI;
641
        goto update_arith;
642
    case POWERPC_EXCP_FP_VXZDZ:
643
        /* Division of zero by zero */
644
        env->fpscr |= 1 << FPSCR_VXZDZ;
645
        goto update_arith;
646
    case POWERPC_EXCP_FP_VXIMZ:
647
        /* Multiplication of zero by infinity */
648
        env->fpscr |= 1 << FPSCR_VXIMZ;
649
        goto update_arith;
650
    case POWERPC_EXCP_FP_VXVC:
651
        /* Ordered comparison of NaN */
652
        env->fpscr |= 1 << FPSCR_VXVC;
653
        env->fpscr &= ~(0xF << FPSCR_FPCC);
654
        env->fpscr |= 0x11 << FPSCR_FPCC;
655
        /* We must update the target FPR before raising the exception */
656
        if (ve != 0) {
657
            env->exception_index = POWERPC_EXCP_PROGRAM;
658
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
659
            /* Update the floating-point enabled exception summary */
660
            env->fpscr |= 1 << FPSCR_FEX;
661
            /* Exception is differed */
662
            ve = 0;
663
        }
664
        break;
665
    case POWERPC_EXCP_FP_VXSQRT:
666
        /* Square root of a negative number */
667
        env->fpscr |= 1 << FPSCR_VXSQRT;
668
    update_arith:
669
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
670
        if (ve == 0) {
671
            /* Set the result to quiet NaN */
672
            ret = 0xFFF8000000000000ULL;
673
            env->fpscr &= ~(0xF << FPSCR_FPCC);
674
            env->fpscr |= 0x11 << FPSCR_FPCC;
675
        }
676
        break;
677
    case POWERPC_EXCP_FP_VXCVI:
678
        /* Invalid conversion */
679
        env->fpscr |= 1 << FPSCR_VXCVI;
680
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
681
        if (ve == 0) {
682
            /* Set the result to quiet NaN */
683
            ret = 0xFFF8000000000000ULL;
684
            env->fpscr &= ~(0xF << FPSCR_FPCC);
685
            env->fpscr |= 0x11 << FPSCR_FPCC;
686
        }
687
        break;
688
    }
689
    /* Update the floating-point invalid operation summary */
690
    env->fpscr |= 1 << FPSCR_VX;
691
    /* Update the floating-point exception summary */
692
    env->fpscr |= 1 << FPSCR_FX;
693
    if (ve != 0) {
694
        /* Update the floating-point enabled exception summary */
695
        env->fpscr |= 1 << FPSCR_FEX;
696
        if (msr_fe0 != 0 || msr_fe1 != 0)
697
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
698
    }
699
    return ret;
700
}
701

    
702
static always_inline void float_zero_divide_excp (void)
703
{
704
    env->fpscr |= 1 << FPSCR_ZX;
705
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
706
    /* Update the floating-point exception summary */
707
    env->fpscr |= 1 << FPSCR_FX;
708
    if (fpscr_ze != 0) {
709
        /* Update the floating-point enabled exception summary */
710
        env->fpscr |= 1 << FPSCR_FEX;
711
        if (msr_fe0 != 0 || msr_fe1 != 0) {
712
            helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
713
                                       POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
714
        }
715
    }
716
}
717

    
718
static always_inline void float_overflow_excp (void)
719
{
720
    env->fpscr |= 1 << FPSCR_OX;
721
    /* Update the floating-point exception summary */
722
    env->fpscr |= 1 << FPSCR_FX;
723
    if (fpscr_oe != 0) {
724
        /* XXX: should adjust the result */
725
        /* Update the floating-point enabled exception summary */
726
        env->fpscr |= 1 << FPSCR_FEX;
727
        /* We must update the target FPR before raising the exception */
728
        env->exception_index = POWERPC_EXCP_PROGRAM;
729
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
730
    } else {
731
        env->fpscr |= 1 << FPSCR_XX;
732
        env->fpscr |= 1 << FPSCR_FI;
733
    }
734
}
735

    
736
static always_inline void float_underflow_excp (void)
737
{
738
    env->fpscr |= 1 << FPSCR_UX;
739
    /* Update the floating-point exception summary */
740
    env->fpscr |= 1 << FPSCR_FX;
741
    if (fpscr_ue != 0) {
742
        /* XXX: should adjust the result */
743
        /* Update the floating-point enabled exception summary */
744
        env->fpscr |= 1 << FPSCR_FEX;
745
        /* We must update the target FPR before raising the exception */
746
        env->exception_index = POWERPC_EXCP_PROGRAM;
747
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
748
    }
749
}
750

    
751
static always_inline void float_inexact_excp (void)
752
{
753
    env->fpscr |= 1 << FPSCR_XX;
754
    /* Update the floating-point exception summary */
755
    env->fpscr |= 1 << FPSCR_FX;
756
    if (fpscr_xe != 0) {
757
        /* Update the floating-point enabled exception summary */
758
        env->fpscr |= 1 << FPSCR_FEX;
759
        /* We must update the target FPR before raising the exception */
760
        env->exception_index = POWERPC_EXCP_PROGRAM;
761
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
762
    }
763
}
764

    
765
static always_inline void fpscr_set_rounding_mode (void)
766
{
767
    int rnd_type;
768

    
769
    /* Set rounding mode */
770
    switch (fpscr_rn) {
771
    case 0:
772
        /* Best approximation (round to nearest) */
773
        rnd_type = float_round_nearest_even;
774
        break;
775
    case 1:
776
        /* Smaller magnitude (round toward zero) */
777
        rnd_type = float_round_to_zero;
778
        break;
779
    case 2:
780
        /* Round toward +infinite */
781
        rnd_type = float_round_up;
782
        break;
783
    default:
784
    case 3:
785
        /* Round toward -infinite */
786
        rnd_type = float_round_down;
787
        break;
788
    }
789
    set_float_rounding_mode(rnd_type, &env->fp_status);
790
}
791

    
792
void helper_fpscr_clrbit (uint32_t bit)
793
{
794
    int prev;
795

    
796
    prev = (env->fpscr >> bit) & 1;
797
    env->fpscr &= ~(1 << bit);
798
    if (prev == 1) {
799
        switch (bit) {
800
        case FPSCR_RN1:
801
        case FPSCR_RN:
802
            fpscr_set_rounding_mode();
803
            break;
804
        default:
805
            break;
806
        }
807
    }
808
}
809

    
810
void helper_fpscr_setbit (uint32_t bit)
811
{
812
    int prev;
813

    
814
    prev = (env->fpscr >> bit) & 1;
815
    env->fpscr |= 1 << bit;
816
    if (prev == 0) {
817
        switch (bit) {
818
        case FPSCR_VX:
819
            env->fpscr |= 1 << FPSCR_FX;
820
            if (fpscr_ve)
821
                goto raise_ve;
822
        case FPSCR_OX:
823
            env->fpscr |= 1 << FPSCR_FX;
824
            if (fpscr_oe)
825
                goto raise_oe;
826
            break;
827
        case FPSCR_UX:
828
            env->fpscr |= 1 << FPSCR_FX;
829
            if (fpscr_ue)
830
                goto raise_ue;
831
            break;
832
        case FPSCR_ZX:
833
            env->fpscr |= 1 << FPSCR_FX;
834
            if (fpscr_ze)
835
                goto raise_ze;
836
            break;
837
        case FPSCR_XX:
838
            env->fpscr |= 1 << FPSCR_FX;
839
            if (fpscr_xe)
840
                goto raise_xe;
841
            break;
842
        case FPSCR_VXSNAN:
843
        case FPSCR_VXISI:
844
        case FPSCR_VXIDI:
845
        case FPSCR_VXZDZ:
846
        case FPSCR_VXIMZ:
847
        case FPSCR_VXVC:
848
        case FPSCR_VXSOFT:
849
        case FPSCR_VXSQRT:
850
        case FPSCR_VXCVI:
851
            env->fpscr |= 1 << FPSCR_VX;
852
            env->fpscr |= 1 << FPSCR_FX;
853
            if (fpscr_ve != 0)
854
                goto raise_ve;
855
            break;
856
        case FPSCR_VE:
857
            if (fpscr_vx != 0) {
858
            raise_ve:
859
                env->error_code = POWERPC_EXCP_FP;
860
                if (fpscr_vxsnan)
861
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
862
                if (fpscr_vxisi)
863
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
864
                if (fpscr_vxidi)
865
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
866
                if (fpscr_vxzdz)
867
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
868
                if (fpscr_vximz)
869
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
870
                if (fpscr_vxvc)
871
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
872
                if (fpscr_vxsoft)
873
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
874
                if (fpscr_vxsqrt)
875
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
876
                if (fpscr_vxcvi)
877
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
878
                goto raise_excp;
879
            }
880
            break;
881
        case FPSCR_OE:
882
            if (fpscr_ox != 0) {
883
            raise_oe:
884
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
885
                goto raise_excp;
886
            }
887
            break;
888
        case FPSCR_UE:
889
            if (fpscr_ux != 0) {
890
            raise_ue:
891
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
892
                goto raise_excp;
893
            }
894
            break;
895
        case FPSCR_ZE:
896
            if (fpscr_zx != 0) {
897
            raise_ze:
898
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
899
                goto raise_excp;
900
            }
901
            break;
902
        case FPSCR_XE:
903
            if (fpscr_xx != 0) {
904
            raise_xe:
905
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
906
                goto raise_excp;
907
            }
908
            break;
909
        case FPSCR_RN1:
910
        case FPSCR_RN:
911
            fpscr_set_rounding_mode();
912
            break;
913
        default:
914
            break;
915
        raise_excp:
916
            /* Update the floating-point enabled exception summary */
917
            env->fpscr |= 1 << FPSCR_FEX;
918
                /* We have to update Rc1 before raising the exception */
919
            env->exception_index = POWERPC_EXCP_PROGRAM;
920
            break;
921
        }
922
    }
923
}
924

    
925
void helper_store_fpscr (uint64_t arg, uint32_t mask)
926
{
927
    /*
928
     * We use only the 32 LSB of the incoming fpr
929
     */
930
    uint32_t prev, new;
931
    int i;
932

    
933
    prev = env->fpscr;
934
    new = (uint32_t)arg;
935
    new &= ~0x60000000;
936
    new |= prev & 0x60000000;
937
    for (i = 0; i < 8; i++) {
938
        if (mask & (1 << i)) {
939
            env->fpscr &= ~(0xF << (4 * i));
940
            env->fpscr |= new & (0xF << (4 * i));
941
        }
942
    }
943
    /* Update VX and FEX */
944
    if (fpscr_ix != 0)
945
        env->fpscr |= 1 << FPSCR_VX;
946
    else
947
        env->fpscr &= ~(1 << FPSCR_VX);
948
    if ((fpscr_ex & fpscr_eex) != 0) {
949
        env->fpscr |= 1 << FPSCR_FEX;
950
        env->exception_index = POWERPC_EXCP_PROGRAM;
951
        /* XXX: we should compute it properly */
952
        env->error_code = POWERPC_EXCP_FP;
953
    }
954
    else
955
        env->fpscr &= ~(1 << FPSCR_FEX);
956
    fpscr_set_rounding_mode();
957
}
958

    
959
void helper_float_check_status (void)
960
{
961
#ifdef CONFIG_SOFTFLOAT
962
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
963
        (env->error_code & POWERPC_EXCP_FP)) {
964
        /* Differred floating-point exception after target FPR update */
965
        if (msr_fe0 != 0 || msr_fe1 != 0)
966
            helper_raise_exception_err(env->exception_index, env->error_code);
967
    } else {
968
        int status = get_float_exception_flags(&env->fp_status);
969
        if (status & float_flag_divbyzero) {
970
            float_zero_divide_excp();
971
        } else if (status & float_flag_overflow) {
972
            float_overflow_excp();
973
        } else if (status & float_flag_underflow) {
974
            float_underflow_excp();
975
        } else if (status & float_flag_inexact) {
976
            float_inexact_excp();
977
        }
978
    }
979
#else
980
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
981
        (env->error_code & POWERPC_EXCP_FP)) {
982
        /* Differred floating-point exception after target FPR update */
983
        if (msr_fe0 != 0 || msr_fe1 != 0)
984
            helper_raise_exception_err(env->exception_index, env->error_code);
985
    }
986
#endif
987
}
988

    
989
#ifdef CONFIG_SOFTFLOAT
990
void helper_reset_fpstatus (void)
991
{
992
    set_float_exception_flags(0, &env->fp_status);
993
}
994
#endif
995

    
996
/* fadd - fadd. */
997
uint64_t helper_fadd (uint64_t arg1, uint64_t arg2)
998
{
999
    CPU_DoubleU farg1, farg2;
1000

    
1001
    farg1.ll = arg1;
1002
    farg2.ll = arg2;
1003
#if USE_PRECISE_EMULATION
1004
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1005
                 float64_is_signaling_nan(farg2.d))) {
1006
        /* sNaN addition */
1007
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1008
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1009
                      float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
1010
        /* Magnitude subtraction of infinities */
1011
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1012
    } else {
1013
        farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1014
    }
1015
#else
1016
    farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
1017
#endif
1018
    return farg1.ll;
1019
}
1020

    
1021
/* fsub - fsub. */
1022
uint64_t helper_fsub (uint64_t arg1, uint64_t arg2)
1023
{
1024
    CPU_DoubleU farg1, farg2;
1025

    
1026
    farg1.ll = arg1;
1027
    farg2.ll = arg2;
1028
#if USE_PRECISE_EMULATION
1029
{
1030
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1031
                 float64_is_signaling_nan(farg2.d))) {
1032
        /* sNaN subtraction */
1033
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1034
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
1035
                      float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
1036
        /* Magnitude subtraction of infinities */
1037
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1038
    } else {
1039
        farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1040
    }
1041
}
1042
#else
1043
    farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
1044
#endif
1045
    return farg1.ll;
1046
}
1047

    
1048
/* fmul - fmul. */
1049
uint64_t helper_fmul (uint64_t arg1, uint64_t arg2)
1050
{
1051
    CPU_DoubleU farg1, farg2;
1052

    
1053
    farg1.ll = arg1;
1054
    farg2.ll = arg2;
1055
#if USE_PRECISE_EMULATION
1056
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1057
                 float64_is_signaling_nan(farg2.d))) {
1058
        /* sNaN multiplication */
1059
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1060
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1061
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1062
        /* Multiplication of zero by infinity */
1063
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1064
    } else {
1065
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1066
    }
1067
#else
1068
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1069
#endif
1070
    return farg1.ll;
1071
}
1072

    
1073
/* fdiv - fdiv. */
1074
uint64_t helper_fdiv (uint64_t arg1, uint64_t arg2)
1075
{
1076
    CPU_DoubleU farg1, farg2;
1077

    
1078
    farg1.ll = arg1;
1079
    farg2.ll = arg2;
1080
#if USE_PRECISE_EMULATION
1081
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1082
                 float64_is_signaling_nan(farg2.d))) {
1083
        /* sNaN division */
1084
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1085
    } else if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d))) {
1086
        /* Division of infinity by infinity */
1087
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
1088
    } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
1089
        /* Division of zero by zero */
1090
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
1091
    } else {
1092
        farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1093
    }
1094
#else
1095
    farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
1096
#endif
1097
    return farg1.ll;
1098
}
1099

    
1100
/* fabs */
1101
uint64_t helper_fabs (uint64_t arg)
1102
{
1103
    CPU_DoubleU farg;
1104

    
1105
    farg.ll = arg;
1106
    farg.d = float64_abs(farg.d);
1107
    return farg.ll;
1108
}
1109

    
1110
/* fnabs */
1111
uint64_t helper_fnabs (uint64_t arg)
1112
{
1113
    CPU_DoubleU farg;
1114

    
1115
    farg.ll = arg;
1116
    farg.d = float64_abs(farg.d);
1117
    farg.d = float64_chs(farg.d);
1118
    return farg.ll;
1119
}
1120

    
1121
/* fneg */
1122
uint64_t helper_fneg (uint64_t arg)
1123
{
1124
    CPU_DoubleU farg;
1125

    
1126
    farg.ll = arg;
1127
    farg.d = float64_chs(farg.d);
1128
    return farg.ll;
1129
}
1130

    
1131
/* fctiw - fctiw. */
1132
uint64_t helper_fctiw (uint64_t arg)
1133
{
1134
    CPU_DoubleU farg;
1135
    farg.ll = arg;
1136

    
1137
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1138
        /* sNaN conversion */
1139
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1140
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1141
        /* qNan / infinity conversion */
1142
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1143
    } else {
1144
        farg.ll = float64_to_int32(farg.d, &env->fp_status);
1145
#if USE_PRECISE_EMULATION
1146
        /* XXX: higher bits are not supposed to be significant.
1147
         *     to make tests easier, return the same as a real PowerPC 750
1148
         */
1149
        farg.ll |= 0xFFF80000ULL << 32;
1150
#endif
1151
    }
1152
    return farg.ll;
1153
}
1154

    
1155
/* fctiwz - fctiwz. */
1156
uint64_t helper_fctiwz (uint64_t arg)
1157
{
1158
    CPU_DoubleU farg;
1159
    farg.ll = arg;
1160

    
1161
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1162
        /* sNaN conversion */
1163
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1164
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1165
        /* qNan / infinity conversion */
1166
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1167
    } else {
1168
        farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
1169
#if USE_PRECISE_EMULATION
1170
        /* XXX: higher bits are not supposed to be significant.
1171
         *     to make tests easier, return the same as a real PowerPC 750
1172
         */
1173
        farg.ll |= 0xFFF80000ULL << 32;
1174
#endif
1175
    }
1176
    return farg.ll;
1177
}
1178

    
1179
#if defined(TARGET_PPC64)
1180
/* fcfid - fcfid. */
1181
uint64_t helper_fcfid (uint64_t arg)
1182
{
1183
    CPU_DoubleU farg;
1184
    farg.d = int64_to_float64(arg, &env->fp_status);
1185
    return farg.ll;
1186
}
1187

    
1188
/* fctid - fctid. */
1189
uint64_t helper_fctid (uint64_t arg)
1190
{
1191
    CPU_DoubleU farg;
1192
    farg.ll = arg;
1193

    
1194
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1195
        /* sNaN conversion */
1196
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1197
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1198
        /* qNan / infinity conversion */
1199
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1200
    } else {
1201
        farg.ll = float64_to_int64(farg.d, &env->fp_status);
1202
    }
1203
    return farg.ll;
1204
}
1205

    
1206
/* fctidz - fctidz. */
1207
uint64_t helper_fctidz (uint64_t arg)
1208
{
1209
    CPU_DoubleU farg;
1210
    farg.ll = arg;
1211

    
1212
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1213
        /* sNaN conversion */
1214
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1215
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1216
        /* qNan / infinity conversion */
1217
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1218
    } else {
1219
        farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
1220
    }
1221
    return farg.ll;
1222
}
1223

    
1224
#endif
1225

    
1226
static always_inline uint64_t do_fri (uint64_t arg, int rounding_mode)
1227
{
1228
    CPU_DoubleU farg;
1229
    farg.ll = arg;
1230

    
1231
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1232
        /* sNaN round */
1233
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1234
    } else if (unlikely(float64_is_nan(farg.d) || float64_is_infinity(farg.d))) {
1235
        /* qNan / infinity round */
1236
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1237
    } else {
1238
        set_float_rounding_mode(rounding_mode, &env->fp_status);
1239
        farg.ll = float64_round_to_int(farg.d, &env->fp_status);
1240
        /* Restore rounding mode from FPSCR */
1241
        fpscr_set_rounding_mode();
1242
    }
1243
    return farg.ll;
1244
}
1245

    
1246
uint64_t helper_frin (uint64_t arg)
1247
{
1248
    return do_fri(arg, float_round_nearest_even);
1249
}
1250

    
1251
uint64_t helper_friz (uint64_t arg)
1252
{
1253
    return do_fri(arg, float_round_to_zero);
1254
}
1255

    
1256
uint64_t helper_frip (uint64_t arg)
1257
{
1258
    return do_fri(arg, float_round_up);
1259
}
1260

    
1261
uint64_t helper_frim (uint64_t arg)
1262
{
1263
    return do_fri(arg, float_round_down);
1264
}
1265

    
1266
/* fmadd - fmadd. */
1267
uint64_t helper_fmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1268
{
1269
    CPU_DoubleU farg1, farg2, farg3;
1270

    
1271
    farg1.ll = arg1;
1272
    farg2.ll = arg2;
1273
    farg3.ll = arg3;
1274
#if USE_PRECISE_EMULATION
1275
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1276
                 float64_is_signaling_nan(farg2.d) ||
1277
                 float64_is_signaling_nan(farg3.d))) {
1278
        /* sNaN operation */
1279
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1281
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1282
        /* Multiplication of zero by infinity */
1283
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1284
    } else {
1285
#ifdef FLOAT128
1286
        /* This is the way the PowerPC specification defines it */
1287
        float128 ft0_128, ft1_128;
1288

    
1289
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1290
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1291
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1292
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1293
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1294
            /* Magnitude subtraction of infinities */
1295
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1296
        } else {
1297
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1298
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1299
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1300
        }
1301
#else
1302
        /* This is OK on x86 hosts */
1303
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1304
#endif
1305
    }
1306
#else
1307
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1308
    farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1309
#endif
1310
    return farg1.ll;
1311
}
1312

    
1313
/* fmsub - fmsub. */
1314
uint64_t helper_fmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1315
{
1316
    CPU_DoubleU farg1, farg2, farg3;
1317

    
1318
    farg1.ll = arg1;
1319
    farg2.ll = arg2;
1320
    farg3.ll = arg3;
1321
#if USE_PRECISE_EMULATION
1322
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1323
                 float64_is_signaling_nan(farg2.d) ||
1324
                 float64_is_signaling_nan(farg3.d))) {
1325
        /* sNaN operation */
1326
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1327
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1328
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1329
        /* Multiplication of zero by infinity */
1330
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1331
    } else {
1332
#ifdef FLOAT128
1333
        /* This is the way the PowerPC specification defines it */
1334
        float128 ft0_128, ft1_128;
1335

    
1336
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1337
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1338
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1339
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1340
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1341
            /* Magnitude subtraction of infinities */
1342
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1343
        } else {
1344
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1345
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1346
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1347
        }
1348
#else
1349
        /* This is OK on x86 hosts */
1350
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1351
#endif
1352
    }
1353
#else
1354
    farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1355
    farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1356
#endif
1357
    return farg1.ll;
1358
}
1359

    
1360
/* fnmadd - fnmadd. */
1361
uint64_t helper_fnmadd (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1362
{
1363
    CPU_DoubleU farg1, farg2, farg3;
1364

    
1365
    farg1.ll = arg1;
1366
    farg2.ll = arg2;
1367
    farg3.ll = arg3;
1368

    
1369
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1370
                 float64_is_signaling_nan(farg2.d) ||
1371
                 float64_is_signaling_nan(farg3.d))) {
1372
        /* sNaN operation */
1373
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1374
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1375
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1376
        /* Multiplication of zero by infinity */
1377
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1378
    } else {
1379
#if USE_PRECISE_EMULATION
1380
#ifdef FLOAT128
1381
        /* This is the way the PowerPC specification defines it */
1382
        float128 ft0_128, ft1_128;
1383

    
1384
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1385
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1386
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1387
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1388
                     float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
1389
            /* Magnitude subtraction of infinities */
1390
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1391
        } else {
1392
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1393
            ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1394
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1395
        }
1396
#else
1397
        /* This is OK on x86 hosts */
1398
        farg1.d = (farg1.d * farg2.d) + farg3.d;
1399
#endif
1400
#else
1401
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1402
        farg1.d = float64_add(farg1.d, farg3.d, &env->fp_status);
1403
#endif
1404
        if (likely(!float64_is_nan(farg1.d)))
1405
            farg1.d = float64_chs(farg1.d);
1406
    }
1407
    return farg1.ll;
1408
}
1409

    
1410
/* fnmsub - fnmsub. */
1411
uint64_t helper_fnmsub (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1412
{
1413
    CPU_DoubleU farg1, farg2, farg3;
1414

    
1415
    farg1.ll = arg1;
1416
    farg2.ll = arg2;
1417
    farg3.ll = arg3;
1418

    
1419
    if (unlikely(float64_is_signaling_nan(farg1.d) ||
1420
                 float64_is_signaling_nan(farg2.d) ||
1421
                 float64_is_signaling_nan(farg3.d))) {
1422
        /* sNaN operation */
1423
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1424
    } else if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
1425
                        (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
1426
        /* Multiplication of zero by infinity */
1427
        farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
1428
    } else {
1429
#if USE_PRECISE_EMULATION
1430
#ifdef FLOAT128
1431
        /* This is the way the PowerPC specification defines it */
1432
        float128 ft0_128, ft1_128;
1433

    
1434
        ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
1435
        ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
1436
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1437
        if (unlikely(float128_is_infinity(ft0_128) && float64_is_infinity(farg3.d) &&
1438
                     float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
1439
            /* Magnitude subtraction of infinities */
1440
            farg1.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
1441
        } else {
1442
            ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
1443
            ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1444
            farg1.d = float128_to_float64(ft0_128, &env->fp_status);
1445
        }
1446
#else
1447
        /* This is OK on x86 hosts */
1448
        farg1.d = (farg1.d * farg2.d) - farg3.d;
1449
#endif
1450
#else
1451
        farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
1452
        farg1.d = float64_sub(farg1.d, farg3.d, &env->fp_status);
1453
#endif
1454
        if (likely(!float64_is_nan(farg1.d)))
1455
            farg1.d = float64_chs(farg1.d);
1456
    }
1457
    return farg1.ll;
1458
}
1459

    
1460
/* frsp - frsp. */
1461
uint64_t helper_frsp (uint64_t arg)
1462
{
1463
    CPU_DoubleU farg;
1464
    float32 f32;
1465
    farg.ll = arg;
1466

    
1467
#if USE_PRECISE_EMULATION
1468
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1469
        /* sNaN square root */
1470
       farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1471
    } else {
1472
       f32 = float64_to_float32(farg.d, &env->fp_status);
1473
       farg.d = float32_to_float64(f32, &env->fp_status);
1474
    }
1475
#else
1476
    f32 = float64_to_float32(farg.d, &env->fp_status);
1477
    farg.d = float32_to_float64(f32, &env->fp_status);
1478
#endif
1479
    return farg.ll;
1480
}
1481

    
1482
/* fsqrt - fsqrt. */
1483
uint64_t helper_fsqrt (uint64_t arg)
1484
{
1485
    CPU_DoubleU farg;
1486
    farg.ll = arg;
1487

    
1488
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1489
        /* sNaN square root */
1490
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1491
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1492
        /* Square root of a negative nonzero number */
1493
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1494
    } else {
1495
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1496
    }
1497
    return farg.ll;
1498
}
1499

    
1500
/* fre - fre. */
1501
uint64_t helper_fre (uint64_t arg)
1502
{
1503
    CPU_DoubleU fone, farg;
1504
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1505
    farg.ll = arg;
1506

    
1507
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1508
        /* sNaN reciprocal */
1509
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1510
    } else {
1511
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1512
    }
1513
    return farg.d;
1514
}
1515

    
1516
/* fres - fres. */
1517
uint64_t helper_fres (uint64_t arg)
1518
{
1519
    CPU_DoubleU fone, farg;
1520
    float32 f32;
1521
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1522
    farg.ll = arg;
1523

    
1524
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1525
        /* sNaN reciprocal */
1526
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1527
    } else {
1528
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1529
        f32 = float64_to_float32(farg.d, &env->fp_status);
1530
        farg.d = float32_to_float64(f32, &env->fp_status);
1531
    }
1532
    return farg.ll;
1533
}
1534

    
1535
/* frsqrte  - frsqrte. */
1536
uint64_t helper_frsqrte (uint64_t arg)
1537
{
1538
    CPU_DoubleU fone, farg;
1539
    float32 f32;
1540
    fone.ll = 0x3FF0000000000000ULL; /* 1.0 */
1541
    farg.ll = arg;
1542

    
1543
    if (unlikely(float64_is_signaling_nan(farg.d))) {
1544
        /* sNaN reciprocal square root */
1545
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1546
    } else if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1547
        /* Reciprocal square root of a negative nonzero number */
1548
        farg.ll = fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1549
    } else {
1550
        farg.d = float64_sqrt(farg.d, &env->fp_status);
1551
        farg.d = float64_div(fone.d, farg.d, &env->fp_status);
1552
        f32 = float64_to_float32(farg.d, &env->fp_status);
1553
        farg.d = float32_to_float64(f32, &env->fp_status);
1554
    }
1555
    return farg.ll;
1556
}
1557

    
1558
/* fsel - fsel. */
1559
uint64_t helper_fsel (uint64_t arg1, uint64_t arg2, uint64_t arg3)
1560
{
1561
    CPU_DoubleU farg1;
1562

    
1563
    farg1.ll = arg1;
1564

    
1565
    if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) && !float64_is_nan(farg1.d))
1566
        return arg2;
1567
    else
1568
        return arg3;
1569
}
1570

    
1571
void helper_fcmpu (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1572
{
1573
    CPU_DoubleU farg1, farg2;
1574
    uint32_t ret = 0;
1575
    farg1.ll = arg1;
1576
    farg2.ll = arg2;
1577

    
1578
    if (unlikely(float64_is_nan(farg1.d) ||
1579
                 float64_is_nan(farg2.d))) {
1580
        ret = 0x01UL;
1581
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1582
        ret = 0x08UL;
1583
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1584
        ret = 0x04UL;
1585
    } else {
1586
        ret = 0x02UL;
1587
    }
1588

    
1589
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1590
    env->fpscr |= ret << FPSCR_FPRF;
1591
    env->crf[crfD] = ret;
1592
    if (unlikely(ret == 0x01UL
1593
                 && (float64_is_signaling_nan(farg1.d) ||
1594
                     float64_is_signaling_nan(farg2.d)))) {
1595
        /* sNaN comparison */
1596
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1597
    }
1598
}
1599

    
1600
void helper_fcmpo (uint64_t arg1, uint64_t arg2, uint32_t crfD)
1601
{
1602
    CPU_DoubleU farg1, farg2;
1603
    uint32_t ret = 0;
1604
    farg1.ll = arg1;
1605
    farg2.ll = arg2;
1606

    
1607
    if (unlikely(float64_is_nan(farg1.d) ||
1608
                 float64_is_nan(farg2.d))) {
1609
        ret = 0x01UL;
1610
    } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1611
        ret = 0x08UL;
1612
    } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1613
        ret = 0x04UL;
1614
    } else {
1615
        ret = 0x02UL;
1616
    }
1617

    
1618
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1619
    env->fpscr |= ret << FPSCR_FPRF;
1620
    env->crf[crfD] = ret;
1621
    if (unlikely (ret == 0x01UL)) {
1622
        if (float64_is_signaling_nan(farg1.d) ||
1623
            float64_is_signaling_nan(farg2.d)) {
1624
            /* sNaN comparison */
1625
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1626
                                  POWERPC_EXCP_FP_VXVC);
1627
        } else {
1628
            /* qNaN comparison */
1629
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1630
        }
1631
    }
1632
}
1633

    
1634
#if !defined (CONFIG_USER_ONLY)
1635
void helper_store_msr (target_ulong val)
1636
{
1637
    val = hreg_store_msr(env, val, 0);
1638
    if (val != 0) {
1639
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1640
        helper_raise_exception(val);
1641
    }
1642
}
1643

    
1644
static always_inline void do_rfi (target_ulong nip, target_ulong msr,
1645
                                    target_ulong msrm, int keep_msrh)
1646
{
1647
#if defined(TARGET_PPC64)
1648
    if (msr & (1ULL << MSR_SF)) {
1649
        nip = (uint64_t)nip;
1650
        msr &= (uint64_t)msrm;
1651
    } else {
1652
        nip = (uint32_t)nip;
1653
        msr = (uint32_t)(msr & msrm);
1654
        if (keep_msrh)
1655
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1656
    }
1657
#else
1658
    nip = (uint32_t)nip;
1659
    msr &= (uint32_t)msrm;
1660
#endif
1661
    /* XXX: beware: this is false if VLE is supported */
1662
    env->nip = nip & ~((target_ulong)0x00000003);
1663
    hreg_store_msr(env, msr, 1);
1664
#if defined (DEBUG_OP)
1665
    cpu_dump_rfi(env->nip, env->msr);
1666
#endif
1667
    /* No need to raise an exception here,
1668
     * as rfi is always the last insn of a TB
1669
     */
1670
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1671
}
1672

    
1673
void helper_rfi (void)
1674
{
1675
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1676
           ~((target_ulong)0xFFFF0000), 1);
1677
}
1678

    
1679
#if defined(TARGET_PPC64)
1680
void helper_rfid (void)
1681
{
1682
    do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1683
           ~((target_ulong)0xFFFF0000), 0);
1684
}
1685

    
1686
void helper_hrfid (void)
1687
{
1688
    do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1689
           ~((target_ulong)0xFFFF0000), 0);
1690
}
1691
#endif
1692
#endif
1693

    
1694
void helper_tw (target_ulong arg1, target_ulong arg2, uint32_t flags)
1695
{
1696
    if (!likely(!(((int32_t)arg1 < (int32_t)arg2 && (flags & 0x10)) ||
1697
                  ((int32_t)arg1 > (int32_t)arg2 && (flags & 0x08)) ||
1698
                  ((int32_t)arg1 == (int32_t)arg2 && (flags & 0x04)) ||
1699
                  ((uint32_t)arg1 < (uint32_t)arg2 && (flags & 0x02)) ||
1700
                  ((uint32_t)arg1 > (uint32_t)arg2 && (flags & 0x01))))) {
1701
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1702
    }
1703
}
1704

    
1705
#if defined(TARGET_PPC64)
1706
void helper_td (target_ulong arg1, target_ulong arg2, uint32_t flags)
1707
{
1708
    if (!likely(!(((int64_t)arg1 < (int64_t)arg2 && (flags & 0x10)) ||
1709
                  ((int64_t)arg1 > (int64_t)arg2 && (flags & 0x08)) ||
1710
                  ((int64_t)arg1 == (int64_t)arg2 && (flags & 0x04)) ||
1711
                  ((uint64_t)arg1 < (uint64_t)arg2 && (flags & 0x02)) ||
1712
                  ((uint64_t)arg1 > (uint64_t)arg2 && (flags & 0x01)))))
1713
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1714
}
1715
#endif
1716

    
1717
/*****************************************************************************/
1718
/* PowerPC 601 specific instructions (POWER bridge) */
1719

    
1720
target_ulong helper_clcs (uint32_t arg)
1721
{
1722
    switch (arg) {
1723
    case 0x0CUL:
1724
        /* Instruction cache line size */
1725
        return env->icache_line_size;
1726
        break;
1727
    case 0x0DUL:
1728
        /* Data cache line size */
1729
        return env->dcache_line_size;
1730
        break;
1731
    case 0x0EUL:
1732
        /* Minimum cache line size */
1733
        return (env->icache_line_size < env->dcache_line_size) ?
1734
                env->icache_line_size : env->dcache_line_size;
1735
        break;
1736
    case 0x0FUL:
1737
        /* Maximum cache line size */
1738
        return (env->icache_line_size > env->dcache_line_size) ?
1739
                env->icache_line_size : env->dcache_line_size;
1740
        break;
1741
    default:
1742
        /* Undefined */
1743
        return 0;
1744
        break;
1745
    }
1746
}
1747

    
1748
target_ulong helper_div (target_ulong arg1, target_ulong arg2)
1749
{
1750
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1751

    
1752
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1753
        (int32_t)arg2 == 0) {
1754
        env->spr[SPR_MQ] = 0;
1755
        return INT32_MIN;
1756
    } else {
1757
        env->spr[SPR_MQ] = tmp % arg2;
1758
        return  tmp / (int32_t)arg2;
1759
    }
1760
}
1761

    
1762
target_ulong helper_divo (target_ulong arg1, target_ulong arg2)
1763
{
1764
    uint64_t tmp = (uint64_t)arg1 << 32 | env->spr[SPR_MQ];
1765

    
1766
    if (((int32_t)tmp == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1767
        (int32_t)arg2 == 0) {
1768
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1769
        env->spr[SPR_MQ] = 0;
1770
        return INT32_MIN;
1771
    } else {
1772
        env->spr[SPR_MQ] = tmp % arg2;
1773
        tmp /= (int32_t)arg2;
1774
        if ((int32_t)tmp != tmp) {
1775
            env->xer |= (1 << XER_OV) | (1 << XER_SO);
1776
        } else {
1777
            env->xer &= ~(1 << XER_OV);
1778
        }
1779
        return tmp;
1780
    }
1781
}
1782

    
1783
target_ulong helper_divs (target_ulong arg1, target_ulong arg2)
1784
{
1785
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1786
        (int32_t)arg2 == 0) {
1787
        env->spr[SPR_MQ] = 0;
1788
        return INT32_MIN;
1789
    } else {
1790
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1791
        return (int32_t)arg1 / (int32_t)arg2;
1792
    }
1793
}
1794

    
1795
target_ulong helper_divso (target_ulong arg1, target_ulong arg2)
1796
{
1797
    if (((int32_t)arg1 == INT32_MIN && (int32_t)arg2 == (int32_t)-1) ||
1798
        (int32_t)arg2 == 0) {
1799
        env->xer |= (1 << XER_OV) | (1 << XER_SO);
1800
        env->spr[SPR_MQ] = 0;
1801
        return INT32_MIN;
1802
    } else {
1803
        env->xer &= ~(1 << XER_OV);
1804
        env->spr[SPR_MQ] = (int32_t)arg1 % (int32_t)arg2;
1805
        return (int32_t)arg1 / (int32_t)arg2;
1806
    }
1807
}
1808

    
1809
#if !defined (CONFIG_USER_ONLY)
1810
target_ulong helper_rac (target_ulong addr)
1811
{
1812
    mmu_ctx_t ctx;
1813
    int nb_BATs;
1814
    target_ulong ret = 0;
1815

    
1816
    /* We don't have to generate many instances of this instruction,
1817
     * as rac is supervisor only.
1818
     */
1819
    /* XXX: FIX THIS: Pretend we have no BAT */
1820
    nb_BATs = env->nb_BATs;
1821
    env->nb_BATs = 0;
1822
    if (get_physical_address(env, &ctx, addr, 0, ACCESS_INT) == 0)
1823
        ret = ctx.raddr;
1824
    env->nb_BATs = nb_BATs;
1825
    return ret;
1826
}
1827

    
1828
void helper_rfsvc (void)
1829
{
1830
    do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1831
}
1832
#endif
1833

    
1834
/*****************************************************************************/
1835
/* 602 specific instructions */
1836
/* mfrom is the most crazy instruction ever seen, imho ! */
1837
/* Real implementation uses a ROM table. Do the same */
1838
/* Extremly decomposed:
1839
 *                      -arg / 256
1840
 * return 256 * log10(10           + 1.0) + 0.5
1841
 */
1842
#if !defined (CONFIG_USER_ONLY)
1843
target_ulong helper_602_mfrom (target_ulong arg)
1844
{
1845
    if (likely(arg < 602)) {
1846
#include "mfrom_table.c"
1847
        return mfrom_ROM_table[arg];
1848
    } else {
1849
        return 0;
1850
    }
1851
}
1852
#endif
1853

    
1854
/*****************************************************************************/
1855
/* Embedded PowerPC specific helpers */
1856

    
1857
/* XXX: to be improved to check access rights when in user-mode */
1858
target_ulong helper_load_dcr (target_ulong dcrn)
1859
{
1860
    target_ulong val = 0;
1861

    
1862
    if (unlikely(env->dcr_env == NULL)) {
1863
        if (loglevel != 0) {
1864
            fprintf(logfile, "No DCR environment\n");
1865
        }
1866
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1867
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1868
    } else if (unlikely(ppc_dcr_read(env->dcr_env, dcrn, &val) != 0)) {
1869
        if (loglevel != 0) {
1870
            fprintf(logfile, "DCR read error %d %03x\n", (int)dcrn, (int)dcrn);
1871
        }
1872
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1873
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1874
    }
1875
    return val;
1876
}
1877

    
1878
void helper_store_dcr (target_ulong dcrn, target_ulong val)
1879
{
1880
    if (unlikely(env->dcr_env == NULL)) {
1881
        if (loglevel != 0) {
1882
            fprintf(logfile, "No DCR environment\n");
1883
        }
1884
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1885
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1886
    } else if (unlikely(ppc_dcr_write(env->dcr_env, dcrn, val) != 0)) {
1887
        if (loglevel != 0) {
1888
            fprintf(logfile, "DCR write error %d %03x\n", (int)dcrn, (int)dcrn);
1889
        }
1890
        helper_raise_exception_err(POWERPC_EXCP_PROGRAM,
1891
                                   POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1892
    }
1893
}
1894

    
1895
#if !defined(CONFIG_USER_ONLY)
1896
void helper_40x_rfci (void)
1897
{
1898
    do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1899
           ~((target_ulong)0xFFFF0000), 0);
1900
}
1901

    
1902
void helper_rfci (void)
1903
{
1904
    do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1905
           ~((target_ulong)0x3FFF0000), 0);
1906
}
1907

    
1908
void helper_rfdi (void)
1909
{
1910
    do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1911
           ~((target_ulong)0x3FFF0000), 0);
1912
}
1913

    
1914
void helper_rfmci (void)
1915
{
1916
    do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1917
           ~((target_ulong)0x3FFF0000), 0);
1918
}
1919
#endif
1920

    
1921
/* 440 specific */
1922
target_ulong helper_dlmzb (target_ulong high, target_ulong low, uint32_t update_Rc)
1923
{
1924
    target_ulong mask;
1925
    int i;
1926

    
1927
    i = 1;
1928
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1929
        if ((high & mask) == 0) {
1930
            if (update_Rc) {
1931
                env->crf[0] = 0x4;
1932
            }
1933
            goto done;
1934
        }
1935
        i++;
1936
    }
1937
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1938
        if ((low & mask) == 0) {
1939
            if (update_Rc) {
1940
                env->crf[0] = 0x8;
1941
            }
1942
            goto done;
1943
        }
1944
        i++;
1945
    }
1946
    if (update_Rc) {
1947
        env->crf[0] = 0x2;
1948
    }
1949
 done:
1950
    env->xer = (env->xer & ~0x7F) | i;
1951
    if (update_Rc) {
1952
        env->crf[0] |= xer_so;
1953
    }
1954
    return i;
1955
}
1956

    
1957
/*****************************************************************************/
1958
/* Altivec extension helpers */
1959
#if defined(WORDS_BIGENDIAN)
1960
#define HI_IDX 0
1961
#define LO_IDX 1
1962
#else
1963
#define HI_IDX 1
1964
#define LO_IDX 0
1965
#endif
1966

    
1967
#if defined(WORDS_BIGENDIAN)
1968
#define VECTOR_FOR_INORDER_I(index, element)            \
1969
    for (index = 0; index < ARRAY_SIZE(r->element); index++)
1970
#else
1971
#define VECTOR_FOR_INORDER_I(index, element)            \
1972
  for (index = ARRAY_SIZE(r->element)-1; index >= 0; index--)
1973
#endif
1974

    
1975
/* Saturating arithmetic helpers.  */
1976
#define SATCVT(from, to, from_type, to_type, min, max, use_min, use_max) \
1977
    static always_inline to_type cvt##from##to (from_type x, int *sat)  \
1978
    {                                                                   \
1979
        to_type r;                                                      \
1980
        if (use_min && x < min) {                                       \
1981
            r = min;                                                    \
1982
            *sat = 1;                                                   \
1983
        } else if (use_max && x > max) {                                \
1984
            r = max;                                                    \
1985
            *sat = 1;                                                   \
1986
        } else {                                                        \
1987
            r = x;                                                      \
1988
        }                                                               \
1989
        return r;                                                       \
1990
    }
1991
SATCVT(sh, sb, int16_t, int8_t, INT8_MIN, INT8_MAX, 1, 1)
1992
SATCVT(sw, sh, int32_t, int16_t, INT16_MIN, INT16_MAX, 1, 1)
1993
SATCVT(sd, sw, int64_t, int32_t, INT32_MIN, INT32_MAX, 1, 1)
1994
SATCVT(uh, ub, uint16_t, uint8_t, 0, UINT8_MAX, 0, 1)
1995
SATCVT(uw, uh, uint32_t, uint16_t, 0, UINT16_MAX, 0, 1)
1996
SATCVT(ud, uw, uint64_t, uint32_t, 0, UINT32_MAX, 0, 1)
1997
SATCVT(sh, ub, int16_t, uint8_t, 0, UINT8_MAX, 1, 1)
1998
SATCVT(sw, uh, int32_t, uint16_t, 0, UINT16_MAX, 1, 1)
1999
SATCVT(sd, uw, int64_t, uint32_t, 0, UINT32_MAX, 1, 1)
2000
#undef SATCVT
2001

    
2002
#define LVE(name, access, swap, element)                        \
2003
    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
2004
    {                                                           \
2005
        size_t n_elems = ARRAY_SIZE(r->element);                \
2006
        int adjust = HI_IDX*(n_elems-1);                        \
2007
        int sh = sizeof(r->element[0]) >> 1;                    \
2008
        int index = (addr & 0xf) >> sh;                         \
2009
        if(msr_le) {                                            \
2010
            r->element[LO_IDX ? index : (adjust - index)] = swap(access(addr)); \
2011
        } else {                                                        \
2012
            r->element[LO_IDX ? index : (adjust - index)] = access(addr); \
2013
        }                                                               \
2014
    }
2015
#define I(x) (x)
2016
LVE(lvebx, ldub, I, u8)
2017
LVE(lvehx, lduw, bswap16, u16)
2018
LVE(lvewx, ldl, bswap32, u32)
2019
#undef I
2020
#undef LVE
2021

    
2022
void helper_lvsl (ppc_avr_t *r, target_ulong sh)
2023
{
2024
    int i, j = (sh & 0xf);
2025

    
2026
    VECTOR_FOR_INORDER_I (i, u8) {
2027
        r->u8[i] = j++;
2028
    }
2029
}
2030

    
2031
void helper_lvsr (ppc_avr_t *r, target_ulong sh)
2032
{
2033
    int i, j = 0x10 - (sh & 0xf);
2034

    
2035
    VECTOR_FOR_INORDER_I (i, u8) {
2036
        r->u8[i] = j++;
2037
    }
2038
}
2039

    
2040
#define STVE(name, access, swap, element)                       \
2041
    void helper_##name (ppc_avr_t *r, target_ulong addr)        \
2042
    {                                                           \
2043
        size_t n_elems = ARRAY_SIZE(r->element);                \
2044
        int adjust = HI_IDX*(n_elems-1);                        \
2045
        int sh = sizeof(r->element[0]) >> 1;                    \
2046
        int index = (addr & 0xf) >> sh;                         \
2047
        if(msr_le) {                                            \
2048
            access(addr, swap(r->element[LO_IDX ? index : (adjust - index)])); \
2049
        } else {                                                        \
2050
            access(addr, r->element[LO_IDX ? index : (adjust - index)]); \
2051
        }                                                               \
2052
    }
2053
#define I(x) (x)
2054
STVE(stvebx, stb, I, u8)
2055
STVE(stvehx, stw, bswap16, u16)
2056
STVE(stvewx, stl, bswap32, u32)
2057
#undef I
2058
#undef LVE
2059

    
2060
void helper_vaddcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2061
{
2062
    int i;
2063
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2064
        r->u32[i] = ~a->u32[i] < b->u32[i];
2065
    }
2066
}
2067

    
2068
#define VARITH_DO(name, op, element)        \
2069
void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)          \
2070
{                                                                       \
2071
    int i;                                                              \
2072
    for (i = 0; i < ARRAY_SIZE(r->element); i++) {                      \
2073
        r->element[i] = a->element[i] op b->element[i];                 \
2074
    }                                                                   \
2075
}
2076
#define VARITH(suffix, element)                  \
2077
  VARITH_DO(add##suffix, +, element)             \
2078
  VARITH_DO(sub##suffix, -, element)
2079
VARITH(ubm, u8)
2080
VARITH(uhm, u16)
2081
VARITH(uwm, u32)
2082
#undef VARITH_DO
2083
#undef VARITH
2084

    
2085
#define VAVG_DO(name, element, etype)                                   \
2086
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2087
    {                                                                   \
2088
        int i;                                                          \
2089
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2090
            etype x = (etype)a->element[i] + (etype)b->element[i] + 1;  \
2091
            r->element[i] = x >> 1;                                     \
2092
        }                                                               \
2093
    }
2094

    
2095
#define VAVG(type, signed_element, signed_type, unsigned_element, unsigned_type) \
2096
    VAVG_DO(avgs##type, signed_element, signed_type)                    \
2097
    VAVG_DO(avgu##type, unsigned_element, unsigned_type)
2098
VAVG(b, s8, int16_t, u8, uint16_t)
2099
VAVG(h, s16, int32_t, u16, uint32_t)
2100
VAVG(w, s32, int64_t, u32, uint64_t)
2101
#undef VAVG_DO
2102
#undef VAVG
2103

    
2104
#define VCMP_DO(suffix, compare, element, record)                       \
2105
    void helper_vcmp##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b) \
2106
    {                                                                   \
2107
        uint32_t ones = (uint32_t)-1;                                   \
2108
        uint32_t all = ones;                                            \
2109
        uint32_t none = 0;                                              \
2110
        int i;                                                          \
2111
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2112
            uint32_t result = (a->element[i] compare b->element[i] ? ones : 0x0); \
2113
            switch (sizeof (a->element[0])) {                           \
2114
            case 4: r->u32[i] = result; break;                          \
2115
            case 2: r->u16[i] = result; break;                          \
2116
            case 1: r->u8[i] = result; break;                           \
2117
            }                                                           \
2118
            all &= result;                                              \
2119
            none |= result;                                             \
2120
        }                                                               \
2121
        if (record) {                                                   \
2122
            env->crf[6] = ((all != 0) << 3) | ((none == 0) << 1);       \
2123
        }                                                               \
2124
    }
2125
#define VCMP(suffix, compare, element)          \
2126
    VCMP_DO(suffix, compare, element, 0)        \
2127
    VCMP_DO(suffix##_dot, compare, element, 1)
2128
VCMP(equb, ==, u8)
2129
VCMP(equh, ==, u16)
2130
VCMP(equw, ==, u32)
2131
VCMP(gtub, >, u8)
2132
VCMP(gtuh, >, u16)
2133
VCMP(gtuw, >, u32)
2134
VCMP(gtsb, >, s8)
2135
VCMP(gtsh, >, s16)
2136
VCMP(gtsw, >, s32)
2137
#undef VCMP_DO
2138
#undef VCMP
2139

    
2140
void helper_vmhaddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2141
{
2142
    int sat = 0;
2143
    int i;
2144

    
2145
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2146
        int32_t prod = a->s16[i] * b->s16[i];
2147
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2148
        r->s16[i] = cvtswsh (t, &sat);
2149
    }
2150

    
2151
    if (sat) {
2152
        env->vscr |= (1 << VSCR_SAT);
2153
    }
2154
}
2155

    
2156
void helper_vmhraddshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2157
{
2158
    int sat = 0;
2159
    int i;
2160

    
2161
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2162
        int32_t prod = a->s16[i] * b->s16[i] + 0x00004000;
2163
        int32_t t = (int32_t)c->s16[i] + (prod >> 15);
2164
        r->s16[i] = cvtswsh (t, &sat);
2165
    }
2166

    
2167
    if (sat) {
2168
        env->vscr |= (1 << VSCR_SAT);
2169
    }
2170
}
2171

    
2172
#define VMINMAX_DO(name, compare, element)                              \
2173
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2174
    {                                                                   \
2175
        int i;                                                          \
2176
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2177
            if (a->element[i] compare b->element[i]) {                  \
2178
                r->element[i] = b->element[i];                          \
2179
            } else {                                                    \
2180
                r->element[i] = a->element[i];                          \
2181
            }                                                           \
2182
        }                                                               \
2183
    }
2184
#define VMINMAX(suffix, element)                \
2185
  VMINMAX_DO(min##suffix, >, element)           \
2186
  VMINMAX_DO(max##suffix, <, element)
2187
VMINMAX(sb, s8)
2188
VMINMAX(sh, s16)
2189
VMINMAX(sw, s32)
2190
VMINMAX(ub, u8)
2191
VMINMAX(uh, u16)
2192
VMINMAX(uw, u32)
2193
#undef VMINMAX_DO
2194
#undef VMINMAX
2195

    
2196
void helper_vmladduhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2197
{
2198
    int i;
2199
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2200
        int32_t prod = a->s16[i] * b->s16[i];
2201
        r->s16[i] = (int16_t) (prod + c->s16[i]);
2202
    }
2203
}
2204

    
2205
#define VMRG_DO(name, element, highp)                                   \
2206
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2207
    {                                                                   \
2208
        ppc_avr_t result;                                               \
2209
        int i;                                                          \
2210
        size_t n_elems = ARRAY_SIZE(r->element);                        \
2211
        for (i = 0; i < n_elems/2; i++) {                               \
2212
            if (highp) {                                                \
2213
                result.element[i*2+HI_IDX] = a->element[i];             \
2214
                result.element[i*2+LO_IDX] = b->element[i];             \
2215
            } else {                                                    \
2216
                result.element[n_elems - i*2 - (1+HI_IDX)] = b->element[n_elems - i - 1]; \
2217
                result.element[n_elems - i*2 - (1+LO_IDX)] = a->element[n_elems - i - 1]; \
2218
            }                                                           \
2219
        }                                                               \
2220
        *r = result;                                                    \
2221
    }
2222
#if defined(WORDS_BIGENDIAN)
2223
#define MRGHI 0
2224
#define MRGLO 1
2225
#else
2226
#define MRGHI 1
2227
#define MRGLO 0
2228
#endif
2229
#define VMRG(suffix, element)                   \
2230
  VMRG_DO(mrgl##suffix, element, MRGHI)         \
2231
  VMRG_DO(mrgh##suffix, element, MRGLO)
2232
VMRG(b, u8)
2233
VMRG(h, u16)
2234
VMRG(w, u32)
2235
#undef VMRG_DO
2236
#undef VMRG
2237
#undef MRGHI
2238
#undef MRGLO
2239

    
2240
void helper_vmsummbm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2241
{
2242
    int32_t prod[16];
2243
    int i;
2244

    
2245
    for (i = 0; i < ARRAY_SIZE(r->s8); i++) {
2246
        prod[i] = (int32_t)a->s8[i] * b->u8[i];
2247
    }
2248

    
2249
    VECTOR_FOR_INORDER_I(i, s32) {
2250
        r->s32[i] = c->s32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2251
    }
2252
}
2253

    
2254
void helper_vmsumshm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2255
{
2256
    int32_t prod[8];
2257
    int i;
2258

    
2259
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2260
        prod[i] = a->s16[i] * b->s16[i];
2261
    }
2262

    
2263
    VECTOR_FOR_INORDER_I(i, s32) {
2264
        r->s32[i] = c->s32[i] + prod[2*i] + prod[2*i+1];
2265
    }
2266
}
2267

    
2268
void helper_vmsumshs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2269
{
2270
    int32_t prod[8];
2271
    int i;
2272
    int sat = 0;
2273

    
2274
    for (i = 0; i < ARRAY_SIZE(r->s16); i++) {
2275
        prod[i] = (int32_t)a->s16[i] * b->s16[i];
2276
    }
2277

    
2278
    VECTOR_FOR_INORDER_I (i, s32) {
2279
        int64_t t = (int64_t)c->s32[i] + prod[2*i] + prod[2*i+1];
2280
        r->u32[i] = cvtsdsw(t, &sat);
2281
    }
2282

    
2283
    if (sat) {
2284
        env->vscr |= (1 << VSCR_SAT);
2285
    }
2286
}
2287

    
2288
void helper_vmsumubm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2289
{
2290
    uint16_t prod[16];
2291
    int i;
2292

    
2293
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2294
        prod[i] = a->u8[i] * b->u8[i];
2295
    }
2296

    
2297
    VECTOR_FOR_INORDER_I(i, u32) {
2298
        r->u32[i] = c->u32[i] + prod[4*i] + prod[4*i+1] + prod[4*i+2] + prod[4*i+3];
2299
    }
2300
}
2301

    
2302
void helper_vmsumuhm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2303
{
2304
    uint32_t prod[8];
2305
    int i;
2306

    
2307
    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2308
        prod[i] = a->u16[i] * b->u16[i];
2309
    }
2310

    
2311
    VECTOR_FOR_INORDER_I(i, u32) {
2312
        r->u32[i] = c->u32[i] + prod[2*i] + prod[2*i+1];
2313
    }
2314
}
2315

    
2316
void helper_vmsumuhs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2317
{
2318
    uint32_t prod[8];
2319
    int i;
2320
    int sat = 0;
2321

    
2322
    for (i = 0; i < ARRAY_SIZE(r->u16); i++) {
2323
        prod[i] = a->u16[i] * b->u16[i];
2324
    }
2325

    
2326
    VECTOR_FOR_INORDER_I (i, s32) {
2327
        uint64_t t = (uint64_t)c->u32[i] + prod[2*i] + prod[2*i+1];
2328
        r->u32[i] = cvtuduw(t, &sat);
2329
    }
2330

    
2331
    if (sat) {
2332
        env->vscr |= (1 << VSCR_SAT);
2333
    }
2334
}
2335

    
2336
#define VMUL_DO(name, mul_element, prod_element, evenp)                 \
2337
    void helper_v##name (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)      \
2338
    {                                                                   \
2339
        int i;                                                          \
2340
        VECTOR_FOR_INORDER_I(i, prod_element) {                         \
2341
            if (evenp) {                                                \
2342
                r->prod_element[i] = a->mul_element[i*2+HI_IDX] * b->mul_element[i*2+HI_IDX]; \
2343
            } else {                                                    \
2344
                r->prod_element[i] = a->mul_element[i*2+LO_IDX] * b->mul_element[i*2+LO_IDX]; \
2345
            }                                                           \
2346
        }                                                               \
2347
    }
2348
#define VMUL(suffix, mul_element, prod_element) \
2349
  VMUL_DO(mule##suffix, mul_element, prod_element, 1) \
2350
  VMUL_DO(mulo##suffix, mul_element, prod_element, 0)
2351
VMUL(sb, s8, s16)
2352
VMUL(sh, s16, s32)
2353
VMUL(ub, u8, u16)
2354
VMUL(uh, u16, u32)
2355
#undef VMUL_DO
2356
#undef VMUL
2357

    
2358
void helper_vperm (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2359
{
2360
    ppc_avr_t result;
2361
    int i;
2362
    VECTOR_FOR_INORDER_I (i, u8) {
2363
        int s = c->u8[i] & 0x1f;
2364
#if defined(WORDS_BIGENDIAN)
2365
        int index = s & 0xf;
2366
#else
2367
        int index = 15 - (s & 0xf);
2368
#endif
2369
        if (s & 0x10) {
2370
            result.u8[i] = b->u8[index];
2371
        } else {
2372
            result.u8[i] = a->u8[index];
2373
        }
2374
    }
2375
    *r = result;
2376
}
2377

    
2378
#if defined(WORDS_BIGENDIAN)
2379
#define PKBIG 1
2380
#else
2381
#define PKBIG 0
2382
#endif
2383
void helper_vpkpx (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2384
{
2385
    int i, j;
2386
    ppc_avr_t result;
2387
#if defined(WORDS_BIGENDIAN)
2388
    const ppc_avr_t *x[2] = { a, b };
2389
#else
2390
    const ppc_avr_t *x[2] = { b, a };
2391
#endif
2392

    
2393
    VECTOR_FOR_INORDER_I (i, u64) {
2394
        VECTOR_FOR_INORDER_I (j, u32){
2395
            uint32_t e = x[i]->u32[j];
2396
            result.u16[4*i+j] = (((e >> 9) & 0xfc00) |
2397
                                 ((e >> 6) & 0x3e0) |
2398
                                 ((e >> 3) & 0x1f));
2399
        }
2400
    }
2401
    *r = result;
2402
}
2403

    
2404
#define VPK(suffix, from, to, cvt, dosat)       \
2405
    void helper_vpk##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2406
    {                                                                   \
2407
        int i;                                                          \
2408
        int sat = 0;                                                    \
2409
        ppc_avr_t result;                                               \
2410
        ppc_avr_t *a0 = PKBIG ? a : b;                                  \
2411
        ppc_avr_t *a1 = PKBIG ? b : a;                                  \
2412
        VECTOR_FOR_INORDER_I (i, from) {                                \
2413
            result.to[i] = cvt(a0->from[i], &sat);                      \
2414
            result.to[i+ARRAY_SIZE(r->from)] = cvt(a1->from[i], &sat);  \
2415
        }                                                               \
2416
        *r = result;                                                    \
2417
        if (dosat && sat) {                                             \
2418
            env->vscr |= (1 << VSCR_SAT);                               \
2419
        }                                                               \
2420
    }
2421
#define I(x, y) (x)
2422
VPK(shss, s16, s8, cvtshsb, 1)
2423
VPK(shus, s16, u8, cvtshub, 1)
2424
VPK(swss, s32, s16, cvtswsh, 1)
2425
VPK(swus, s32, u16, cvtswuh, 1)
2426
VPK(uhus, u16, u8, cvtuhub, 1)
2427
VPK(uwus, u32, u16, cvtuwuh, 1)
2428
VPK(uhum, u16, u8, I, 0)
2429
VPK(uwum, u32, u16, I, 0)
2430
#undef I
2431
#undef VPK
2432
#undef PKBIG
2433

    
2434
#define VROTATE(suffix, element)                                        \
2435
    void helper_vrl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2436
    {                                                                   \
2437
        int i;                                                          \
2438
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2439
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2440
            unsigned int shift = b->element[i] & mask;                  \
2441
            r->element[i] = (a->element[i] << shift) | (a->element[i] >> (sizeof(a->element[0]) * 8 - shift)); \
2442
        }                                                               \
2443
    }
2444
VROTATE(b, u8)
2445
VROTATE(h, u16)
2446
VROTATE(w, u32)
2447
#undef VROTATE
2448

    
2449
void helper_vsel (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, ppc_avr_t *c)
2450
{
2451
    r->u64[0] = (a->u64[0] & ~c->u64[0]) | (b->u64[0] & c->u64[0]);
2452
    r->u64[1] = (a->u64[1] & ~c->u64[1]) | (b->u64[1] & c->u64[1]);
2453
}
2454

    
2455
#if defined(WORDS_BIGENDIAN)
2456
#define LEFT 0
2457
#define RIGHT 1
2458
#else
2459
#define LEFT 1
2460
#define RIGHT 0
2461
#endif
2462
/* The specification says that the results are undefined if all of the
2463
 * shift counts are not identical.  We check to make sure that they are
2464
 * to conform to what real hardware appears to do.  */
2465
#define VSHIFT(suffix, leftp)                                           \
2466
    void helper_vs##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)   \
2467
    {                                                                   \
2468
        int shift = b->u8[LO_IDX*0x15] & 0x7;                           \
2469
        int doit = 1;                                                   \
2470
        int i;                                                          \
2471
        for (i = 0; i < ARRAY_SIZE(r->u8); i++) {                       \
2472
            doit = doit && ((b->u8[i] & 0x7) == shift);                 \
2473
        }                                                               \
2474
        if (doit) {                                                     \
2475
            if (shift == 0) {                                           \
2476
                *r = *a;                                                \
2477
            } else if (leftp) {                                         \
2478
                uint64_t carry = a->u64[LO_IDX] >> (64 - shift);        \
2479
                r->u64[HI_IDX] = (a->u64[HI_IDX] << shift) | carry;     \
2480
                r->u64[LO_IDX] = a->u64[LO_IDX] << shift;               \
2481
            } else {                                                    \
2482
                uint64_t carry = a->u64[HI_IDX] << (64 - shift);        \
2483
                r->u64[LO_IDX] = (a->u64[LO_IDX] >> shift) | carry;     \
2484
                r->u64[HI_IDX] = a->u64[HI_IDX] >> shift;               \
2485
            }                                                           \
2486
        }                                                               \
2487
    }
2488
VSHIFT(l, LEFT)
2489
VSHIFT(r, RIGHT)
2490
#undef VSHIFT
2491
#undef LEFT
2492
#undef RIGHT
2493

    
2494
#define VSL(suffix, element)                                            \
2495
    void helper_vsl##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2496
    {                                                                   \
2497
        int i;                                                          \
2498
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2499
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2500
            unsigned int shift = b->element[i] & mask;                  \
2501
            r->element[i] = a->element[i] << shift;                     \
2502
        }                                                               \
2503
    }
2504
VSL(b, u8)
2505
VSL(h, u16)
2506
VSL(w, u32)
2507
#undef VSL
2508

    
2509
void helper_vsldoi (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b, uint32_t shift)
2510
{
2511
    int sh = shift & 0xf;
2512
    int i;
2513
    ppc_avr_t result;
2514

    
2515
#if defined(WORDS_BIGENDIAN)
2516
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2517
        int index = sh + i;
2518
        if (index > 0xf) {
2519
            result.u8[i] = b->u8[index-0x10];
2520
        } else {
2521
            result.u8[i] = a->u8[index];
2522
        }
2523
    }
2524
#else
2525
    for (i = 0; i < ARRAY_SIZE(r->u8); i++) {
2526
        int index = (16 - sh) + i;
2527
        if (index > 0xf) {
2528
            result.u8[i] = a->u8[index-0x10];
2529
        } else {
2530
            result.u8[i] = b->u8[index];
2531
        }
2532
    }
2533
#endif
2534
    *r = result;
2535
}
2536

    
2537
void helper_vslo (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2538
{
2539
  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2540

    
2541
#if defined (WORDS_BIGENDIAN)
2542
  memmove (&r->u8[0], &a->u8[sh], 16-sh);
2543
  memset (&r->u8[16-sh], 0, sh);
2544
#else
2545
  memmove (&r->u8[sh], &a->u8[0], 16-sh);
2546
  memset (&r->u8[0], 0, sh);
2547
#endif
2548
}
2549

    
2550
/* Experimental testing shows that hardware masks the immediate.  */
2551
#define _SPLAT_MASKED(element) (splat & (ARRAY_SIZE(r->element) - 1))
2552
#if defined(WORDS_BIGENDIAN)
2553
#define SPLAT_ELEMENT(element) _SPLAT_MASKED(element)
2554
#else
2555
#define SPLAT_ELEMENT(element) (ARRAY_SIZE(r->element)-1 - _SPLAT_MASKED(element))
2556
#endif
2557
#define VSPLT(suffix, element)                                          \
2558
    void helper_vsplt##suffix (ppc_avr_t *r, ppc_avr_t *b, uint32_t splat) \
2559
    {                                                                   \
2560
        uint32_t s = b->element[SPLAT_ELEMENT(element)];                \
2561
        int i;                                                          \
2562
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2563
            r->element[i] = s;                                          \
2564
        }                                                               \
2565
    }
2566
VSPLT(b, u8)
2567
VSPLT(h, u16)
2568
VSPLT(w, u32)
2569
#undef VSPLT
2570
#undef SPLAT_ELEMENT
2571
#undef _SPLAT_MASKED
2572

    
2573
#define VSR(suffix, element)                                            \
2574
    void helper_vsr##suffix (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)  \
2575
    {                                                                   \
2576
        int i;                                                          \
2577
        for (i = 0; i < ARRAY_SIZE(r->element); i++) {                  \
2578
            unsigned int mask = ((1 << (3 + (sizeof (a->element[0]) >> 1))) - 1); \
2579
            unsigned int shift = b->element[i] & mask;                  \
2580
            r->element[i] = a->element[i] >> shift;                     \
2581
        }                                                               \
2582
    }
2583
VSR(ab, s8)
2584
VSR(ah, s16)
2585
VSR(aw, s32)
2586
VSR(b, u8)
2587
VSR(h, u16)
2588
VSR(w, u32)
2589
#undef VSR
2590

    
2591
void helper_vsro (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2592
{
2593
  int sh = (b->u8[LO_IDX*0xf] >> 3) & 0xf;
2594

    
2595
#if defined (WORDS_BIGENDIAN)
2596
  memmove (&r->u8[sh], &a->u8[0], 16-sh);
2597
  memset (&r->u8[0], 0, sh);
2598
#else
2599
  memmove (&r->u8[0], &a->u8[sh], 16-sh);
2600
  memset (&r->u8[16-sh], 0, sh);
2601
#endif
2602
}
2603

    
2604
void helper_vsubcuw (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2605
{
2606
    int i;
2607
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2608
        r->u32[i] = a->u32[i] >= b->u32[i];
2609
    }
2610
}
2611

    
2612
void helper_vsumsws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2613
{
2614
    int64_t t;
2615
    int i, upper;
2616
    ppc_avr_t result;
2617
    int sat = 0;
2618

    
2619
#if defined(WORDS_BIGENDIAN)
2620
    upper = ARRAY_SIZE(r->s32)-1;
2621
#else
2622
    upper = 0;
2623
#endif
2624
    t = (int64_t)b->s32[upper];
2625
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2626
        t += a->s32[i];
2627
        result.s32[i] = 0;
2628
    }
2629
    result.s32[upper] = cvtsdsw(t, &sat);
2630
    *r = result;
2631

    
2632
    if (sat) {
2633
        env->vscr |= (1 << VSCR_SAT);
2634
    }
2635
}
2636

    
2637
void helper_vsum2sws (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2638
{
2639
    int i, j, upper;
2640
    ppc_avr_t result;
2641
    int sat = 0;
2642

    
2643
#if defined(WORDS_BIGENDIAN)
2644
    upper = 1;
2645
#else
2646
    upper = 0;
2647
#endif
2648
    for (i = 0; i < ARRAY_SIZE(r->u64); i++) {
2649
        int64_t t = (int64_t)b->s32[upper+i*2];
2650
        result.u64[i] = 0;
2651
        for (j = 0; j < ARRAY_SIZE(r->u64); j++) {
2652
            t += a->s32[2*i+j];
2653
        }
2654
        result.s32[upper+i*2] = cvtsdsw(t, &sat);
2655
    }
2656

    
2657
    *r = result;
2658
    if (sat) {
2659
        env->vscr |= (1 << VSCR_SAT);
2660
    }
2661
}
2662

    
2663
void helper_vsum4sbs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2664
{
2665
    int i, j;
2666
    int sat = 0;
2667

    
2668
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2669
        int64_t t = (int64_t)b->s32[i];
2670
        for (j = 0; j < ARRAY_SIZE(r->s32); j++) {
2671
            t += a->s8[4*i+j];
2672
        }
2673
        r->s32[i] = cvtsdsw(t, &sat);
2674
    }
2675

    
2676
    if (sat) {
2677
        env->vscr |= (1 << VSCR_SAT);
2678
    }
2679
}
2680

    
2681
void helper_vsum4shs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2682
{
2683
    int sat = 0;
2684
    int i;
2685

    
2686
    for (i = 0; i < ARRAY_SIZE(r->s32); i++) {
2687
        int64_t t = (int64_t)b->s32[i];
2688
        t += a->s16[2*i] + a->s16[2*i+1];
2689
        r->s32[i] = cvtsdsw(t, &sat);
2690
    }
2691

    
2692
    if (sat) {
2693
        env->vscr |= (1 << VSCR_SAT);
2694
    }
2695
}
2696

    
2697
void helper_vsum4ubs (ppc_avr_t *r, ppc_avr_t *a, ppc_avr_t *b)
2698
{
2699
    int i, j;
2700
    int sat = 0;
2701

    
2702
    for (i = 0; i < ARRAY_SIZE(r->u32); i++) {
2703
        uint64_t t = (uint64_t)b->u32[i];
2704
        for (j = 0; j < ARRAY_SIZE(r->u32); j++) {
2705
            t += a->u8[4*i+j];
2706
        }
2707
        r->u32[i] = cvtuduw(t, &sat);
2708
    }
2709

    
2710
    if (sat) {
2711
        env->vscr |= (1 << VSCR_SAT);
2712
    }
2713
}
2714

    
2715
#if defined(WORDS_BIGENDIAN)
2716
#define UPKHI 1
2717
#define UPKLO 0
2718
#else
2719
#define UPKHI 0
2720
#define UPKLO 1
2721
#endif
2722
#define VUPKPX(suffix, hi)                                      \
2723
    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)       \
2724
    {                                                           \
2725
        int i;                                                  \
2726
        ppc_avr_t result;                                       \
2727
        for (i = 0; i < ARRAY_SIZE(r->u32); i++) {              \
2728
            uint16_t e = b->u16[hi ? i : i+4];                  \
2729
            uint8_t a = (e >> 15) ? 0xff : 0;                   \
2730
            uint8_t r = (e >> 10) & 0x1f;                       \
2731
            uint8_t g = (e >> 5) & 0x1f;                        \
2732
            uint8_t b = e & 0x1f;                               \
2733
            result.u32[i] = (a << 24) | (r << 16) | (g << 8) | b;       \
2734
        }                                                               \
2735
        *r = result;                                                    \
2736
    }
2737
VUPKPX(lpx, UPKLO)
2738
VUPKPX(hpx, UPKHI)
2739
#undef VUPKPX
2740

    
2741
#define VUPK(suffix, unpacked, packee, hi)                              \
2742
    void helper_vupk##suffix (ppc_avr_t *r, ppc_avr_t *b)               \
2743
    {                                                                   \
2744
        int i;                                                          \
2745
        ppc_avr_t result;                                               \
2746
        if (hi) {                                                       \
2747
            for (i = 0; i < ARRAY_SIZE(r->unpacked); i++) {             \
2748
                result.unpacked[i] = b->packee[i];                      \
2749
            }                                                           \
2750
        } else {                                                        \
2751
            for (i = ARRAY_SIZE(r->unpacked); i < ARRAY_SIZE(r->packee); i++) { \
2752
                result.unpacked[i-ARRAY_SIZE(r->unpacked)] = b->packee[i]; \
2753
            }                                                           \
2754
        }                                                               \
2755
        *r = result;                                                    \
2756
    }
2757
VUPK(hsb, s16, s8, UPKHI)
2758
VUPK(hsh, s32, s16, UPKHI)
2759
VUPK(lsb, s16, s8, UPKLO)
2760
VUPK(lsh, s32, s16, UPKLO)
2761
#undef VUPK
2762
#undef UPKHI
2763
#undef UPKLO
2764

    
2765
#undef VECTOR_FOR_INORDER_I
2766
#undef HI_IDX
2767
#undef LO_IDX
2768

    
2769
/*****************************************************************************/
2770
/* SPE extension helpers */
2771
/* Use a table to make this quicker */
2772
static uint8_t hbrev[16] = {
2773
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
2774
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
2775
};
2776

    
2777
static always_inline uint8_t byte_reverse (uint8_t val)
2778
{
2779
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
2780
}
2781

    
2782
static always_inline uint32_t word_reverse (uint32_t val)
2783
{
2784
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
2785
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
2786
}
2787

    
2788
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
2789
target_ulong helper_brinc (target_ulong arg1, target_ulong arg2)
2790
{
2791
    uint32_t a, b, d, mask;
2792

    
2793
    mask = UINT32_MAX >> (32 - MASKBITS);
2794
    a = arg1 & mask;
2795
    b = arg2 & mask;
2796
    d = word_reverse(1 + word_reverse(a | ~b));
2797
    return (arg1 & ~mask) | (d & b);
2798
}
2799

    
2800
uint32_t helper_cntlsw32 (uint32_t val)
2801
{
2802
    if (val & 0x80000000)
2803
        return clz32(~val);
2804
    else
2805
        return clz32(val);
2806
}
2807

    
2808
uint32_t helper_cntlzw32 (uint32_t val)
2809
{
2810
    return clz32(val);
2811
}
2812

    
2813
/* Single-precision floating-point conversions */
2814
static always_inline uint32_t efscfsi (uint32_t val)
2815
{
2816
    CPU_FloatU u;
2817

    
2818
    u.f = int32_to_float32(val, &env->spe_status);
2819

    
2820
    return u.l;
2821
}
2822

    
2823
static always_inline uint32_t efscfui (uint32_t val)
2824
{
2825
    CPU_FloatU u;
2826

    
2827
    u.f = uint32_to_float32(val, &env->spe_status);
2828

    
2829
    return u.l;
2830
}
2831

    
2832
static always_inline int32_t efsctsi (uint32_t val)
2833
{
2834
    CPU_FloatU u;
2835

    
2836
    u.l = val;
2837
    /* NaN are not treated the same way IEEE 754 does */
2838
    if (unlikely(float32_is_nan(u.f)))
2839
        return 0;
2840

    
2841
    return float32_to_int32(u.f, &env->spe_status);
2842
}
2843

    
2844
static always_inline uint32_t efsctui (uint32_t val)
2845
{
2846
    CPU_FloatU u;
2847

    
2848
    u.l = val;
2849
    /* NaN are not treated the same way IEEE 754 does */
2850
    if (unlikely(float32_is_nan(u.f)))
2851
        return 0;
2852

    
2853
    return float32_to_uint32(u.f, &env->spe_status);
2854
}
2855

    
2856
static always_inline uint32_t efsctsiz (uint32_t val)
2857
{
2858
    CPU_FloatU u;
2859

    
2860
    u.l = val;
2861
    /* NaN are not treated the same way IEEE 754 does */
2862
    if (unlikely(float32_is_nan(u.f)))
2863
        return 0;
2864

    
2865
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2866
}
2867

    
2868
static always_inline uint32_t efsctuiz (uint32_t val)
2869
{
2870
    CPU_FloatU u;
2871

    
2872
    u.l = val;
2873
    /* NaN are not treated the same way IEEE 754 does */
2874
    if (unlikely(float32_is_nan(u.f)))
2875
        return 0;
2876

    
2877
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2878
}
2879

    
2880
static always_inline uint32_t efscfsf (uint32_t val)
2881
{
2882
    CPU_FloatU u;
2883
    float32 tmp;
2884

    
2885
    u.f = int32_to_float32(val, &env->spe_status);
2886
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2887
    u.f = float32_div(u.f, tmp, &env->spe_status);
2888

    
2889
    return u.l;
2890
}
2891

    
2892
static always_inline uint32_t efscfuf (uint32_t val)
2893
{
2894
    CPU_FloatU u;
2895
    float32 tmp;
2896

    
2897
    u.f = uint32_to_float32(val, &env->spe_status);
2898
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2899
    u.f = float32_div(u.f, tmp, &env->spe_status);
2900

    
2901
    return u.l;
2902
}
2903

    
2904
static always_inline uint32_t efsctsf (uint32_t val)
2905
{
2906
    CPU_FloatU u;
2907
    float32 tmp;
2908

    
2909
    u.l = val;
2910
    /* NaN are not treated the same way IEEE 754 does */
2911
    if (unlikely(float32_is_nan(u.f)))
2912
        return 0;
2913
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2914
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2915

    
2916
    return float32_to_int32(u.f, &env->spe_status);
2917
}
2918

    
2919
static always_inline uint32_t efsctuf (uint32_t val)
2920
{
2921
    CPU_FloatU u;
2922
    float32 tmp;
2923

    
2924
    u.l = val;
2925
    /* NaN are not treated the same way IEEE 754 does */
2926
    if (unlikely(float32_is_nan(u.f)))
2927
        return 0;
2928
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2929
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2930

    
2931
    return float32_to_uint32(u.f, &env->spe_status);
2932
}
2933

    
2934
#define HELPER_SPE_SINGLE_CONV(name)                                          \
2935
uint32_t helper_e##name (uint32_t val)                                        \
2936
{                                                                             \
2937
    return e##name(val);                                                      \
2938
}
2939
/* efscfsi */
2940
HELPER_SPE_SINGLE_CONV(fscfsi);
2941
/* efscfui */
2942
HELPER_SPE_SINGLE_CONV(fscfui);
2943
/* efscfuf */
2944
HELPER_SPE_SINGLE_CONV(fscfuf);
2945
/* efscfsf */
2946
HELPER_SPE_SINGLE_CONV(fscfsf);
2947
/* efsctsi */
2948
HELPER_SPE_SINGLE_CONV(fsctsi);
2949
/* efsctui */
2950
HELPER_SPE_SINGLE_CONV(fsctui);
2951
/* efsctsiz */
2952
HELPER_SPE_SINGLE_CONV(fsctsiz);
2953
/* efsctuiz */
2954
HELPER_SPE_SINGLE_CONV(fsctuiz);
2955
/* efsctsf */
2956
HELPER_SPE_SINGLE_CONV(fsctsf);
2957
/* efsctuf */
2958
HELPER_SPE_SINGLE_CONV(fsctuf);
2959

    
2960
#define HELPER_SPE_VECTOR_CONV(name)                                          \
2961
uint64_t helper_ev##name (uint64_t val)                                       \
2962
{                                                                             \
2963
    return ((uint64_t)e##name(val >> 32) << 32) |                             \
2964
            (uint64_t)e##name(val);                                           \
2965
}
2966
/* evfscfsi */
2967
HELPER_SPE_VECTOR_CONV(fscfsi);
2968
/* evfscfui */
2969
HELPER_SPE_VECTOR_CONV(fscfui);
2970
/* evfscfuf */
2971
HELPER_SPE_VECTOR_CONV(fscfuf);
2972
/* evfscfsf */
2973
HELPER_SPE_VECTOR_CONV(fscfsf);
2974
/* evfsctsi */
2975
HELPER_SPE_VECTOR_CONV(fsctsi);
2976
/* evfsctui */
2977
HELPER_SPE_VECTOR_CONV(fsctui);
2978
/* evfsctsiz */
2979
HELPER_SPE_VECTOR_CONV(fsctsiz);
2980
/* evfsctuiz */
2981
HELPER_SPE_VECTOR_CONV(fsctuiz);
2982
/* evfsctsf */
2983
HELPER_SPE_VECTOR_CONV(fsctsf);
2984
/* evfsctuf */
2985
HELPER_SPE_VECTOR_CONV(fsctuf);
2986

    
2987
/* Single-precision floating-point arithmetic */
2988
static always_inline uint32_t efsadd (uint32_t op1, uint32_t op2)
2989
{
2990
    CPU_FloatU u1, u2;
2991
    u1.l = op1;
2992
    u2.l = op2;
2993
    u1.f = float32_add(u1.f, u2.f, &env->spe_status);
2994
    return u1.l;
2995
}
2996

    
2997
static always_inline uint32_t efssub (uint32_t op1, uint32_t op2)
2998
{
2999
    CPU_FloatU u1, u2;
3000
    u1.l = op1;
3001
    u2.l = op2;
3002
    u1.f = float32_sub(u1.f, u2.f, &env->spe_status);
3003
    return u1.l;
3004
}
3005

    
3006
static always_inline uint32_t efsmul (uint32_t op1, uint32_t op2)
3007
{
3008
    CPU_FloatU u1, u2;
3009
    u1.l = op1;
3010
    u2.l = op2;
3011
    u1.f = float32_mul(u1.f, u2.f, &env->spe_status);
3012
    return u1.l;
3013
}
3014

    
3015
static always_inline uint32_t efsdiv (uint32_t op1, uint32_t op2)
3016
{
3017
    CPU_FloatU u1, u2;
3018
    u1.l = op1;
3019
    u2.l = op2;
3020
    u1.f = float32_div(u1.f, u2.f, &env->spe_status);
3021
    return u1.l;
3022
}
3023

    
3024
#define HELPER_SPE_SINGLE_ARITH(name)                                         \
3025
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
3026
{                                                                             \
3027
    return e##name(op1, op2);                                                 \
3028
}
3029
/* efsadd */
3030
HELPER_SPE_SINGLE_ARITH(fsadd);
3031
/* efssub */
3032
HELPER_SPE_SINGLE_ARITH(fssub);
3033
/* efsmul */
3034
HELPER_SPE_SINGLE_ARITH(fsmul);
3035
/* efsdiv */
3036
HELPER_SPE_SINGLE_ARITH(fsdiv);
3037

    
3038
#define HELPER_SPE_VECTOR_ARITH(name)                                         \
3039
uint64_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
3040
{                                                                             \
3041
    return ((uint64_t)e##name(op1 >> 32, op2 >> 32) << 32) |                  \
3042
            (uint64_t)e##name(op1, op2);                                      \
3043
}
3044
/* evfsadd */
3045
HELPER_SPE_VECTOR_ARITH(fsadd);
3046
/* evfssub */
3047
HELPER_SPE_VECTOR_ARITH(fssub);
3048
/* evfsmul */
3049
HELPER_SPE_VECTOR_ARITH(fsmul);
3050
/* evfsdiv */
3051
HELPER_SPE_VECTOR_ARITH(fsdiv);
3052

    
3053
/* Single-precision floating-point comparisons */
3054
static always_inline uint32_t efststlt (uint32_t op1, uint32_t op2)
3055
{
3056
    CPU_FloatU u1, u2;
3057
    u1.l = op1;
3058
    u2.l = op2;
3059
    return float32_lt(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3060
}
3061

    
3062
static always_inline uint32_t efststgt (uint32_t op1, uint32_t op2)
3063
{
3064
    CPU_FloatU u1, u2;
3065
    u1.l = op1;
3066
    u2.l = op2;
3067
    return float32_le(u1.f, u2.f, &env->spe_status) ? 0 : 4;
3068
}
3069

    
3070
static always_inline uint32_t efststeq (uint32_t op1, uint32_t op2)
3071
{
3072
    CPU_FloatU u1, u2;
3073
    u1.l = op1;
3074
    u2.l = op2;
3075
    return float32_eq(u1.f, u2.f, &env->spe_status) ? 4 : 0;
3076
}
3077

    
3078
static always_inline uint32_t efscmplt (uint32_t op1, uint32_t op2)
3079
{
3080
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3081
    return efststlt(op1, op2);
3082
}
3083

    
3084
static always_inline uint32_t efscmpgt (uint32_t op1, uint32_t op2)
3085
{
3086
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3087
    return efststgt(op1, op2);
3088
}
3089

    
3090
static always_inline uint32_t efscmpeq (uint32_t op1, uint32_t op2)
3091
{
3092
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3093
    return efststeq(op1, op2);
3094
}
3095

    
3096
#define HELPER_SINGLE_SPE_CMP(name)                                           \
3097
uint32_t helper_e##name (uint32_t op1, uint32_t op2)                          \
3098
{                                                                             \
3099
    return e##name(op1, op2) << 2;                                            \
3100
}
3101
/* efststlt */
3102
HELPER_SINGLE_SPE_CMP(fststlt);
3103
/* efststgt */
3104
HELPER_SINGLE_SPE_CMP(fststgt);
3105
/* efststeq */
3106
HELPER_SINGLE_SPE_CMP(fststeq);
3107
/* efscmplt */
3108
HELPER_SINGLE_SPE_CMP(fscmplt);
3109
/* efscmpgt */
3110
HELPER_SINGLE_SPE_CMP(fscmpgt);
3111
/* efscmpeq */
3112
HELPER_SINGLE_SPE_CMP(fscmpeq);
3113

    
3114
static always_inline uint32_t evcmp_merge (int t0, int t1)
3115
{
3116
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
3117
}
3118

    
3119
#define HELPER_VECTOR_SPE_CMP(name)                                           \
3120
uint32_t helper_ev##name (uint64_t op1, uint64_t op2)                         \
3121
{                                                                             \
3122
    return evcmp_merge(e##name(op1 >> 32, op2 >> 32), e##name(op1, op2));     \
3123
}
3124
/* evfststlt */
3125
HELPER_VECTOR_SPE_CMP(fststlt);
3126
/* evfststgt */
3127
HELPER_VECTOR_SPE_CMP(fststgt);
3128
/* evfststeq */
3129
HELPER_VECTOR_SPE_CMP(fststeq);
3130
/* evfscmplt */
3131
HELPER_VECTOR_SPE_CMP(fscmplt);
3132
/* evfscmpgt */
3133
HELPER_VECTOR_SPE_CMP(fscmpgt);
3134
/* evfscmpeq */
3135
HELPER_VECTOR_SPE_CMP(fscmpeq);
3136

    
3137
/* Double-precision floating-point conversion */
3138
uint64_t helper_efdcfsi (uint32_t val)
3139
{
3140
    CPU_DoubleU u;
3141

    
3142
    u.d = int32_to_float64(val, &env->spe_status);
3143

    
3144
    return u.ll;
3145
}
3146

    
3147
uint64_t helper_efdcfsid (uint64_t val)
3148
{
3149
    CPU_DoubleU u;
3150

    
3151
    u.d = int64_to_float64(val, &env->spe_status);
3152

    
3153
    return u.ll;
3154
}
3155

    
3156
uint64_t helper_efdcfui (uint32_t val)
3157
{
3158
    CPU_DoubleU u;
3159

    
3160
    u.d = uint32_to_float64(val, &env->spe_status);
3161

    
3162
    return u.ll;
3163
}
3164

    
3165
uint64_t helper_efdcfuid (uint64_t val)
3166
{
3167
    CPU_DoubleU u;
3168

    
3169
    u.d = uint64_to_float64(val, &env->spe_status);
3170

    
3171
    return u.ll;
3172
}
3173

    
3174
uint32_t helper_efdctsi (uint64_t val)
3175
{
3176
    CPU_DoubleU u;
3177

    
3178
    u.ll = val;
3179
    /* NaN are not treated the same way IEEE 754 does */
3180
    if (unlikely(float64_is_nan(u.d)))
3181
        return 0;
3182

    
3183
    return float64_to_int32(u.d, &env->spe_status);
3184
}
3185

    
3186
uint32_t helper_efdctui (uint64_t val)
3187
{
3188
    CPU_DoubleU u;
3189

    
3190
    u.ll = val;
3191
    /* NaN are not treated the same way IEEE 754 does */
3192
    if (unlikely(float64_is_nan(u.d)))
3193
        return 0;
3194

    
3195
    return float64_to_uint32(u.d, &env->spe_status);
3196
}
3197

    
3198
uint32_t helper_efdctsiz (uint64_t val)
3199
{
3200
    CPU_DoubleU u;
3201

    
3202
    u.ll = val;
3203
    /* NaN are not treated the same way IEEE 754 does */
3204
    if (unlikely(float64_is_nan(u.d)))
3205
        return 0;
3206

    
3207
    return float64_to_int32_round_to_zero(u.d, &env->spe_status);
3208
}
3209

    
3210
uint64_t helper_efdctsidz (uint64_t val)
3211
{
3212
    CPU_DoubleU u;
3213

    
3214
    u.ll = val;
3215
    /* NaN are not treated the same way IEEE 754 does */
3216
    if (unlikely(float64_is_nan(u.d)))
3217
        return 0;
3218

    
3219
    return float64_to_int64_round_to_zero(u.d, &env->spe_status);
3220
}
3221

    
3222
uint32_t helper_efdctuiz (uint64_t val)
3223
{
3224
    CPU_DoubleU u;
3225

    
3226
    u.ll = val;
3227
    /* NaN are not treated the same way IEEE 754 does */
3228
    if (unlikely(float64_is_nan(u.d)))
3229
        return 0;
3230

    
3231
    return float64_to_uint32_round_to_zero(u.d, &env->spe_status);
3232
}
3233

    
3234
uint64_t helper_efdctuidz (uint64_t val)
3235
{
3236
    CPU_DoubleU u;
3237

    
3238
    u.ll = val;
3239
    /* NaN are not treated the same way IEEE 754 does */
3240
    if (unlikely(float64_is_nan(u.d)))
3241
        return 0;
3242

    
3243
    return float64_to_uint64_round_to_zero(u.d, &env->spe_status);
3244
}
3245

    
3246
uint64_t helper_efdcfsf (uint32_t val)
3247
{
3248
    CPU_DoubleU u;
3249
    float64 tmp;
3250

    
3251
    u.d = int32_to_float64(val, &env->spe_status);
3252
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3253
    u.d = float64_div(u.d, tmp, &env->spe_status);
3254

    
3255
    return u.ll;
3256
}
3257

    
3258
uint64_t helper_efdcfuf (uint32_t val)
3259
{
3260
    CPU_DoubleU u;
3261
    float64 tmp;
3262

    
3263
    u.d = uint32_to_float64(val, &env->spe_status);
3264
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
3265
    u.d = float64_div(u.d, tmp, &env->spe_status);
3266

    
3267
    return u.ll;
3268
}
3269

    
3270
uint32_t helper_efdctsf (uint64_t val)
3271
{
3272
    CPU_DoubleU u;
3273
    float64 tmp;
3274

    
3275
    u.ll = val;
3276
    /* NaN are not treated the same way IEEE 754 does */
3277
    if (unlikely(float64_is_nan(u.d)))
3278
        return 0;
3279
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3280
    u.d = float64_mul(u.d, tmp, &env->spe_status);
3281

    
3282
    return float64_to_int32(u.d, &env->spe_status);
3283
}
3284

    
3285
uint32_t helper_efdctuf (uint64_t val)
3286
{
3287
    CPU_DoubleU u;
3288
    float64 tmp;
3289

    
3290
    u.ll = val;
3291
    /* NaN are not treated the same way IEEE 754 does */
3292
    if (unlikely(float64_is_nan(u.d)))
3293
        return 0;
3294
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
3295
    u.d = float64_mul(u.d, tmp, &env->spe_status);
3296

    
3297
    return float64_to_uint32(u.d, &env->spe_status);
3298
}
3299

    
3300
uint32_t helper_efscfd (uint64_t val)
3301
{
3302
    CPU_DoubleU u1;
3303
    CPU_FloatU u2;
3304

    
3305
    u1.ll = val;
3306
    u2.f = float64_to_float32(u1.d, &env->spe_status);
3307

    
3308
    return u2.l;
3309
}
3310

    
3311
uint64_t helper_efdcfs (uint32_t val)
3312
{
3313
    CPU_DoubleU u2;
3314
    CPU_FloatU u1;
3315

    
3316
    u1.l = val;
3317
    u2.d = float32_to_float64(u1.f, &env->spe_status);
3318

    
3319
    return u2.ll;
3320
}
3321

    
3322
/* Double precision fixed-point arithmetic */
3323
uint64_t helper_efdadd (uint64_t op1, uint64_t op2)
3324
{
3325
    CPU_DoubleU u1, u2;
3326
    u1.ll = op1;
3327
    u2.ll = op2;
3328
    u1.d = float64_add(u1.d, u2.d, &env->spe_status);
3329
    return u1.ll;
3330
}
3331

    
3332
uint64_t helper_efdsub (uint64_t op1, uint64_t op2)
3333
{
3334
    CPU_DoubleU u1, u2;
3335
    u1.ll = op1;
3336
    u2.ll = op2;
3337
    u1.d = float64_sub(u1.d, u2.d, &env->spe_status);
3338
    return u1.ll;
3339
}
3340

    
3341
uint64_t helper_efdmul (uint64_t op1, uint64_t op2)
3342
{
3343
    CPU_DoubleU u1, u2;
3344
    u1.ll = op1;
3345
    u2.ll = op2;
3346
    u1.d = float64_mul(u1.d, u2.d, &env->spe_status);
3347
    return u1.ll;
3348
}
3349

    
3350
uint64_t helper_efddiv (uint64_t op1, uint64_t op2)
3351
{
3352
    CPU_DoubleU u1, u2;
3353
    u1.ll = op1;
3354
    u2.ll = op2;
3355
    u1.d = float64_div(u1.d, u2.d, &env->spe_status);
3356
    return u1.ll;
3357
}
3358

    
3359
/* Double precision floating point helpers */
3360
uint32_t helper_efdtstlt (uint64_t op1, uint64_t op2)
3361
{
3362
    CPU_DoubleU u1, u2;
3363
    u1.ll = op1;
3364
    u2.ll = op2;
3365
    return float64_lt(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3366
}
3367

    
3368
uint32_t helper_efdtstgt (uint64_t op1, uint64_t op2)
3369
{
3370
    CPU_DoubleU u1, u2;
3371
    u1.ll = op1;
3372
    u2.ll = op2;
3373
    return float64_le(u1.d, u2.d, &env->spe_status) ? 0 : 4;
3374
}
3375

    
3376
uint32_t helper_efdtsteq (uint64_t op1, uint64_t op2)
3377
{
3378
    CPU_DoubleU u1, u2;
3379
    u1.ll = op1;
3380
    u2.ll = op2;
3381
    return float64_eq(u1.d, u2.d, &env->spe_status) ? 4 : 0;
3382
}
3383

    
3384
uint32_t helper_efdcmplt (uint64_t op1, uint64_t op2)
3385
{
3386
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3387
    return helper_efdtstlt(op1, op2);
3388
}
3389

    
3390
uint32_t helper_efdcmpgt (uint64_t op1, uint64_t op2)
3391
{
3392
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3393
    return helper_efdtstgt(op1, op2);
3394
}
3395

    
3396
uint32_t helper_efdcmpeq (uint64_t op1, uint64_t op2)
3397
{
3398
    /* XXX: TODO: test special values (NaN, infinites, ...) */
3399
    return helper_efdtsteq(op1, op2);
3400
}
3401

    
3402
/*****************************************************************************/
3403
/* Softmmu support */
3404
#if !defined (CONFIG_USER_ONLY)
3405

    
3406
#define MMUSUFFIX _mmu
3407

    
3408
#define SHIFT 0
3409
#include "softmmu_template.h"
3410

    
3411
#define SHIFT 1
3412
#include "softmmu_template.h"
3413

    
3414
#define SHIFT 2
3415
#include "softmmu_template.h"
3416

    
3417
#define SHIFT 3
3418
#include "softmmu_template.h"
3419

    
3420
/* try to fill the TLB and return an exception if error. If retaddr is
3421
   NULL, it means that the function was called in C code (i.e. not
3422
   from generated code or from helper.c) */
3423
/* XXX: fix it to restore all registers */
3424
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
3425
{
3426
    TranslationBlock *tb;
3427
    CPUState *saved_env;
3428
    unsigned long pc;
3429
    int ret;
3430

    
3431
    /* XXX: hack to restore env in all cases, even if not called from
3432
       generated code */
3433
    saved_env = env;
3434
    env = cpu_single_env;
3435
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
3436
    if (unlikely(ret != 0)) {
3437
        if (likely(retaddr)) {
3438
            /* now we have a real cpu fault */
3439
            pc = (unsigned long)retaddr;
3440
            tb = tb_find_pc(pc);
3441
            if (likely(tb)) {
3442
                /* the PC is inside the translated code. It means that we have
3443
                   a virtual CPU fault */
3444
                cpu_restore_state(tb, env, pc, NULL);
3445
            }
3446
        }
3447
        helper_raise_exception_err(env->exception_index, env->error_code);
3448
    }
3449
    env = saved_env;
3450
}
3451

    
3452
/* Segment registers load and store */
3453
target_ulong helper_load_sr (target_ulong sr_num)
3454
{
3455
    return env->sr[sr_num];
3456
}
3457

    
3458
void helper_store_sr (target_ulong sr_num, target_ulong val)
3459
{
3460
    ppc_store_sr(env, sr_num, val);
3461
}
3462

    
3463
/* SLB management */
3464
#if defined(TARGET_PPC64)
3465
target_ulong helper_load_slb (target_ulong slb_nr)
3466
{
3467
    return ppc_load_slb(env, slb_nr);
3468
}
3469

    
3470
void helper_store_slb (target_ulong slb_nr, target_ulong rs)
3471
{
3472
    ppc_store_slb(env, slb_nr, rs);
3473
}
3474

    
3475
void helper_slbia (void)
3476
{
3477
    ppc_slb_invalidate_all(env);
3478
}
3479

    
3480
void helper_slbie (target_ulong addr)
3481
{
3482
    ppc_slb_invalidate_one(env, addr);
3483
}
3484

    
3485
#endif /* defined(TARGET_PPC64) */
3486

    
3487
/* TLB management */
3488
void helper_tlbia (void)
3489
{
3490
    ppc_tlb_invalidate_all(env);
3491
}
3492

    
3493
void helper_tlbie (target_ulong addr)
3494
{
3495
    ppc_tlb_invalidate_one(env, addr);
3496
}
3497

    
3498
/* Software driven TLBs management */
3499
/* PowerPC 602/603 software TLB load instructions helpers */
3500
static void do_6xx_tlb (target_ulong new_EPN, int is_code)
3501
{
3502
    target_ulong RPN, CMP, EPN;
3503
    int way;
3504

    
3505
    RPN = env->spr[SPR_RPA];
3506
    if (is_code) {
3507
        CMP = env->spr[SPR_ICMP];
3508
        EPN = env->spr[SPR_IMISS];
3509
    } else {
3510
        CMP = env->spr[SPR_DCMP];
3511
        EPN = env->spr[SPR_DMISS];
3512
    }
3513
    way = (env->spr[SPR_SRR1] >> 17) & 1;
3514
#if defined (DEBUG_SOFTWARE_TLB)
3515
    if (loglevel != 0) {
3516
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3517
                " PTE1 " ADDRX " way %d\n",
3518
                __func__, new_EPN, EPN, CMP, RPN, way);
3519
    }
3520
#endif
3521
    /* Store this TLB */
3522
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3523
                     way, is_code, CMP, RPN);
3524
}
3525

    
3526
void helper_6xx_tlbd (target_ulong EPN)
3527
{
3528
    do_6xx_tlb(EPN, 0);
3529
}
3530

    
3531
void helper_6xx_tlbi (target_ulong EPN)
3532
{
3533
    do_6xx_tlb(EPN, 1);
3534
}
3535

    
3536
/* PowerPC 74xx software TLB load instructions helpers */
3537
static void do_74xx_tlb (target_ulong new_EPN, int is_code)
3538
{
3539
    target_ulong RPN, CMP, EPN;
3540
    int way;
3541

    
3542
    RPN = env->spr[SPR_PTELO];
3543
    CMP = env->spr[SPR_PTEHI];
3544
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
3545
    way = env->spr[SPR_TLBMISS] & 0x3;
3546
#if defined (DEBUG_SOFTWARE_TLB)
3547
    if (loglevel != 0) {
3548
        fprintf(logfile, "%s: EPN " ADDRX " " ADDRX " PTE0 " ADDRX
3549
                " PTE1 " ADDRX " way %d\n",
3550
                __func__, new_EPN, EPN, CMP, RPN, way);
3551
    }
3552
#endif
3553
    /* Store this TLB */
3554
    ppc6xx_tlb_store(env, (uint32_t)(new_EPN & TARGET_PAGE_MASK),
3555
                     way, is_code, CMP, RPN);
3556
}
3557

    
3558
void helper_74xx_tlbd (target_ulong EPN)
3559
{
3560
    do_74xx_tlb(EPN, 0);
3561
}
3562

    
3563
void helper_74xx_tlbi (target_ulong EPN)
3564
{
3565
    do_74xx_tlb(EPN, 1);
3566
}
3567

    
3568
static always_inline target_ulong booke_tlb_to_page_size (int size)
3569
{
3570
    return 1024 << (2 * size);
3571
}
3572

    
3573
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
3574
{
3575
    int size;
3576

    
3577
    switch (page_size) {
3578
    case 0x00000400UL:
3579
        size = 0x0;
3580
        break;
3581
    case 0x00001000UL:
3582
        size = 0x1;
3583
        break;
3584
    case 0x00004000UL:
3585
        size = 0x2;
3586
        break;
3587
    case 0x00010000UL:
3588
        size = 0x3;
3589
        break;
3590
    case 0x00040000UL:
3591
        size = 0x4;
3592
        break;
3593
    case 0x00100000UL:
3594
        size = 0x5;
3595
        break;
3596
    case 0x00400000UL:
3597
        size = 0x6;
3598
        break;
3599
    case 0x01000000UL:
3600
        size = 0x7;
3601
        break;
3602
    case 0x04000000UL:
3603
        size = 0x8;
3604
        break;
3605
    case 0x10000000UL:
3606
        size = 0x9;
3607
        break;
3608
    case 0x40000000UL:
3609
        size = 0xA;
3610
        break;
3611
#if defined (TARGET_PPC64)
3612
    case 0x000100000000ULL:
3613
        size = 0xB;
3614
        break;
3615
    case 0x000400000000ULL:
3616
        size = 0xC;
3617
        break;
3618
    case 0x001000000000ULL:
3619
        size = 0xD;
3620
        break;
3621
    case 0x004000000000ULL:
3622
        size = 0xE;
3623
        break;
3624
    case 0x010000000000ULL:
3625
        size = 0xF;
3626
        break;
3627
#endif
3628
    default:
3629
        size = -1;
3630
        break;
3631
    }
3632

    
3633
    return size;
3634
}
3635

    
3636
/* Helpers for 4xx TLB management */
3637
target_ulong helper_4xx_tlbre_lo (target_ulong entry)
3638
{
3639
    ppcemb_tlb_t *tlb;
3640
    target_ulong ret;
3641
    int size;
3642

    
3643
    entry &= 0x3F;
3644
    tlb = &env->tlb[entry].tlbe;
3645
    ret = tlb->EPN;
3646
    if (tlb->prot & PAGE_VALID)
3647
        ret |= 0x400;
3648
    size = booke_page_size_to_tlb(tlb->size);
3649
    if (size < 0 || size > 0x7)
3650
        size = 1;
3651
    ret |= size << 7;
3652
    env->spr[SPR_40x_PID] = tlb->PID;
3653
    return ret;
3654
}
3655

    
3656
target_ulong helper_4xx_tlbre_hi (target_ulong entry)
3657
{
3658
    ppcemb_tlb_t *tlb;
3659
    target_ulong ret;
3660

    
3661
    entry &= 0x3F;
3662
    tlb = &env->tlb[entry].tlbe;
3663
    ret = tlb->RPN;
3664
    if (tlb->prot & PAGE_EXEC)
3665
        ret |= 0x200;
3666
    if (tlb->prot & PAGE_WRITE)
3667
        ret |= 0x100;
3668
    return ret;
3669
}
3670

    
3671
void helper_4xx_tlbwe_hi (target_ulong entry, target_ulong val)
3672
{
3673
    ppcemb_tlb_t *tlb;
3674
    target_ulong page, end;
3675

    
3676
#if defined (DEBUG_SOFTWARE_TLB)
3677
    if (loglevel != 0) {
3678
        fprintf(logfile, "%s entry %d val " ADDRX "\n", __func__, (int)entry, val);
3679
    }
3680
#endif
3681
    entry &= 0x3F;
3682
    tlb = &env->tlb[entry].tlbe;
3683
    /* Invalidate previous TLB (if it's valid) */
3684
    if (tlb->prot & PAGE_VALID) {
3685
        end = tlb->EPN + tlb->size;
3686
#if defined (DEBUG_SOFTWARE_TLB)
3687
        if (loglevel != 0) {
3688
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
3689
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3690
        }
3691
#endif
3692
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3693
            tlb_flush_page(env, page);
3694
    }
3695
    tlb->size = booke_tlb_to_page_size((val >> 7) & 0x7);
3696
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
3697
     * If this ever occurs, one should use the ppcemb target instead
3698
     * of the ppc or ppc64 one
3699
     */
3700
    if ((val & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
3701
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
3702
                  "are not supported (%d)\n",
3703
                  tlb->size, TARGET_PAGE_SIZE, (int)((val >> 7) & 0x7));
3704
    }
3705
    tlb->EPN = val & ~(tlb->size - 1);
3706
    if (val & 0x40)
3707
        tlb->prot |= PAGE_VALID;
3708
    else
3709
        tlb->prot &= ~PAGE_VALID;
3710
    if (val & 0x20) {
3711
        /* XXX: TO BE FIXED */
3712
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
3713
    }
3714
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
3715
    tlb->attr = val & 0xFF;
3716
#if defined (DEBUG_SOFTWARE_TLB)
3717
    if (loglevel != 0) {
3718
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3719
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3720
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3721
                tlb->prot & PAGE_READ ? 'r' : '-',
3722
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3723
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3724
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3725
    }
3726
#endif
3727
    /* Invalidate new TLB (if valid) */
3728
    if (tlb->prot & PAGE_VALID) {
3729
        end = tlb->EPN + tlb->size;
3730
#if defined (DEBUG_SOFTWARE_TLB)
3731
        if (loglevel != 0) {
3732
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
3733
                    " end " ADDRX "\n", __func__, (int)entry, tlb->EPN, end);
3734
        }
3735
#endif
3736
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
3737
            tlb_flush_page(env, page);
3738
    }
3739
}
3740

    
3741
void helper_4xx_tlbwe_lo (target_ulong entry, target_ulong val)
3742
{
3743
    ppcemb_tlb_t *tlb;
3744

    
3745
#if defined (DEBUG_SOFTWARE_TLB)
3746
    if (loglevel != 0) {
3747
        fprintf(logfile, "%s entry %i val " ADDRX "\n", __func__, (int)entry, val);
3748
    }
3749
#endif
3750
    entry &= 0x3F;
3751
    tlb = &env->tlb[entry].tlbe;
3752
    tlb->RPN = val & 0xFFFFFC00;
3753
    tlb->prot = PAGE_READ;
3754
    if (val & 0x200)
3755
        tlb->prot |= PAGE_EXEC;
3756
    if (val & 0x100)
3757
        tlb->prot |= PAGE_WRITE;
3758
#if defined (DEBUG_SOFTWARE_TLB)
3759
    if (loglevel != 0) {
3760
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3761
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3762
                (int)entry, tlb->RPN, tlb->EPN, tlb->size,
3763
                tlb->prot & PAGE_READ ? 'r' : '-',
3764
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3765
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3766
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3767
    }
3768
#endif
3769
}
3770

    
3771
target_ulong helper_4xx_tlbsx (target_ulong address)
3772
{
3773
    return ppcemb_tlb_search(env, address, env->spr[SPR_40x_PID]);
3774
}
3775

    
3776
/* PowerPC 440 TLB management */
3777
void helper_440_tlbwe (uint32_t word, target_ulong entry, target_ulong value)
3778
{
3779
    ppcemb_tlb_t *tlb;
3780
    target_ulong EPN, RPN, size;
3781
    int do_flush_tlbs;
3782

    
3783
#if defined (DEBUG_SOFTWARE_TLB)
3784
    if (loglevel != 0) {
3785
        fprintf(logfile, "%s word %d entry %d value " ADDRX "\n",
3786
                __func__, word, (int)entry, value);
3787
    }
3788
#endif
3789
    do_flush_tlbs = 0;
3790
    entry &= 0x3F;
3791
    tlb = &env->tlb[entry].tlbe;
3792
    switch (word) {
3793
    default:
3794
        /* Just here to please gcc */
3795
    case 0:
3796
        EPN = value & 0xFFFFFC00;
3797
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3798
            do_flush_tlbs = 1;
3799
        tlb->EPN = EPN;
3800
        size = booke_tlb_to_page_size((value >> 4) & 0xF);
3801
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3802
            do_flush_tlbs = 1;
3803
        tlb->size = size;
3804
        tlb->attr &= ~0x1;
3805
        tlb->attr |= (value >> 8) & 1;
3806
        if (value & 0x200) {
3807
            tlb->prot |= PAGE_VALID;
3808
        } else {
3809
            if (tlb->prot & PAGE_VALID) {
3810
                tlb->prot &= ~PAGE_VALID;
3811
                do_flush_tlbs = 1;
3812
            }
3813
        }
3814
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3815
        if (do_flush_tlbs)
3816
            tlb_flush(env, 1);
3817
        break;
3818
    case 1:
3819
        RPN = value & 0xFFFFFC0F;
3820
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3821
            tlb_flush(env, 1);
3822
        tlb->RPN = RPN;
3823
        break;
3824
    case 2:
3825
        tlb->attr = (tlb->attr & 0x1) | (value & 0x0000FF00);
3826
        tlb->prot = tlb->prot & PAGE_VALID;
3827
        if (value & 0x1)
3828
            tlb->prot |= PAGE_READ << 4;
3829
        if (value & 0x2)
3830
            tlb->prot |= PAGE_WRITE << 4;
3831
        if (value & 0x4)
3832
            tlb->prot |= PAGE_EXEC << 4;
3833
        if (value & 0x8)
3834
            tlb->prot |= PAGE_READ;
3835
        if (value & 0x10)
3836
            tlb->prot |= PAGE_WRITE;
3837
        if (value & 0x20)
3838
            tlb->prot |= PAGE_EXEC;
3839
        break;
3840
    }
3841
}
3842

    
3843
target_ulong helper_440_tlbre (uint32_t word, target_ulong entry)
3844
{
3845
    ppcemb_tlb_t *tlb;
3846
    target_ulong ret;
3847
    int size;
3848

    
3849
    entry &= 0x3F;
3850
    tlb = &env->tlb[entry].tlbe;
3851
    switch (word) {
3852
    default:
3853
        /* Just here to please gcc */
3854
    case 0:
3855
        ret = tlb->EPN;
3856
        size = booke_page_size_to_tlb(tlb->size);
3857
        if (size < 0 || size > 0xF)
3858
            size = 1;
3859
        ret |= size << 4;
3860
        if (tlb->attr & 0x1)
3861
            ret |= 0x100;
3862
        if (tlb->prot & PAGE_VALID)
3863
            ret |= 0x200;
3864
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3865
        env->spr[SPR_440_MMUCR] |= tlb->PID;
3866
        break;
3867
    case 1:
3868
        ret = tlb->RPN;
3869
        break;
3870
    case 2:
3871
        ret = tlb->attr & ~0x1;
3872
        if (tlb->prot & (PAGE_READ << 4))
3873
            ret |= 0x1;
3874
        if (tlb->prot & (PAGE_WRITE << 4))
3875
            ret |= 0x2;
3876
        if (tlb->prot & (PAGE_EXEC << 4))
3877
            ret |= 0x4;
3878
        if (tlb->prot & PAGE_READ)
3879
            ret |= 0x8;
3880
        if (tlb->prot & PAGE_WRITE)
3881
            ret |= 0x10;
3882
        if (tlb->prot & PAGE_EXEC)
3883
            ret |= 0x20;
3884
        break;
3885
    }
3886
    return ret;
3887
}
3888

    
3889
target_ulong helper_440_tlbsx (target_ulong address)
3890
{
3891
    return ppcemb_tlb_search(env, address, env->spr[SPR_440_MMUCR] & 0xFF);
3892
}
3893

    
3894
#endif /* !CONFIG_USER_ONLY */