Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ d9f4bb27

History | View | Annotate | Download (58.1 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 */
20
#if SHIFT == 0
21
#define Reg MMXReg
22
#define XMM_ONLY(...)
23
#define B(n) MMX_B(n)
24
#define W(n) MMX_W(n)
25
#define L(n) MMX_L(n)
26
#define Q(n) q
27
#define SUFFIX _mmx
28
#else
29
#define Reg XMMReg
30
#define XMM_ONLY(...) __VA_ARGS__
31
#define B(n) XMM_B(n)
32
#define W(n) XMM_W(n)
33
#define L(n) XMM_L(n)
34
#define Q(n) XMM_Q(n)
35
#define SUFFIX _xmm
36
#endif
37

    
38
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39
{
40
    int shift;
41

    
42
    if (s->Q(0) > 15) {
43
        d->Q(0) = 0;
44
#if SHIFT == 1
45
        d->Q(1) = 0;
46
#endif
47
    } else {
48
        shift = s->B(0);
49
        d->W(0) >>= shift;
50
        d->W(1) >>= shift;
51
        d->W(2) >>= shift;
52
        d->W(3) >>= shift;
53
#if SHIFT == 1
54
        d->W(4) >>= shift;
55
        d->W(5) >>= shift;
56
        d->W(6) >>= shift;
57
        d->W(7) >>= shift;
58
#endif
59
    }
60
}
61

    
62
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63
{
64
    int shift;
65

    
66
    if (s->Q(0) > 15) {
67
        shift = 15;
68
    } else {
69
        shift = s->B(0);
70
    }
71
    d->W(0) = (int16_t)d->W(0) >> shift;
72
    d->W(1) = (int16_t)d->W(1) >> shift;
73
    d->W(2) = (int16_t)d->W(2) >> shift;
74
    d->W(3) = (int16_t)d->W(3) >> shift;
75
#if SHIFT == 1
76
    d->W(4) = (int16_t)d->W(4) >> shift;
77
    d->W(5) = (int16_t)d->W(5) >> shift;
78
    d->W(6) = (int16_t)d->W(6) >> shift;
79
    d->W(7) = (int16_t)d->W(7) >> shift;
80
#endif
81
}
82

    
83
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84
{
85
    int shift;
86

    
87
    if (s->Q(0) > 15) {
88
        d->Q(0) = 0;
89
#if SHIFT == 1
90
        d->Q(1) = 0;
91
#endif
92
    } else {
93
        shift = s->B(0);
94
        d->W(0) <<= shift;
95
        d->W(1) <<= shift;
96
        d->W(2) <<= shift;
97
        d->W(3) <<= shift;
98
#if SHIFT == 1
99
        d->W(4) <<= shift;
100
        d->W(5) <<= shift;
101
        d->W(6) <<= shift;
102
        d->W(7) <<= shift;
103
#endif
104
    }
105
}
106

    
107
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108
{
109
    int shift;
110

    
111
    if (s->Q(0) > 31) {
112
        d->Q(0) = 0;
113
#if SHIFT == 1
114
        d->Q(1) = 0;
115
#endif
116
    } else {
117
        shift = s->B(0);
118
        d->L(0) >>= shift;
119
        d->L(1) >>= shift;
120
#if SHIFT == 1
121
        d->L(2) >>= shift;
122
        d->L(3) >>= shift;
123
#endif
124
    }
125
}
126

    
127
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128
{
129
    int shift;
130

    
131
    if (s->Q(0) > 31) {
132
        shift = 31;
133
    } else {
134
        shift = s->B(0);
135
    }
136
    d->L(0) = (int32_t)d->L(0) >> shift;
137
    d->L(1) = (int32_t)d->L(1) >> shift;
138
#if SHIFT == 1
139
    d->L(2) = (int32_t)d->L(2) >> shift;
140
    d->L(3) = (int32_t)d->L(3) >> shift;
141
#endif
142
}
143

    
144
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145
{
146
    int shift;
147

    
148
    if (s->Q(0) > 31) {
149
        d->Q(0) = 0;
150
#if SHIFT == 1
151
        d->Q(1) = 0;
152
#endif
153
    } else {
154
        shift = s->B(0);
155
        d->L(0) <<= shift;
156
        d->L(1) <<= shift;
157
#if SHIFT == 1
158
        d->L(2) <<= shift;
159
        d->L(3) <<= shift;
160
#endif
161
    }
162
}
163

    
164
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165
{
166
    int shift;
167

    
168
    if (s->Q(0) > 63) {
169
        d->Q(0) = 0;
170
#if SHIFT == 1
171
        d->Q(1) = 0;
172
#endif
173
    } else {
174
        shift = s->B(0);
175
        d->Q(0) >>= shift;
176
#if SHIFT == 1
177
        d->Q(1) >>= shift;
178
#endif
179
    }
180
}
181

    
182
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183
{
184
    int shift;
185

    
186
    if (s->Q(0) > 63) {
187
        d->Q(0) = 0;
188
#if SHIFT == 1
189
        d->Q(1) = 0;
190
#endif
191
    } else {
192
        shift = s->B(0);
193
        d->Q(0) <<= shift;
194
#if SHIFT == 1
195
        d->Q(1) <<= shift;
196
#endif
197
    }
198
}
199

    
200
#if SHIFT == 1
201
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202
{
203
    int shift, i;
204

    
205
    shift = s->L(0);
206
    if (shift > 16)
207
        shift = 16;
208
    for(i = 0; i < 16 - shift; i++)
209
        d->B(i) = d->B(i + shift);
210
    for(i = 16 - shift; i < 16; i++)
211
        d->B(i) = 0;
212
}
213

    
214
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
215
{
216
    int shift, i;
217

    
218
    shift = s->L(0);
219
    if (shift > 16)
220
        shift = 16;
221
    for(i = 15; i >= shift; i--)
222
        d->B(i) = d->B(i - shift);
223
    for(i = 0; i < shift; i++)
224
        d->B(i) = 0;
225
}
226
#endif
227

    
228
#define SSE_HELPER_B(name, F)\
229
void glue(name, SUFFIX) (Reg *d, Reg *s)\
230
{\
231
    d->B(0) = F(d->B(0), s->B(0));\
232
    d->B(1) = F(d->B(1), s->B(1));\
233
    d->B(2) = F(d->B(2), s->B(2));\
234
    d->B(3) = F(d->B(3), s->B(3));\
235
    d->B(4) = F(d->B(4), s->B(4));\
236
    d->B(5) = F(d->B(5), s->B(5));\
237
    d->B(6) = F(d->B(6), s->B(6));\
238
    d->B(7) = F(d->B(7), s->B(7));\
239
    XMM_ONLY(\
240
    d->B(8) = F(d->B(8), s->B(8));\
241
    d->B(9) = F(d->B(9), s->B(9));\
242
    d->B(10) = F(d->B(10), s->B(10));\
243
    d->B(11) = F(d->B(11), s->B(11));\
244
    d->B(12) = F(d->B(12), s->B(12));\
245
    d->B(13) = F(d->B(13), s->B(13));\
246
    d->B(14) = F(d->B(14), s->B(14));\
247
    d->B(15) = F(d->B(15), s->B(15));\
248
    )\
249
}
250

    
251
#define SSE_HELPER_W(name, F)\
252
void glue(name, SUFFIX) (Reg *d, Reg *s)\
253
{\
254
    d->W(0) = F(d->W(0), s->W(0));\
255
    d->W(1) = F(d->W(1), s->W(1));\
256
    d->W(2) = F(d->W(2), s->W(2));\
257
    d->W(3) = F(d->W(3), s->W(3));\
258
    XMM_ONLY(\
259
    d->W(4) = F(d->W(4), s->W(4));\
260
    d->W(5) = F(d->W(5), s->W(5));\
261
    d->W(6) = F(d->W(6), s->W(6));\
262
    d->W(7) = F(d->W(7), s->W(7));\
263
    )\
264
}
265

    
266
#define SSE_HELPER_L(name, F)\
267
void glue(name, SUFFIX) (Reg *d, Reg *s)\
268
{\
269
    d->L(0) = F(d->L(0), s->L(0));\
270
    d->L(1) = F(d->L(1), s->L(1));\
271
    XMM_ONLY(\
272
    d->L(2) = F(d->L(2), s->L(2));\
273
    d->L(3) = F(d->L(3), s->L(3));\
274
    )\
275
}
276

    
277
#define SSE_HELPER_Q(name, F)\
278
void glue(name, SUFFIX) (Reg *d, Reg *s)\
279
{\
280
    d->Q(0) = F(d->Q(0), s->Q(0));\
281
    XMM_ONLY(\
282
    d->Q(1) = F(d->Q(1), s->Q(1));\
283
    )\
284
}
285

    
286
#if SHIFT == 0
287
static inline int satub(int x)
288
{
289
    if (x < 0)
290
        return 0;
291
    else if (x > 255)
292
        return 255;
293
    else
294
        return x;
295
}
296

    
297
static inline int satuw(int x)
298
{
299
    if (x < 0)
300
        return 0;
301
    else if (x > 65535)
302
        return 65535;
303
    else
304
        return x;
305
}
306

    
307
static inline int satsb(int x)
308
{
309
    if (x < -128)
310
        return -128;
311
    else if (x > 127)
312
        return 127;
313
    else
314
        return x;
315
}
316

    
317
static inline int satsw(int x)
318
{
319
    if (x < -32768)
320
        return -32768;
321
    else if (x > 32767)
322
        return 32767;
323
    else
324
        return x;
325
}
326

    
327
#define FADD(a, b) ((a) + (b))
328
#define FADDUB(a, b) satub((a) + (b))
329
#define FADDUW(a, b) satuw((a) + (b))
330
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
332

    
333
#define FSUB(a, b) ((a) - (b))
334
#define FSUBUB(a, b) satub((a) - (b))
335
#define FSUBUW(a, b) satuw((a) - (b))
336
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
342

    
343
#define FAND(a, b) (a) & (b)
344
#define FANDN(a, b) ((~(a)) & (b))
345
#define FOR(a, b) (a) | (b)
346
#define FXOR(a, b) (a) ^ (b)
347

    
348
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
352

    
353
#define FMULLW(a, b) (a) * (b)
354
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355
#define FMULHUW(a, b) (a) * (b) >> 16
356
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
357

    
358
#define FAVG(a, b) ((a) + (b) + 1) >> 1
359
#endif
360

    
361
SSE_HELPER_B(helper_paddb, FADD)
362
SSE_HELPER_W(helper_paddw, FADD)
363
SSE_HELPER_L(helper_paddl, FADD)
364
SSE_HELPER_Q(helper_paddq, FADD)
365

    
366
SSE_HELPER_B(helper_psubb, FSUB)
367
SSE_HELPER_W(helper_psubw, FSUB)
368
SSE_HELPER_L(helper_psubl, FSUB)
369
SSE_HELPER_Q(helper_psubq, FSUB)
370

    
371
SSE_HELPER_B(helper_paddusb, FADDUB)
372
SSE_HELPER_B(helper_paddsb, FADDSB)
373
SSE_HELPER_B(helper_psubusb, FSUBUB)
374
SSE_HELPER_B(helper_psubsb, FSUBSB)
375

    
376
SSE_HELPER_W(helper_paddusw, FADDUW)
377
SSE_HELPER_W(helper_paddsw, FADDSW)
378
SSE_HELPER_W(helper_psubusw, FSUBUW)
379
SSE_HELPER_W(helper_psubsw, FSUBSW)
380

    
381
SSE_HELPER_B(helper_pminub, FMINUB)
382
SSE_HELPER_B(helper_pmaxub, FMAXUB)
383

    
384
SSE_HELPER_W(helper_pminsw, FMINSW)
385
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
386

    
387
SSE_HELPER_Q(helper_pand, FAND)
388
SSE_HELPER_Q(helper_pandn, FANDN)
389
SSE_HELPER_Q(helper_por, FOR)
390
SSE_HELPER_Q(helper_pxor, FXOR)
391

    
392
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
395

    
396
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
399

    
400
SSE_HELPER_W(helper_pmullw, FMULLW)
401
#if SHIFT == 0
402
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403
#endif
404
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405
SSE_HELPER_W(helper_pmulhw, FMULHW)
406

    
407
SSE_HELPER_B(helper_pavgb, FAVG)
408
SSE_HELPER_W(helper_pavgw, FAVG)
409

    
410
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
411
{
412
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413
#if SHIFT == 1
414
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415
#endif
416
}
417

    
418
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
419
{
420
    int i;
421

    
422
    for(i = 0; i < (2 << SHIFT); i++) {
423
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
425
    }
426
}
427

    
428
#if SHIFT == 0
429
static inline int abs1(int a)
430
{
431
    if (a < 0)
432
        return -a;
433
    else
434
        return a;
435
}
436
#endif
437
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
438
{
439
    unsigned int val;
440

    
441
    val = 0;
442
    val += abs1(d->B(0) - s->B(0));
443
    val += abs1(d->B(1) - s->B(1));
444
    val += abs1(d->B(2) - s->B(2));
445
    val += abs1(d->B(3) - s->B(3));
446
    val += abs1(d->B(4) - s->B(4));
447
    val += abs1(d->B(5) - s->B(5));
448
    val += abs1(d->B(6) - s->B(6));
449
    val += abs1(d->B(7) - s->B(7));
450
    d->Q(0) = val;
451
#if SHIFT == 1
452
    val = 0;
453
    val += abs1(d->B(8) - s->B(8));
454
    val += abs1(d->B(9) - s->B(9));
455
    val += abs1(d->B(10) - s->B(10));
456
    val += abs1(d->B(11) - s->B(11));
457
    val += abs1(d->B(12) - s->B(12));
458
    val += abs1(d->B(13) - s->B(13));
459
    val += abs1(d->B(14) - s->B(14));
460
    val += abs1(d->B(15) - s->B(15));
461
    d->Q(1) = val;
462
#endif
463
}
464

    
465
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
466
{
467
    int i;
468
    for(i = 0; i < (8 << SHIFT); i++) {
469
        if (s->B(i) & 0x80)
470
            stb(a0 + i, d->B(i));
471
    }
472
}
473

    
474
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
475
{
476
    d->L(0) = val;
477
    d->L(1) = 0;
478
#if SHIFT == 1
479
    d->Q(1) = 0;
480
#endif
481
}
482

    
483
#ifdef TARGET_X86_64
484
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
485
{
486
    d->Q(0) = val;
487
#if SHIFT == 1
488
    d->Q(1) = 0;
489
#endif
490
}
491
#endif
492

    
493
#if SHIFT == 0
494
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
495
{
496
    Reg r;
497
    r.W(0) = s->W(order & 3);
498
    r.W(1) = s->W((order >> 2) & 3);
499
    r.W(2) = s->W((order >> 4) & 3);
500
    r.W(3) = s->W((order >> 6) & 3);
501
    *d = r;
502
}
503
#else
504
void helper_shufps(Reg *d, Reg *s, int order)
505
{
506
    Reg r;
507
    r.L(0) = d->L(order & 3);
508
    r.L(1) = d->L((order >> 2) & 3);
509
    r.L(2) = s->L((order >> 4) & 3);
510
    r.L(3) = s->L((order >> 6) & 3);
511
    *d = r;
512
}
513

    
514
void helper_shufpd(Reg *d, Reg *s, int order)
515
{
516
    Reg r;
517
    r.Q(0) = d->Q(order & 1);
518
    r.Q(1) = s->Q((order >> 1) & 1);
519
    *d = r;
520
}
521

    
522
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
523
{
524
    Reg r;
525
    r.L(0) = s->L(order & 3);
526
    r.L(1) = s->L((order >> 2) & 3);
527
    r.L(2) = s->L((order >> 4) & 3);
528
    r.L(3) = s->L((order >> 6) & 3);
529
    *d = r;
530
}
531

    
532
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
533
{
534
    Reg r;
535
    r.W(0) = s->W(order & 3);
536
    r.W(1) = s->W((order >> 2) & 3);
537
    r.W(2) = s->W((order >> 4) & 3);
538
    r.W(3) = s->W((order >> 6) & 3);
539
    r.Q(1) = s->Q(1);
540
    *d = r;
541
}
542

    
543
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
544
{
545
    Reg r;
546
    r.Q(0) = s->Q(0);
547
    r.W(4) = s->W(4 + (order & 3));
548
    r.W(5) = s->W(4 + ((order >> 2) & 3));
549
    r.W(6) = s->W(4 + ((order >> 4) & 3));
550
    r.W(7) = s->W(4 + ((order >> 6) & 3));
551
    *d = r;
552
}
553
#endif
554

    
555
#if SHIFT == 1
556
/* FPU ops */
557
/* XXX: not accurate */
558

    
559
#define SSE_HELPER_S(name, F)\
560
void helper_ ## name ## ps (Reg *d, Reg *s)\
561
{\
562
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
566
}\
567
\
568
void helper_ ## name ## ss (Reg *d, Reg *s)\
569
{\
570
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
571
}\
572
void helper_ ## name ## pd (Reg *d, Reg *s)\
573
{\
574
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
576
}\
577
\
578
void helper_ ## name ## sd (Reg *d, Reg *s)\
579
{\
580
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
581
}
582

    
583
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
588
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
589
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
590

    
591
SSE_HELPER_S(add, FPU_ADD)
592
SSE_HELPER_S(sub, FPU_SUB)
593
SSE_HELPER_S(mul, FPU_MUL)
594
SSE_HELPER_S(div, FPU_DIV)
595
SSE_HELPER_S(min, FPU_MIN)
596
SSE_HELPER_S(max, FPU_MAX)
597
SSE_HELPER_S(sqrt, FPU_SQRT)
598

    
599

    
600
/* float to float conversions */
601
void helper_cvtps2pd(Reg *d, Reg *s)
602
{
603
    float32 s0, s1;
604
    s0 = s->XMM_S(0);
605
    s1 = s->XMM_S(1);
606
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
607
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
608
}
609

    
610
void helper_cvtpd2ps(Reg *d, Reg *s)
611
{
612
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
613
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
614
    d->Q(1) = 0;
615
}
616

    
617
void helper_cvtss2sd(Reg *d, Reg *s)
618
{
619
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
620
}
621

    
622
void helper_cvtsd2ss(Reg *d, Reg *s)
623
{
624
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
625
}
626

    
627
/* integer to float */
628
void helper_cvtdq2ps(Reg *d, Reg *s)
629
{
630
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
631
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
632
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
633
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
634
}
635

    
636
void helper_cvtdq2pd(Reg *d, Reg *s)
637
{
638
    int32_t l0, l1;
639
    l0 = (int32_t)s->XMM_L(0);
640
    l1 = (int32_t)s->XMM_L(1);
641
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
642
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
643
}
644

    
645
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
646
{
647
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
648
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
649
}
650

    
651
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
652
{
653
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
654
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
655
}
656

    
657
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
658
{
659
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
660
}
661

    
662
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
663
{
664
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
665
}
666

    
667
#ifdef TARGET_X86_64
668
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
669
{
670
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
671
}
672

    
673
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
674
{
675
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
676
}
677
#endif
678

    
679
/* float to integer */
680
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
681
{
682
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
683
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
684
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
685
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
686
}
687

    
688
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
689
{
690
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
691
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
692
    d->XMM_Q(1) = 0;
693
}
694

    
695
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
696
{
697
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
698
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
699
}
700

    
701
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
702
{
703
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
704
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
705
}
706

    
707
int32_t helper_cvtss2si(XMMReg *s)
708
{
709
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
710
}
711

    
712
int32_t helper_cvtsd2si(XMMReg *s)
713
{
714
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
715
}
716

    
717
#ifdef TARGET_X86_64
718
int64_t helper_cvtss2sq(XMMReg *s)
719
{
720
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
721
}
722

    
723
int64_t helper_cvtsd2sq(XMMReg *s)
724
{
725
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
726
}
727
#endif
728

    
729
/* float to integer truncated */
730
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
731
{
732
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
733
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
734
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
735
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
736
}
737

    
738
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
739
{
740
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
741
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
742
    d->XMM_Q(1) = 0;
743
}
744

    
745
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
746
{
747
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
748
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
749
}
750

    
751
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
752
{
753
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
754
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
755
}
756

    
757
int32_t helper_cvttss2si(XMMReg *s)
758
{
759
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
760
}
761

    
762
int32_t helper_cvttsd2si(XMMReg *s)
763
{
764
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
765
}
766

    
767
#ifdef TARGET_X86_64
768
int64_t helper_cvttss2sq(XMMReg *s)
769
{
770
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
771
}
772

    
773
int64_t helper_cvttsd2sq(XMMReg *s)
774
{
775
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
776
}
777
#endif
778

    
779
void helper_rsqrtps(XMMReg *d, XMMReg *s)
780
{
781
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
782
    d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
783
    d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
784
    d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
785
}
786

    
787
void helper_rsqrtss(XMMReg *d, XMMReg *s)
788
{
789
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
790
}
791

    
792
void helper_rcpps(XMMReg *d, XMMReg *s)
793
{
794
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
795
    d->XMM_S(1) = approx_rcp(s->XMM_S(1));
796
    d->XMM_S(2) = approx_rcp(s->XMM_S(2));
797
    d->XMM_S(3) = approx_rcp(s->XMM_S(3));
798
}
799

    
800
void helper_rcpss(XMMReg *d, XMMReg *s)
801
{
802
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
803
}
804

    
805
static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
806
{
807
    uint64_t mask;
808

    
809
    if (len == 0) {
810
        mask = ~0LL;
811
    } else {
812
        mask = (1ULL << len) - 1;
813
    }
814
    return (src >> shift) & mask;
815
}
816

    
817
void helper_extrq_r(XMMReg *d, XMMReg *s)
818
{
819
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
820
}
821

    
822
void helper_extrq_i(XMMReg *d, int index, int length)
823
{
824
    d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
825
}
826

    
827
static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
828
{
829
    uint64_t mask;
830

    
831
    if (len == 0) {
832
        mask = ~0ULL;
833
    } else {
834
        mask = (1ULL << len) - 1;
835
    }
836
    return (src & ~(mask << shift)) | ((src & mask) << shift);
837
}
838

    
839
void helper_insertq_r(XMMReg *d, XMMReg *s)
840
{
841
    d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
842
}
843

    
844
void helper_insertq_i(XMMReg *d, int index, int length)
845
{
846
    d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
847
}
848

    
849
void helper_haddps(XMMReg *d, XMMReg *s)
850
{
851
    XMMReg r;
852
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
853
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
854
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
855
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
856
    *d = r;
857
}
858

    
859
void helper_haddpd(XMMReg *d, XMMReg *s)
860
{
861
    XMMReg r;
862
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
863
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
864
    *d = r;
865
}
866

    
867
void helper_hsubps(XMMReg *d, XMMReg *s)
868
{
869
    XMMReg r;
870
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
871
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
872
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
873
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
874
    *d = r;
875
}
876

    
877
void helper_hsubpd(XMMReg *d, XMMReg *s)
878
{
879
    XMMReg r;
880
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
881
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
882
    *d = r;
883
}
884

    
885
void helper_addsubps(XMMReg *d, XMMReg *s)
886
{
887
    d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
888
    d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
889
    d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
890
    d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
891
}
892

    
893
void helper_addsubpd(XMMReg *d, XMMReg *s)
894
{
895
    d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
896
    d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
897
}
898

    
899
/* XXX: unordered */
900
#define SSE_HELPER_CMP(name, F)\
901
void helper_ ## name ## ps (Reg *d, Reg *s)\
902
{\
903
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
904
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
905
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
906
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
907
}\
908
\
909
void helper_ ## name ## ss (Reg *d, Reg *s)\
910
{\
911
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
912
}\
913
void helper_ ## name ## pd (Reg *d, Reg *s)\
914
{\
915
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
916
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
917
}\
918
\
919
void helper_ ## name ## sd (Reg *d, Reg *s)\
920
{\
921
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
922
}
923

    
924
#define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
925
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
926
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
927
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
928
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
929
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
930
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
931
#define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
932

    
933
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
934
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
935
SSE_HELPER_CMP(cmple, FPU_CMPLE)
936
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
937
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
938
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
939
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
940
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
941

    
942
static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
943

    
944
void helper_ucomiss(Reg *d, Reg *s)
945
{
946
    int ret;
947
    float32 s0, s1;
948

    
949
    s0 = d->XMM_S(0);
950
    s1 = s->XMM_S(0);
951
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
952
    CC_SRC = comis_eflags[ret + 1];
953
}
954

    
955
void helper_comiss(Reg *d, Reg *s)
956
{
957
    int ret;
958
    float32 s0, s1;
959

    
960
    s0 = d->XMM_S(0);
961
    s1 = s->XMM_S(0);
962
    ret = float32_compare(s0, s1, &env->sse_status);
963
    CC_SRC = comis_eflags[ret + 1];
964
}
965

    
966
void helper_ucomisd(Reg *d, Reg *s)
967
{
968
    int ret;
969
    float64 d0, d1;
970

    
971
    d0 = d->XMM_D(0);
972
    d1 = s->XMM_D(0);
973
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
974
    CC_SRC = comis_eflags[ret + 1];
975
}
976

    
977
void helper_comisd(Reg *d, Reg *s)
978
{
979
    int ret;
980
    float64 d0, d1;
981

    
982
    d0 = d->XMM_D(0);
983
    d1 = s->XMM_D(0);
984
    ret = float64_compare(d0, d1, &env->sse_status);
985
    CC_SRC = comis_eflags[ret + 1];
986
}
987

    
988
uint32_t helper_movmskps(Reg *s)
989
{
990
    int b0, b1, b2, b3;
991
    b0 = s->XMM_L(0) >> 31;
992
    b1 = s->XMM_L(1) >> 31;
993
    b2 = s->XMM_L(2) >> 31;
994
    b3 = s->XMM_L(3) >> 31;
995
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
996
}
997

    
998
uint32_t helper_movmskpd(Reg *s)
999
{
1000
    int b0, b1;
1001
    b0 = s->XMM_L(1) >> 31;
1002
    b1 = s->XMM_L(3) >> 31;
1003
    return b0 | (b1 << 1);
1004
}
1005

    
1006
#endif
1007

    
1008
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1009
{
1010
    uint32_t val;
1011
    val = 0;
1012
    val |= (s->B(0) >> 7);
1013
    val |= (s->B(1) >> 6) & 0x02;
1014
    val |= (s->B(2) >> 5) & 0x04;
1015
    val |= (s->B(3) >> 4) & 0x08;
1016
    val |= (s->B(4) >> 3) & 0x10;
1017
    val |= (s->B(5) >> 2) & 0x20;
1018
    val |= (s->B(6) >> 1) & 0x40;
1019
    val |= (s->B(7)) & 0x80;
1020
#if SHIFT == 1
1021
    val |= (s->B(8) << 1) & 0x0100;
1022
    val |= (s->B(9) << 2) & 0x0200;
1023
    val |= (s->B(10) << 3) & 0x0400;
1024
    val |= (s->B(11) << 4) & 0x0800;
1025
    val |= (s->B(12) << 5) & 0x1000;
1026
    val |= (s->B(13) << 6) & 0x2000;
1027
    val |= (s->B(14) << 7) & 0x4000;
1028
    val |= (s->B(15) << 8) & 0x8000;
1029
#endif
1030
    return val;
1031
}
1032

    
1033
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1034
{
1035
    Reg r;
1036

    
1037
    r.B(0) = satsb((int16_t)d->W(0));
1038
    r.B(1) = satsb((int16_t)d->W(1));
1039
    r.B(2) = satsb((int16_t)d->W(2));
1040
    r.B(3) = satsb((int16_t)d->W(3));
1041
#if SHIFT == 1
1042
    r.B(4) = satsb((int16_t)d->W(4));
1043
    r.B(5) = satsb((int16_t)d->W(5));
1044
    r.B(6) = satsb((int16_t)d->W(6));
1045
    r.B(7) = satsb((int16_t)d->W(7));
1046
#endif
1047
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1048
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1049
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1050
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1051
#if SHIFT == 1
1052
    r.B(12) = satsb((int16_t)s->W(4));
1053
    r.B(13) = satsb((int16_t)s->W(5));
1054
    r.B(14) = satsb((int16_t)s->W(6));
1055
    r.B(15) = satsb((int16_t)s->W(7));
1056
#endif
1057
    *d = r;
1058
}
1059

    
1060
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1061
{
1062
    Reg r;
1063

    
1064
    r.B(0) = satub((int16_t)d->W(0));
1065
    r.B(1) = satub((int16_t)d->W(1));
1066
    r.B(2) = satub((int16_t)d->W(2));
1067
    r.B(3) = satub((int16_t)d->W(3));
1068
#if SHIFT == 1
1069
    r.B(4) = satub((int16_t)d->W(4));
1070
    r.B(5) = satub((int16_t)d->W(5));
1071
    r.B(6) = satub((int16_t)d->W(6));
1072
    r.B(7) = satub((int16_t)d->W(7));
1073
#endif
1074
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1075
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1076
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1077
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1078
#if SHIFT == 1
1079
    r.B(12) = satub((int16_t)s->W(4));
1080
    r.B(13) = satub((int16_t)s->W(5));
1081
    r.B(14) = satub((int16_t)s->W(6));
1082
    r.B(15) = satub((int16_t)s->W(7));
1083
#endif
1084
    *d = r;
1085
}
1086

    
1087
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1088
{
1089
    Reg r;
1090

    
1091
    r.W(0) = satsw(d->L(0));
1092
    r.W(1) = satsw(d->L(1));
1093
#if SHIFT == 1
1094
    r.W(2) = satsw(d->L(2));
1095
    r.W(3) = satsw(d->L(3));
1096
#endif
1097
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1098
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1099
#if SHIFT == 1
1100
    r.W(6) = satsw(s->L(2));
1101
    r.W(7) = satsw(s->L(3));
1102
#endif
1103
    *d = r;
1104
}
1105

    
1106
#define UNPCK_OP(base_name, base)                               \
1107
                                                                \
1108
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1109
{                                                               \
1110
    Reg r;                                              \
1111
                                                                \
1112
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1113
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1114
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1115
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1116
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1117
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1118
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1119
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1120
XMM_ONLY(                                                       \
1121
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1122
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1123
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1124
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1125
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1126
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1127
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1128
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1129
)                                                               \
1130
    *d = r;                                                     \
1131
}                                                               \
1132
                                                                \
1133
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1134
{                                                               \
1135
    Reg r;                                              \
1136
                                                                \
1137
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1138
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1139
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1140
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1141
XMM_ONLY(                                                       \
1142
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1143
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1144
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1145
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1146
)                                                               \
1147
    *d = r;                                                     \
1148
}                                                               \
1149
                                                                \
1150
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1151
{                                                               \
1152
    Reg r;                                              \
1153
                                                                \
1154
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1155
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1156
XMM_ONLY(                                                       \
1157
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1158
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1159
)                                                               \
1160
    *d = r;                                                     \
1161
}                                                               \
1162
                                                                \
1163
XMM_ONLY(                                                       \
1164
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1165
{                                                               \
1166
    Reg r;                                              \
1167
                                                                \
1168
    r.Q(0) = d->Q(base);                                        \
1169
    r.Q(1) = s->Q(base);                                        \
1170
    *d = r;                                                     \
1171
}                                                               \
1172
)
1173

    
1174
UNPCK_OP(l, 0)
1175
UNPCK_OP(h, 1)
1176

    
1177
/* 3DNow! float ops */
1178
#if SHIFT == 0
1179
void helper_pi2fd(MMXReg *d, MMXReg *s)
1180
{
1181
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1182
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1183
}
1184

    
1185
void helper_pi2fw(MMXReg *d, MMXReg *s)
1186
{
1187
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1188
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1189
}
1190

    
1191
void helper_pf2id(MMXReg *d, MMXReg *s)
1192
{
1193
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1194
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1195
}
1196

    
1197
void helper_pf2iw(MMXReg *d, MMXReg *s)
1198
{
1199
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1200
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1201
}
1202

    
1203
void helper_pfacc(MMXReg *d, MMXReg *s)
1204
{
1205
    MMXReg r;
1206
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1207
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1208
    *d = r;
1209
}
1210

    
1211
void helper_pfadd(MMXReg *d, MMXReg *s)
1212
{
1213
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1214
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1215
}
1216

    
1217
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1218
{
1219
    d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1220
    d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1221
}
1222

    
1223
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1224
{
1225
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1226
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1227
}
1228

    
1229
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1230
{
1231
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1232
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1233
}
1234

    
1235
void helper_pfmax(MMXReg *d, MMXReg *s)
1236
{
1237
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1238
        d->MMX_S(0) = s->MMX_S(0);
1239
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1240
        d->MMX_S(1) = s->MMX_S(1);
1241
}
1242

    
1243
void helper_pfmin(MMXReg *d, MMXReg *s)
1244
{
1245
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1246
        d->MMX_S(0) = s->MMX_S(0);
1247
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1248
        d->MMX_S(1) = s->MMX_S(1);
1249
}
1250

    
1251
void helper_pfmul(MMXReg *d, MMXReg *s)
1252
{
1253
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1254
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1255
}
1256

    
1257
void helper_pfnacc(MMXReg *d, MMXReg *s)
1258
{
1259
    MMXReg r;
1260
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1261
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1262
    *d = r;
1263
}
1264

    
1265
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1266
{
1267
    MMXReg r;
1268
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1269
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1270
    *d = r;
1271
}
1272

    
1273
void helper_pfrcp(MMXReg *d, MMXReg *s)
1274
{
1275
    d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1276
    d->MMX_S(1) = d->MMX_S(0);
1277
}
1278

    
1279
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1280
{
1281
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1282
    d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1283
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1284
    d->MMX_L(0) = d->MMX_L(1);
1285
}
1286

    
1287
void helper_pfsub(MMXReg *d, MMXReg *s)
1288
{
1289
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1290
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1291
}
1292

    
1293
void helper_pfsubr(MMXReg *d, MMXReg *s)
1294
{
1295
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1296
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1297
}
1298

    
1299
void helper_pswapd(MMXReg *d, MMXReg *s)
1300
{
1301
    MMXReg r;
1302
    r.MMX_L(0) = s->MMX_L(1);
1303
    r.MMX_L(1) = s->MMX_L(0);
1304
    *d = r;
1305
}
1306
#endif
1307

    
1308
/* SSSE3 op helpers */
1309
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1310
{
1311
    int i;
1312
    Reg r;
1313

    
1314
    for (i = 0; i < (8 << SHIFT); i++)
1315
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1316

    
1317
    *d = r;
1318
}
1319

    
1320
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1321
{
1322
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1323
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1324
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1325
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1326
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1327
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1328
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1329
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1330
}
1331

    
1332
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1333
{
1334
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1335
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1336
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1337
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1338
}
1339

    
1340
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1341
{
1342
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1343
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1344
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1345
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1346
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1347
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1348
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1349
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1350
}
1351

    
1352
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1353
{
1354
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1355
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1356
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1357
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1358
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1359
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1360
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1361
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1362
#if SHIFT == 1
1363
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1364
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1365
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1366
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1367
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1368
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1369
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1370
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1371
#endif
1372
}
1373

    
1374
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1375
{
1376
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1377
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1378
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1379
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1380
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1381
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1382
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1383
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1384
}
1385

    
1386
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1387
{
1388
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1389
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1390
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1391
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1392
}
1393

    
1394
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1395
{
1396
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1397
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1398
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1399
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1400
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1401
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1402
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1403
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1404
}
1405

    
1406
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1407
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1408
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1409
SSE_HELPER_B(helper_pabsb, FABSB)
1410
SSE_HELPER_W(helper_pabsw, FABSW)
1411
SSE_HELPER_L(helper_pabsd, FABSL)
1412

    
1413
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1414
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1415

    
1416
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1417
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1418
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1419
SSE_HELPER_B(helper_psignb, FSIGNB)
1420
SSE_HELPER_W(helper_psignw, FSIGNW)
1421
SSE_HELPER_L(helper_psignd, FSIGNL)
1422

    
1423
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1424
{
1425
    Reg r;
1426

    
1427
    /* XXX could be checked during translation */
1428
    if (shift >= (16 << SHIFT)) {
1429
        r.Q(0) = 0;
1430
        XMM_ONLY(r.Q(1) = 0);
1431
    } else {
1432
        shift <<= 3;
1433
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1434
#if SHIFT == 0
1435
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1436
                 SHR(d->Q(0), shift -  64);
1437
#else
1438
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1439
                 SHR(s->Q(1), shift -  64) |
1440
                 SHR(d->Q(0), shift - 128) |
1441
                 SHR(d->Q(1), shift - 192);
1442
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1443
                 SHR(s->Q(1), shift -   0) |
1444
                 SHR(d->Q(0), shift -  64) |
1445
                 SHR(d->Q(1), shift - 128);
1446
#endif
1447
#undef SHR
1448
    }
1449

    
1450
    *d = r;
1451
}
1452

    
1453
#define XMM0 env->xmm_regs[0]
1454

    
1455
#if SHIFT == 1
1456
#define SSE_HELPER_V(name, elem, num, F)\
1457
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1458
{\
1459
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1460
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1461
    if (num > 2) {\
1462
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1463
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1464
        if (num > 4) {\
1465
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1466
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1467
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1468
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1469
            if (num > 8) {\
1470
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1471
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1472
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1473
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1474
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1475
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1476
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1477
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1478
            }\
1479
        }\
1480
    }\
1481
}
1482

    
1483
#define SSE_HELPER_I(name, elem, num, F)\
1484
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1485
{\
1486
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1487
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1488
    if (num > 2) {\
1489
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1490
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1491
        if (num > 4) {\
1492
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1493
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1494
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1495
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1496
            if (num > 8) {\
1497
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1498
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1499
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1500
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1501
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1502
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1503
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1504
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1505
            }\
1506
        }\
1507
    }\
1508
}
1509

    
1510
/* SSE4.1 op helpers */
1511
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1512
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1513
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1514
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1515
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1516
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1517

    
1518
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1519
{
1520
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1521
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1522

    
1523
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1524
}
1525

    
1526
#define SSE_HELPER_F(name, elem, num, F)\
1527
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1528
{\
1529
    d->elem(0) = F(0);\
1530
    d->elem(1) = F(1);\
1531
    if (num > 2) {\
1532
        d->elem(2) = F(2);\
1533
        d->elem(3) = F(3);\
1534
        if (num > 4) {\
1535
            d->elem(4) = F(4);\
1536
            d->elem(5) = F(5);\
1537
            d->elem(6) = F(6);\
1538
            d->elem(7) = F(7);\
1539
        }\
1540
    }\
1541
}
1542

    
1543
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1544
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1545
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1546
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1547
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1548
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1549
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1550
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1551
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1552
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1553
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1554
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1555

    
1556
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1557
{
1558
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1559
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1560
}
1561

    
1562
#define FCMPEQQ(d, s) d == s ? -1 : 0
1563
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1564

    
1565
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1566
{
1567
    d->W(0) = satuw((int32_t) d->L(0));
1568
    d->W(1) = satuw((int32_t) d->L(1));
1569
    d->W(2) = satuw((int32_t) d->L(2));
1570
    d->W(3) = satuw((int32_t) d->L(3));
1571
    d->W(4) = satuw((int32_t) s->L(0));
1572
    d->W(5) = satuw((int32_t) s->L(1));
1573
    d->W(6) = satuw((int32_t) s->L(2));
1574
    d->W(7) = satuw((int32_t) s->L(3));
1575
}
1576

    
1577
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1578
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1579
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1580
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1581
SSE_HELPER_B(helper_pminsb, FMINSB)
1582
SSE_HELPER_L(helper_pminsd, FMINSD)
1583
SSE_HELPER_W(helper_pminuw, MIN)
1584
SSE_HELPER_L(helper_pminud, MIN)
1585
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1586
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1587
SSE_HELPER_W(helper_pmaxuw, MAX)
1588
SSE_HELPER_L(helper_pmaxud, MAX)
1589

    
1590
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1591
SSE_HELPER_L(helper_pmulld, FMULLD)
1592

    
1593
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1594
{
1595
    int idx = 0;
1596

    
1597
    if (s->W(1) < s->W(idx))
1598
        idx = 1;
1599
    if (s->W(2) < s->W(idx))
1600
        idx = 2;
1601
    if (s->W(3) < s->W(idx))
1602
        idx = 3;
1603
    if (s->W(4) < s->W(idx))
1604
        idx = 4;
1605
    if (s->W(5) < s->W(idx))
1606
        idx = 5;
1607
    if (s->W(6) < s->W(idx))
1608
        idx = 6;
1609
    if (s->W(7) < s->W(idx))
1610
        idx = 7;
1611

    
1612
    d->Q(1) = 0;
1613
    d->L(1) = 0;
1614
    d->W(1) = idx;
1615
    d->W(0) = s->W(idx);
1616
}
1617

    
1618
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1619
{
1620
    signed char prev_rounding_mode;
1621

    
1622
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1623
    if (!(mode & (1 << 2)))
1624
        switch (mode & 3) {
1625
        case 0:
1626
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1627
            break;
1628
        case 1:
1629
            set_float_rounding_mode(float_round_down, &env->sse_status);
1630
            break;
1631
        case 2:
1632
            set_float_rounding_mode(float_round_up, &env->sse_status);
1633
            break;
1634
        case 3:
1635
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1636
            break;
1637
        }
1638

    
1639
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1640
    d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1641
    d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1642
    d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1643

    
1644
#if 0 /* TODO */
1645
    if (mode & (1 << 3))
1646
        set_float_exception_flags(
1647
                        get_float_exception_flags(&env->sse_status) &
1648
                        ~float_flag_inexact,
1649
                        &env->sse_status);
1650
#endif
1651
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1652
}
1653

    
1654
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1655
{
1656
    signed char prev_rounding_mode;
1657

    
1658
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1659
    if (!(mode & (1 << 2)))
1660
        switch (mode & 3) {
1661
        case 0:
1662
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1663
            break;
1664
        case 1:
1665
            set_float_rounding_mode(float_round_down, &env->sse_status);
1666
            break;
1667
        case 2:
1668
            set_float_rounding_mode(float_round_up, &env->sse_status);
1669
            break;
1670
        case 3:
1671
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1672
            break;
1673
        }
1674

    
1675
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1676
    d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1677

    
1678
#if 0 /* TODO */
1679
    if (mode & (1 << 3))
1680
        set_float_exception_flags(
1681
                        get_float_exception_flags(&env->sse_status) &
1682
                        ~float_flag_inexact,
1683
                        &env->sse_status);
1684
#endif
1685
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1686
}
1687

    
1688
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1689
{
1690
    signed char prev_rounding_mode;
1691

    
1692
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1693
    if (!(mode & (1 << 2)))
1694
        switch (mode & 3) {
1695
        case 0:
1696
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1697
            break;
1698
        case 1:
1699
            set_float_rounding_mode(float_round_down, &env->sse_status);
1700
            break;
1701
        case 2:
1702
            set_float_rounding_mode(float_round_up, &env->sse_status);
1703
            break;
1704
        case 3:
1705
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1706
            break;
1707
        }
1708

    
1709
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1710

    
1711
#if 0 /* TODO */
1712
    if (mode & (1 << 3))
1713
        set_float_exception_flags(
1714
                        get_float_exception_flags(&env->sse_status) &
1715
                        ~float_flag_inexact,
1716
                        &env->sse_status);
1717
#endif
1718
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1719
}
1720

    
1721
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1722
{
1723
    signed char prev_rounding_mode;
1724

    
1725
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1726
    if (!(mode & (1 << 2)))
1727
        switch (mode & 3) {
1728
        case 0:
1729
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1730
            break;
1731
        case 1:
1732
            set_float_rounding_mode(float_round_down, &env->sse_status);
1733
            break;
1734
        case 2:
1735
            set_float_rounding_mode(float_round_up, &env->sse_status);
1736
            break;
1737
        case 3:
1738
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1739
            break;
1740
        }
1741

    
1742
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1743

    
1744
#if 0 /* TODO */
1745
    if (mode & (1 << 3))
1746
        set_float_exception_flags(
1747
                        get_float_exception_flags(&env->sse_status) &
1748
                        ~float_flag_inexact,
1749
                        &env->sse_status);
1750
#endif
1751
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1752
}
1753

    
1754
#define FBLENDP(d, s, m) m ? s : d
1755
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1756
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1757
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1758

    
1759
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1760
{
1761
    float32 iresult = 0 /*float32_zero*/;
1762

    
1763
    if (mask & (1 << 4))
1764
        iresult = float32_add(iresult,
1765
                        float32_mul(d->L(0), s->L(0), &env->sse_status),
1766
                        &env->sse_status);
1767
    if (mask & (1 << 5))
1768
        iresult = float32_add(iresult,
1769
                        float32_mul(d->L(1), s->L(1), &env->sse_status),
1770
                        &env->sse_status);
1771
    if (mask & (1 << 6))
1772
        iresult = float32_add(iresult,
1773
                        float32_mul(d->L(2), s->L(2), &env->sse_status),
1774
                        &env->sse_status);
1775
    if (mask & (1 << 7))
1776
        iresult = float32_add(iresult,
1777
                        float32_mul(d->L(3), s->L(3), &env->sse_status),
1778
                        &env->sse_status);
1779
    d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1780
    d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1781
    d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1782
    d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1783
}
1784

    
1785
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1786
{
1787
    float64 iresult = 0 /*float64_zero*/;
1788

    
1789
    if (mask & (1 << 4))
1790
        iresult = float64_add(iresult,
1791
                        float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1792
                        &env->sse_status);
1793
    if (mask & (1 << 5))
1794
        iresult = float64_add(iresult,
1795
                        float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1796
                        &env->sse_status);
1797
    d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1798
    d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1799
}
1800

    
1801
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1802
{
1803
    int s0 = (offset & 3) << 2;
1804
    int d0 = (offset & 4) << 0;
1805
    int i;
1806
    Reg r;
1807

    
1808
    for (i = 0; i < 8; i++, d0++) {
1809
        r.W(i) = 0;
1810
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1811
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1812
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1813
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1814
    }
1815

    
1816
    *d = r;
1817
}
1818

    
1819
/* SSE4.2 op helpers */
1820
/* it's unclear whether signed or unsigned */
1821
#define FCMPGTQ(d, s) d > s ? -1 : 0
1822
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1823

    
1824
static inline int pcmp_elen(int reg, uint32_t ctrl)
1825
{
1826
    int val;
1827

    
1828
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1829
    if (ctrl >> 8)
1830
        val = abs1((int64_t) env->regs[reg]);
1831
    else
1832
        val = abs1((int32_t) env->regs[reg]);
1833

    
1834
    if (ctrl & 1) {
1835
        if (val > 8)
1836
            return 8;
1837
    } else
1838
        if (val > 16)
1839
            return 16;
1840

    
1841
    return val;
1842
}
1843

    
1844
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1845
{
1846
    int val = 0;
1847

    
1848
    if (ctrl & 1) {
1849
        while (val < 8 && r->W(val))
1850
            val++;
1851
    } else
1852
        while (val < 16 && r->B(val))
1853
            val++;
1854

    
1855
    return val;
1856
}
1857

    
1858
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1859
{
1860
    switch ((ctrl >> 0) & 3) {
1861
    case 0:
1862
        return r->B(i);
1863
    case 1:
1864
        return r->W(i);
1865
    case 2:
1866
        return (int8_t) r->B(i);
1867
    case 3:
1868
    default:
1869
        return (int16_t) r->W(i);
1870
    }
1871
}
1872

    
1873
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1874
                int8_t ctrl, int valids, int validd)
1875
{
1876
    unsigned int res = 0;
1877
    int v;
1878
    int j, i;
1879
    int upper = (ctrl & 1) ? 7 : 15;
1880

    
1881
    valids--;
1882
    validd--;
1883

    
1884
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1885

    
1886
    switch ((ctrl >> 2) & 3) {
1887
    case 0:
1888
        for (j = valids; j >= 0; j--) {
1889
            res <<= 1;
1890
            v = pcmp_val(s, ctrl, j);
1891
            for (i = validd; i >= 0; i--)
1892
                res |= (v == pcmp_val(d, ctrl, i));
1893
        }
1894
        break;
1895
    case 1:
1896
        for (j = valids; j >= 0; j--) {
1897
            res <<= 1;
1898
            v = pcmp_val(s, ctrl, j);
1899
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1900
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1901
                        pcmp_val(d, ctrl, i - 1) >= v);
1902
        }
1903
        break;
1904
    case 2:
1905
        res = (2 << (upper - MAX(valids, validd))) - 1;
1906
        res <<= MAX(valids, validd) - MIN(valids, validd);
1907
        for (i = MIN(valids, validd); i >= 0; i--) {
1908
            res <<= 1;
1909
            v = pcmp_val(s, ctrl, i);
1910
            res |= (v == pcmp_val(d, ctrl, i));
1911
        }
1912
        break;
1913
    case 3:
1914
        for (j = valids - validd; j >= 0; j--) {
1915
            res <<= 1;
1916
            res |= 1;
1917
            for (i = MIN(upper - j, validd); i >= 0; i--)
1918
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1919
        }
1920
        break;
1921
    }
1922

    
1923
    switch ((ctrl >> 4) & 3) {
1924
    case 1:
1925
        res ^= (2 << upper) - 1;
1926
        break;
1927
    case 3:
1928
        res ^= (2 << valids) - 1;
1929
        break;
1930
    }
1931

    
1932
    if (res)
1933
       CC_SRC |= CC_C;
1934
    if (res & 1)
1935
       CC_SRC |= CC_O;
1936

    
1937
    return res;
1938
}
1939

    
1940
static inline int rffs1(unsigned int val)
1941
{
1942
    int ret = 1, hi;
1943

    
1944
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1945
        if (val >> hi) {
1946
            val >>= hi;
1947
            ret += hi;
1948
        }
1949

    
1950
    return ret;
1951
}
1952

    
1953
static inline int ffs1(unsigned int val)
1954
{
1955
    int ret = 1, hi;
1956

    
1957
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1958
        if (val << hi) {
1959
            val <<= hi;
1960
            ret += hi;
1961
        }
1962

    
1963
    return ret;
1964
}
1965

    
1966
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1967
{
1968
    unsigned int res = pcmpxstrx(d, s, ctrl,
1969
                    pcmp_elen(R_EDX, ctrl),
1970
                    pcmp_elen(R_EAX, ctrl));
1971

    
1972
    if (res)
1973
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1974
    else
1975
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1976
}
1977

    
1978
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1979
{
1980
    int i;
1981
    unsigned int res = pcmpxstrx(d, s, ctrl,
1982
                    pcmp_elen(R_EDX, ctrl),
1983
                    pcmp_elen(R_EAX, ctrl));
1984

    
1985
    if ((ctrl >> 6) & 1) {
1986
        if (ctrl & 1)
1987
            for (i = 0; i <= 8; i--, res >>= 1)
1988
                d->W(i) = (res & 1) ? ~0 : 0;
1989
        else
1990
            for (i = 0; i <= 16; i--, res >>= 1)
1991
                d->B(i) = (res & 1) ? ~0 : 0;
1992
    } else {
1993
        d->Q(1) = 0;
1994
        d->Q(0) = res;
1995
    }
1996
}
1997

    
1998
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1999
{
2000
    unsigned int res = pcmpxstrx(d, s, ctrl,
2001
                    pcmp_ilen(s, ctrl),
2002
                    pcmp_ilen(d, ctrl));
2003

    
2004
    if (res)
2005
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2006
    else
2007
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2008
}
2009

    
2010
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2011
{
2012
    int i;
2013
    unsigned int res = pcmpxstrx(d, s, ctrl,
2014
                    pcmp_ilen(s, ctrl),
2015
                    pcmp_ilen(d, ctrl));
2016

    
2017
    if ((ctrl >> 6) & 1) {
2018
        if (ctrl & 1)
2019
            for (i = 0; i <= 8; i--, res >>= 1)
2020
                d->W(i) = (res & 1) ? ~0 : 0;
2021
        else
2022
            for (i = 0; i <= 16; i--, res >>= 1)
2023
                d->B(i) = (res & 1) ? ~0 : 0;
2024
    } else {
2025
        d->Q(1) = 0;
2026
        d->Q(0) = res;
2027
    }
2028
}
2029

    
2030
#define CRCPOLY        0x1edc6f41
2031
#define CRCPOLY_BITREV 0x82f63b78
2032
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2033
{
2034
    target_ulong crc = (msg & ((target_ulong) -1 >>
2035
                            (TARGET_LONG_BITS - len))) ^ crc1;
2036

    
2037
    while (len--)
2038
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2039

    
2040
    return crc;
2041
}
2042

    
2043
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2044
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2045
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2046
{
2047
    CC_SRC = n ? 0 : CC_Z;
2048

    
2049
    n = POPCOUNT(n, 0);
2050
    n = POPCOUNT(n, 1);
2051
    n = POPCOUNT(n, 2);
2052
    n = POPCOUNT(n, 3);
2053
    if (type == 1)
2054
        return n & 0xff;
2055

    
2056
    n = POPCOUNT(n, 4);
2057
#ifndef TARGET_X86_64
2058
    return n;
2059
#else
2060
    if (type == 2)
2061
        return n & 0xff;
2062

    
2063
    return POPCOUNT(n, 5);
2064
#endif
2065
}
2066
#endif
2067

    
2068
#undef SHIFT
2069
#undef XMM_ONLY
2070
#undef Reg
2071
#undef B
2072
#undef W
2073
#undef L
2074
#undef Q
2075
#undef SUFFIX