Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ db8d9902

History | View | Annotate | Download (57.2 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21
#if SHIFT == 0
22
#define Reg MMXReg
23
#define XMM_ONLY(x...)
24
#define B(n) MMX_B(n)
25
#define W(n) MMX_W(n)
26
#define L(n) MMX_L(n)
27
#define Q(n) q
28
#define SUFFIX _mmx
29
#else
30
#define Reg XMMReg
31
#define XMM_ONLY(x...) x
32
#define B(n) XMM_B(n)
33
#define W(n) XMM_W(n)
34
#define L(n) XMM_L(n)
35
#define Q(n) XMM_Q(n)
36
#define SUFFIX _xmm
37
#endif
38

    
39
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
40
{
41
    int shift;
42

    
43
    if (s->Q(0) > 15) {
44
        d->Q(0) = 0;
45
#if SHIFT == 1
46
        d->Q(1) = 0;
47
#endif
48
    } else {
49
        shift = s->B(0);
50
        d->W(0) >>= shift;
51
        d->W(1) >>= shift;
52
        d->W(2) >>= shift;
53
        d->W(3) >>= shift;
54
#if SHIFT == 1
55
        d->W(4) >>= shift;
56
        d->W(5) >>= shift;
57
        d->W(6) >>= shift;
58
        d->W(7) >>= shift;
59
#endif
60
    }
61
}
62

    
63
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
64
{
65
    int shift;
66

    
67
    if (s->Q(0) > 15) {
68
        shift = 15;
69
    } else {
70
        shift = s->B(0);
71
    }
72
    d->W(0) = (int16_t)d->W(0) >> shift;
73
    d->W(1) = (int16_t)d->W(1) >> shift;
74
    d->W(2) = (int16_t)d->W(2) >> shift;
75
    d->W(3) = (int16_t)d->W(3) >> shift;
76
#if SHIFT == 1
77
    d->W(4) = (int16_t)d->W(4) >> shift;
78
    d->W(5) = (int16_t)d->W(5) >> shift;
79
    d->W(6) = (int16_t)d->W(6) >> shift;
80
    d->W(7) = (int16_t)d->W(7) >> shift;
81
#endif
82
}
83

    
84
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
85
{
86
    int shift;
87

    
88
    if (s->Q(0) > 15) {
89
        d->Q(0) = 0;
90
#if SHIFT == 1
91
        d->Q(1) = 0;
92
#endif
93
    } else {
94
        shift = s->B(0);
95
        d->W(0) <<= shift;
96
        d->W(1) <<= shift;
97
        d->W(2) <<= shift;
98
        d->W(3) <<= shift;
99
#if SHIFT == 1
100
        d->W(4) <<= shift;
101
        d->W(5) <<= shift;
102
        d->W(6) <<= shift;
103
        d->W(7) <<= shift;
104
#endif
105
    }
106
}
107

    
108
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
109
{
110
    int shift;
111

    
112
    if (s->Q(0) > 31) {
113
        d->Q(0) = 0;
114
#if SHIFT == 1
115
        d->Q(1) = 0;
116
#endif
117
    } else {
118
        shift = s->B(0);
119
        d->L(0) >>= shift;
120
        d->L(1) >>= shift;
121
#if SHIFT == 1
122
        d->L(2) >>= shift;
123
        d->L(3) >>= shift;
124
#endif
125
    }
126
}
127

    
128
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
129
{
130
    int shift;
131

    
132
    if (s->Q(0) > 31) {
133
        shift = 31;
134
    } else {
135
        shift = s->B(0);
136
    }
137
    d->L(0) = (int32_t)d->L(0) >> shift;
138
    d->L(1) = (int32_t)d->L(1) >> shift;
139
#if SHIFT == 1
140
    d->L(2) = (int32_t)d->L(2) >> shift;
141
    d->L(3) = (int32_t)d->L(3) >> shift;
142
#endif
143
}
144

    
145
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
146
{
147
    int shift;
148

    
149
    if (s->Q(0) > 31) {
150
        d->Q(0) = 0;
151
#if SHIFT == 1
152
        d->Q(1) = 0;
153
#endif
154
    } else {
155
        shift = s->B(0);
156
        d->L(0) <<= shift;
157
        d->L(1) <<= shift;
158
#if SHIFT == 1
159
        d->L(2) <<= shift;
160
        d->L(3) <<= shift;
161
#endif
162
    }
163
}
164

    
165
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
166
{
167
    int shift;
168

    
169
    if (s->Q(0) > 63) {
170
        d->Q(0) = 0;
171
#if SHIFT == 1
172
        d->Q(1) = 0;
173
#endif
174
    } else {
175
        shift = s->B(0);
176
        d->Q(0) >>= shift;
177
#if SHIFT == 1
178
        d->Q(1) >>= shift;
179
#endif
180
    }
181
}
182

    
183
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
184
{
185
    int shift;
186

    
187
    if (s->Q(0) > 63) {
188
        d->Q(0) = 0;
189
#if SHIFT == 1
190
        d->Q(1) = 0;
191
#endif
192
    } else {
193
        shift = s->B(0);
194
        d->Q(0) <<= shift;
195
#if SHIFT == 1
196
        d->Q(1) <<= shift;
197
#endif
198
    }
199
}
200

    
201
#if SHIFT == 1
202
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
203
{
204
    int shift, i;
205

    
206
    shift = s->L(0);
207
    if (shift > 16)
208
        shift = 16;
209
    for(i = 0; i < 16 - shift; i++)
210
        d->B(i) = d->B(i + shift);
211
    for(i = 16 - shift; i < 16; i++)
212
        d->B(i) = 0;
213
}
214

    
215
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
216
{
217
    int shift, i;
218

    
219
    shift = s->L(0);
220
    if (shift > 16)
221
        shift = 16;
222
    for(i = 15; i >= shift; i--)
223
        d->B(i) = d->B(i - shift);
224
    for(i = 0; i < shift; i++)
225
        d->B(i) = 0;
226
}
227
#endif
228

    
229
#define SSE_HELPER_B(name, F)\
230
void glue(name, SUFFIX) (Reg *d, Reg *s)\
231
{\
232
    d->B(0) = F(d->B(0), s->B(0));\
233
    d->B(1) = F(d->B(1), s->B(1));\
234
    d->B(2) = F(d->B(2), s->B(2));\
235
    d->B(3) = F(d->B(3), s->B(3));\
236
    d->B(4) = F(d->B(4), s->B(4));\
237
    d->B(5) = F(d->B(5), s->B(5));\
238
    d->B(6) = F(d->B(6), s->B(6));\
239
    d->B(7) = F(d->B(7), s->B(7));\
240
    XMM_ONLY(\
241
    d->B(8) = F(d->B(8), s->B(8));\
242
    d->B(9) = F(d->B(9), s->B(9));\
243
    d->B(10) = F(d->B(10), s->B(10));\
244
    d->B(11) = F(d->B(11), s->B(11));\
245
    d->B(12) = F(d->B(12), s->B(12));\
246
    d->B(13) = F(d->B(13), s->B(13));\
247
    d->B(14) = F(d->B(14), s->B(14));\
248
    d->B(15) = F(d->B(15), s->B(15));\
249
    )\
250
}
251

    
252
#define SSE_HELPER_W(name, F)\
253
void glue(name, SUFFIX) (Reg *d, Reg *s)\
254
{\
255
    d->W(0) = F(d->W(0), s->W(0));\
256
    d->W(1) = F(d->W(1), s->W(1));\
257
    d->W(2) = F(d->W(2), s->W(2));\
258
    d->W(3) = F(d->W(3), s->W(3));\
259
    XMM_ONLY(\
260
    d->W(4) = F(d->W(4), s->W(4));\
261
    d->W(5) = F(d->W(5), s->W(5));\
262
    d->W(6) = F(d->W(6), s->W(6));\
263
    d->W(7) = F(d->W(7), s->W(7));\
264
    )\
265
}
266

    
267
#define SSE_HELPER_L(name, F)\
268
void glue(name, SUFFIX) (Reg *d, Reg *s)\
269
{\
270
    d->L(0) = F(d->L(0), s->L(0));\
271
    d->L(1) = F(d->L(1), s->L(1));\
272
    XMM_ONLY(\
273
    d->L(2) = F(d->L(2), s->L(2));\
274
    d->L(3) = F(d->L(3), s->L(3));\
275
    )\
276
}
277

    
278
#define SSE_HELPER_Q(name, F)\
279
void glue(name, SUFFIX) (Reg *d, Reg *s)\
280
{\
281
    d->Q(0) = F(d->Q(0), s->Q(0));\
282
    XMM_ONLY(\
283
    d->Q(1) = F(d->Q(1), s->Q(1));\
284
    )\
285
}
286

    
287
#if SHIFT == 0
288
static inline int satub(int x)
289
{
290
    if (x < 0)
291
        return 0;
292
    else if (x > 255)
293
        return 255;
294
    else
295
        return x;
296
}
297

    
298
static inline int satuw(int x)
299
{
300
    if (x < 0)
301
        return 0;
302
    else if (x > 65535)
303
        return 65535;
304
    else
305
        return x;
306
}
307

    
308
static inline int satsb(int x)
309
{
310
    if (x < -128)
311
        return -128;
312
    else if (x > 127)
313
        return 127;
314
    else
315
        return x;
316
}
317

    
318
static inline int satsw(int x)
319
{
320
    if (x < -32768)
321
        return -32768;
322
    else if (x > 32767)
323
        return 32767;
324
    else
325
        return x;
326
}
327

    
328
#define FADD(a, b) ((a) + (b))
329
#define FADDUB(a, b) satub((a) + (b))
330
#define FADDUW(a, b) satuw((a) + (b))
331
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
332
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
333

    
334
#define FSUB(a, b) ((a) - (b))
335
#define FSUBUB(a, b) satub((a) - (b))
336
#define FSUBUW(a, b) satuw((a) - (b))
337
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
338
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
339
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
340
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
341
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
342
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
343

    
344
#define FAND(a, b) (a) & (b)
345
#define FANDN(a, b) ((~(a)) & (b))
346
#define FOR(a, b) (a) | (b)
347
#define FXOR(a, b) (a) ^ (b)
348

    
349
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
350
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
351
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
352
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
353

    
354
#define FMULLW(a, b) (a) * (b)
355
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
356
#define FMULHUW(a, b) (a) * (b) >> 16
357
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
358

    
359
#define FAVG(a, b) ((a) + (b) + 1) >> 1
360
#endif
361

    
362
SSE_HELPER_B(helper_paddb, FADD)
363
SSE_HELPER_W(helper_paddw, FADD)
364
SSE_HELPER_L(helper_paddl, FADD)
365
SSE_HELPER_Q(helper_paddq, FADD)
366

    
367
SSE_HELPER_B(helper_psubb, FSUB)
368
SSE_HELPER_W(helper_psubw, FSUB)
369
SSE_HELPER_L(helper_psubl, FSUB)
370
SSE_HELPER_Q(helper_psubq, FSUB)
371

    
372
SSE_HELPER_B(helper_paddusb, FADDUB)
373
SSE_HELPER_B(helper_paddsb, FADDSB)
374
SSE_HELPER_B(helper_psubusb, FSUBUB)
375
SSE_HELPER_B(helper_psubsb, FSUBSB)
376

    
377
SSE_HELPER_W(helper_paddusw, FADDUW)
378
SSE_HELPER_W(helper_paddsw, FADDSW)
379
SSE_HELPER_W(helper_psubusw, FSUBUW)
380
SSE_HELPER_W(helper_psubsw, FSUBSW)
381

    
382
SSE_HELPER_B(helper_pminub, FMINUB)
383
SSE_HELPER_B(helper_pmaxub, FMAXUB)
384

    
385
SSE_HELPER_W(helper_pminsw, FMINSW)
386
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
387

    
388
SSE_HELPER_Q(helper_pand, FAND)
389
SSE_HELPER_Q(helper_pandn, FANDN)
390
SSE_HELPER_Q(helper_por, FOR)
391
SSE_HELPER_Q(helper_pxor, FXOR)
392

    
393
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
394
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
395
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
396

    
397
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
398
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
399
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
400

    
401
SSE_HELPER_W(helper_pmullw, FMULLW)
402
#if SHIFT == 0
403
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
404
#endif
405
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
406
SSE_HELPER_W(helper_pmulhw, FMULHW)
407

    
408
SSE_HELPER_B(helper_pavgb, FAVG)
409
SSE_HELPER_W(helper_pavgw, FAVG)
410

    
411
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
412
{
413
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
414
#if SHIFT == 1
415
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
416
#endif
417
}
418

    
419
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
420
{
421
    int i;
422

    
423
    for(i = 0; i < (2 << SHIFT); i++) {
424
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
425
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
426
    }
427
}
428

    
429
#if SHIFT == 0
430
static inline int abs1(int a)
431
{
432
    if (a < 0)
433
        return -a;
434
    else
435
        return a;
436
}
437
#endif
438
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
439
{
440
    unsigned int val;
441

    
442
    val = 0;
443
    val += abs1(d->B(0) - s->B(0));
444
    val += abs1(d->B(1) - s->B(1));
445
    val += abs1(d->B(2) - s->B(2));
446
    val += abs1(d->B(3) - s->B(3));
447
    val += abs1(d->B(4) - s->B(4));
448
    val += abs1(d->B(5) - s->B(5));
449
    val += abs1(d->B(6) - s->B(6));
450
    val += abs1(d->B(7) - s->B(7));
451
    d->Q(0) = val;
452
#if SHIFT == 1
453
    val = 0;
454
    val += abs1(d->B(8) - s->B(8));
455
    val += abs1(d->B(9) - s->B(9));
456
    val += abs1(d->B(10) - s->B(10));
457
    val += abs1(d->B(11) - s->B(11));
458
    val += abs1(d->B(12) - s->B(12));
459
    val += abs1(d->B(13) - s->B(13));
460
    val += abs1(d->B(14) - s->B(14));
461
    val += abs1(d->B(15) - s->B(15));
462
    d->Q(1) = val;
463
#endif
464
}
465

    
466
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
467
{
468
    int i;
469
    for(i = 0; i < (8 << SHIFT); i++) {
470
        if (s->B(i) & 0x80)
471
            stb(a0 + i, d->B(i));
472
    }
473
}
474

    
475
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
476
{
477
    d->L(0) = val;
478
    d->L(1) = 0;
479
#if SHIFT == 1
480
    d->Q(1) = 0;
481
#endif
482
}
483

    
484
#ifdef TARGET_X86_64
485
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
486
{
487
    d->Q(0) = val;
488
#if SHIFT == 1
489
    d->Q(1) = 0;
490
#endif
491
}
492
#endif
493

    
494
#if SHIFT == 0
495
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
496
{
497
    Reg r;
498
    r.W(0) = s->W(order & 3);
499
    r.W(1) = s->W((order >> 2) & 3);
500
    r.W(2) = s->W((order >> 4) & 3);
501
    r.W(3) = s->W((order >> 6) & 3);
502
    *d = r;
503
}
504
#else
505
void helper_shufps(Reg *d, Reg *s, int order)
506
{
507
    Reg r;
508
    r.L(0) = d->L(order & 3);
509
    r.L(1) = d->L((order >> 2) & 3);
510
    r.L(2) = s->L((order >> 4) & 3);
511
    r.L(3) = s->L((order >> 6) & 3);
512
    *d = r;
513
}
514

    
515
void helper_shufpd(Reg *d, Reg *s, int order)
516
{
517
    Reg r;
518
    r.Q(0) = d->Q(order & 1);
519
    r.Q(1) = s->Q((order >> 1) & 1);
520
    *d = r;
521
}
522

    
523
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
524
{
525
    Reg r;
526
    r.L(0) = s->L(order & 3);
527
    r.L(1) = s->L((order >> 2) & 3);
528
    r.L(2) = s->L((order >> 4) & 3);
529
    r.L(3) = s->L((order >> 6) & 3);
530
    *d = r;
531
}
532

    
533
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
534
{
535
    Reg r;
536
    r.W(0) = s->W(order & 3);
537
    r.W(1) = s->W((order >> 2) & 3);
538
    r.W(2) = s->W((order >> 4) & 3);
539
    r.W(3) = s->W((order >> 6) & 3);
540
    r.Q(1) = s->Q(1);
541
    *d = r;
542
}
543

    
544
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
545
{
546
    Reg r;
547
    r.Q(0) = s->Q(0);
548
    r.W(4) = s->W(4 + (order & 3));
549
    r.W(5) = s->W(4 + ((order >> 2) & 3));
550
    r.W(6) = s->W(4 + ((order >> 4) & 3));
551
    r.W(7) = s->W(4 + ((order >> 6) & 3));
552
    *d = r;
553
}
554
#endif
555

    
556
#if SHIFT == 1
557
/* FPU ops */
558
/* XXX: not accurate */
559

    
560
#define SSE_HELPER_S(name, F)\
561
void helper_ ## name ## ps (Reg *d, Reg *s)\
562
{\
563
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
564
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
565
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
566
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
567
}\
568
\
569
void helper_ ## name ## ss (Reg *d, Reg *s)\
570
{\
571
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
572
}\
573
void helper_ ## name ## pd (Reg *d, Reg *s)\
574
{\
575
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
576
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
577
}\
578
\
579
void helper_ ## name ## sd (Reg *d, Reg *s)\
580
{\
581
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
582
}
583

    
584
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
585
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
586
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
587
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
588
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
589
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
590
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
591

    
592
SSE_HELPER_S(add, FPU_ADD)
593
SSE_HELPER_S(sub, FPU_SUB)
594
SSE_HELPER_S(mul, FPU_MUL)
595
SSE_HELPER_S(div, FPU_DIV)
596
SSE_HELPER_S(min, FPU_MIN)
597
SSE_HELPER_S(max, FPU_MAX)
598
SSE_HELPER_S(sqrt, FPU_SQRT)
599

    
600

    
601
/* float to float conversions */
602
void helper_cvtps2pd(Reg *d, Reg *s)
603
{
604
    float32 s0, s1;
605
    s0 = s->XMM_S(0);
606
    s1 = s->XMM_S(1);
607
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
608
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
609
}
610

    
611
void helper_cvtpd2ps(Reg *d, Reg *s)
612
{
613
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
614
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
615
    d->Q(1) = 0;
616
}
617

    
618
void helper_cvtss2sd(Reg *d, Reg *s)
619
{
620
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
621
}
622

    
623
void helper_cvtsd2ss(Reg *d, Reg *s)
624
{
625
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
626
}
627

    
628
/* integer to float */
629
void helper_cvtdq2ps(Reg *d, Reg *s)
630
{
631
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
632
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
633
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
634
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
635
}
636

    
637
void helper_cvtdq2pd(Reg *d, Reg *s)
638
{
639
    int32_t l0, l1;
640
    l0 = (int32_t)s->XMM_L(0);
641
    l1 = (int32_t)s->XMM_L(1);
642
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
643
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
644
}
645

    
646
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
647
{
648
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
649
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
650
}
651

    
652
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
653
{
654
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
655
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
656
}
657

    
658
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
659
{
660
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
661
}
662

    
663
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
664
{
665
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
666
}
667

    
668
#ifdef TARGET_X86_64
669
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
670
{
671
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
672
}
673

    
674
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
675
{
676
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
677
}
678
#endif
679

    
680
/* float to integer */
681
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
682
{
683
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
684
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
685
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
686
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
687
}
688

    
689
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
690
{
691
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
692
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
693
    d->XMM_Q(1) = 0;
694
}
695

    
696
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
697
{
698
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
699
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
700
}
701

    
702
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
703
{
704
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
705
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
706
}
707

    
708
int32_t helper_cvtss2si(XMMReg *s)
709
{
710
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
711
}
712

    
713
int32_t helper_cvtsd2si(XMMReg *s)
714
{
715
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
716
}
717

    
718
#ifdef TARGET_X86_64
719
int64_t helper_cvtss2sq(XMMReg *s)
720
{
721
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
722
}
723

    
724
int64_t helper_cvtsd2sq(XMMReg *s)
725
{
726
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
727
}
728
#endif
729

    
730
/* float to integer truncated */
731
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
732
{
733
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
734
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
735
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
736
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
737
}
738

    
739
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
740
{
741
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
742
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
743
    d->XMM_Q(1) = 0;
744
}
745

    
746
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
747
{
748
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
749
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
750
}
751

    
752
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
753
{
754
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
755
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
756
}
757

    
758
int32_t helper_cvttss2si(XMMReg *s)
759
{
760
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
761
}
762

    
763
int32_t helper_cvttsd2si(XMMReg *s)
764
{
765
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
766
}
767

    
768
#ifdef TARGET_X86_64
769
int64_t helper_cvttss2sq(XMMReg *s)
770
{
771
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
772
}
773

    
774
int64_t helper_cvttsd2sq(XMMReg *s)
775
{
776
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
777
}
778
#endif
779

    
780
void helper_rsqrtps(XMMReg *d, XMMReg *s)
781
{
782
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
783
    d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
784
    d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
785
    d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
786
}
787

    
788
void helper_rsqrtss(XMMReg *d, XMMReg *s)
789
{
790
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
791
}
792

    
793
void helper_rcpps(XMMReg *d, XMMReg *s)
794
{
795
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
796
    d->XMM_S(1) = approx_rcp(s->XMM_S(1));
797
    d->XMM_S(2) = approx_rcp(s->XMM_S(2));
798
    d->XMM_S(3) = approx_rcp(s->XMM_S(3));
799
}
800

    
801
void helper_rcpss(XMMReg *d, XMMReg *s)
802
{
803
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
804
}
805

    
806
void helper_haddps(XMMReg *d, XMMReg *s)
807
{
808
    XMMReg r;
809
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
810
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
811
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
812
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
813
    *d = r;
814
}
815

    
816
void helper_haddpd(XMMReg *d, XMMReg *s)
817
{
818
    XMMReg r;
819
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
820
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
821
    *d = r;
822
}
823

    
824
void helper_hsubps(XMMReg *d, XMMReg *s)
825
{
826
    XMMReg r;
827
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
828
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
829
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
830
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
831
    *d = r;
832
}
833

    
834
void helper_hsubpd(XMMReg *d, XMMReg *s)
835
{
836
    XMMReg r;
837
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
838
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
839
    *d = r;
840
}
841

    
842
void helper_addsubps(XMMReg *d, XMMReg *s)
843
{
844
    d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
845
    d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
846
    d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
847
    d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
848
}
849

    
850
void helper_addsubpd(XMMReg *d, XMMReg *s)
851
{
852
    d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
853
    d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
854
}
855

    
856
/* XXX: unordered */
857
#define SSE_HELPER_CMP(name, F)\
858
void helper_ ## name ## ps (Reg *d, Reg *s)\
859
{\
860
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
861
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
862
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
863
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
864
}\
865
\
866
void helper_ ## name ## ss (Reg *d, Reg *s)\
867
{\
868
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
869
}\
870
void helper_ ## name ## pd (Reg *d, Reg *s)\
871
{\
872
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
873
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
874
}\
875
\
876
void helper_ ## name ## sd (Reg *d, Reg *s)\
877
{\
878
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
879
}
880

    
881
#define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
882
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
883
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
884
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
885
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
886
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
887
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
888
#define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
889

    
890
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
891
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
892
SSE_HELPER_CMP(cmple, FPU_CMPLE)
893
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
894
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
895
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
896
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
897
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
898

    
899
const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
900

    
901
void helper_ucomiss(Reg *d, Reg *s)
902
{
903
    int ret;
904
    float32 s0, s1;
905

    
906
    s0 = d->XMM_S(0);
907
    s1 = s->XMM_S(0);
908
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
909
    CC_SRC = comis_eflags[ret + 1];
910
}
911

    
912
void helper_comiss(Reg *d, Reg *s)
913
{
914
    int ret;
915
    float32 s0, s1;
916

    
917
    s0 = d->XMM_S(0);
918
    s1 = s->XMM_S(0);
919
    ret = float32_compare(s0, s1, &env->sse_status);
920
    CC_SRC = comis_eflags[ret + 1];
921
}
922

    
923
void helper_ucomisd(Reg *d, Reg *s)
924
{
925
    int ret;
926
    float64 d0, d1;
927

    
928
    d0 = d->XMM_D(0);
929
    d1 = s->XMM_D(0);
930
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
931
    CC_SRC = comis_eflags[ret + 1];
932
}
933

    
934
void helper_comisd(Reg *d, Reg *s)
935
{
936
    int ret;
937
    float64 d0, d1;
938

    
939
    d0 = d->XMM_D(0);
940
    d1 = s->XMM_D(0);
941
    ret = float64_compare(d0, d1, &env->sse_status);
942
    CC_SRC = comis_eflags[ret + 1];
943
}
944

    
945
uint32_t helper_movmskps(Reg *s)
946
{
947
    int b0, b1, b2, b3;
948
    b0 = s->XMM_L(0) >> 31;
949
    b1 = s->XMM_L(1) >> 31;
950
    b2 = s->XMM_L(2) >> 31;
951
    b3 = s->XMM_L(3) >> 31;
952
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
953
}
954

    
955
uint32_t helper_movmskpd(Reg *s)
956
{
957
    int b0, b1;
958
    b0 = s->XMM_L(1) >> 31;
959
    b1 = s->XMM_L(3) >> 31;
960
    return b0 | (b1 << 1);
961
}
962

    
963
#endif
964

    
965
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
966
{
967
    uint32_t val;
968
    val = 0;
969
    val |= (s->B(0) >> 7);
970
    val |= (s->B(1) >> 6) & 0x02;
971
    val |= (s->B(2) >> 5) & 0x04;
972
    val |= (s->B(3) >> 4) & 0x08;
973
    val |= (s->B(4) >> 3) & 0x10;
974
    val |= (s->B(5) >> 2) & 0x20;
975
    val |= (s->B(6) >> 1) & 0x40;
976
    val |= (s->B(7)) & 0x80;
977
#if SHIFT == 1
978
    val |= (s->B(8) << 1) & 0x0100;
979
    val |= (s->B(9) << 2) & 0x0200;
980
    val |= (s->B(10) << 3) & 0x0400;
981
    val |= (s->B(11) << 4) & 0x0800;
982
    val |= (s->B(12) << 5) & 0x1000;
983
    val |= (s->B(13) << 6) & 0x2000;
984
    val |= (s->B(14) << 7) & 0x4000;
985
    val |= (s->B(15) << 8) & 0x8000;
986
#endif
987
    return val;
988
}
989

    
990
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
991
{
992
    Reg r;
993

    
994
    r.B(0) = satsb((int16_t)d->W(0));
995
    r.B(1) = satsb((int16_t)d->W(1));
996
    r.B(2) = satsb((int16_t)d->W(2));
997
    r.B(3) = satsb((int16_t)d->W(3));
998
#if SHIFT == 1
999
    r.B(4) = satsb((int16_t)d->W(4));
1000
    r.B(5) = satsb((int16_t)d->W(5));
1001
    r.B(6) = satsb((int16_t)d->W(6));
1002
    r.B(7) = satsb((int16_t)d->W(7));
1003
#endif
1004
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1005
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1006
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1007
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1008
#if SHIFT == 1
1009
    r.B(12) = satsb((int16_t)s->W(4));
1010
    r.B(13) = satsb((int16_t)s->W(5));
1011
    r.B(14) = satsb((int16_t)s->W(6));
1012
    r.B(15) = satsb((int16_t)s->W(7));
1013
#endif
1014
    *d = r;
1015
}
1016

    
1017
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1018
{
1019
    Reg r;
1020

    
1021
    r.B(0) = satub((int16_t)d->W(0));
1022
    r.B(1) = satub((int16_t)d->W(1));
1023
    r.B(2) = satub((int16_t)d->W(2));
1024
    r.B(3) = satub((int16_t)d->W(3));
1025
#if SHIFT == 1
1026
    r.B(4) = satub((int16_t)d->W(4));
1027
    r.B(5) = satub((int16_t)d->W(5));
1028
    r.B(6) = satub((int16_t)d->W(6));
1029
    r.B(7) = satub((int16_t)d->W(7));
1030
#endif
1031
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1032
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1033
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1034
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1035
#if SHIFT == 1
1036
    r.B(12) = satub((int16_t)s->W(4));
1037
    r.B(13) = satub((int16_t)s->W(5));
1038
    r.B(14) = satub((int16_t)s->W(6));
1039
    r.B(15) = satub((int16_t)s->W(7));
1040
#endif
1041
    *d = r;
1042
}
1043

    
1044
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1045
{
1046
    Reg r;
1047

    
1048
    r.W(0) = satsw(d->L(0));
1049
    r.W(1) = satsw(d->L(1));
1050
#if SHIFT == 1
1051
    r.W(2) = satsw(d->L(2));
1052
    r.W(3) = satsw(d->L(3));
1053
#endif
1054
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1055
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1056
#if SHIFT == 1
1057
    r.W(6) = satsw(s->L(2));
1058
    r.W(7) = satsw(s->L(3));
1059
#endif
1060
    *d = r;
1061
}
1062

    
1063
#define UNPCK_OP(base_name, base)                               \
1064
                                                                \
1065
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1066
{                                                               \
1067
    Reg r;                                              \
1068
                                                                \
1069
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1070
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1071
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1072
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1073
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1074
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1075
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1076
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1077
XMM_ONLY(                                                       \
1078
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1079
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1080
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1081
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1082
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1083
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1084
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1085
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1086
)                                                               \
1087
    *d = r;                                                     \
1088
}                                                               \
1089
                                                                \
1090
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1091
{                                                               \
1092
    Reg r;                                              \
1093
                                                                \
1094
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1095
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1096
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1097
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1098
XMM_ONLY(                                                       \
1099
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1100
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1101
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1102
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1103
)                                                               \
1104
    *d = r;                                                     \
1105
}                                                               \
1106
                                                                \
1107
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1108
{                                                               \
1109
    Reg r;                                              \
1110
                                                                \
1111
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1112
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1113
XMM_ONLY(                                                       \
1114
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1115
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1116
)                                                               \
1117
    *d = r;                                                     \
1118
}                                                               \
1119
                                                                \
1120
XMM_ONLY(                                                       \
1121
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1122
{                                                               \
1123
    Reg r;                                              \
1124
                                                                \
1125
    r.Q(0) = d->Q(base);                                        \
1126
    r.Q(1) = s->Q(base);                                        \
1127
    *d = r;                                                     \
1128
}                                                               \
1129
)
1130

    
1131
UNPCK_OP(l, 0)
1132
UNPCK_OP(h, 1)
1133

    
1134
/* 3DNow! float ops */
1135
#if SHIFT == 0
1136
void helper_pi2fd(MMXReg *d, MMXReg *s)
1137
{
1138
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1139
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1140
}
1141

    
1142
void helper_pi2fw(MMXReg *d, MMXReg *s)
1143
{
1144
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1145
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1146
}
1147

    
1148
void helper_pf2id(MMXReg *d, MMXReg *s)
1149
{
1150
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1151
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1152
}
1153

    
1154
void helper_pf2iw(MMXReg *d, MMXReg *s)
1155
{
1156
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1157
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1158
}
1159

    
1160
void helper_pfacc(MMXReg *d, MMXReg *s)
1161
{
1162
    MMXReg r;
1163
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1164
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1165
    *d = r;
1166
}
1167

    
1168
void helper_pfadd(MMXReg *d, MMXReg *s)
1169
{
1170
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1171
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1172
}
1173

    
1174
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1175
{
1176
    d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1177
    d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1178
}
1179

    
1180
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1181
{
1182
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1183
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1184
}
1185

    
1186
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1187
{
1188
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1189
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1190
}
1191

    
1192
void helper_pfmax(MMXReg *d, MMXReg *s)
1193
{
1194
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1195
        d->MMX_S(0) = s->MMX_S(0);
1196
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1197
        d->MMX_S(1) = s->MMX_S(1);
1198
}
1199

    
1200
void helper_pfmin(MMXReg *d, MMXReg *s)
1201
{
1202
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1203
        d->MMX_S(0) = s->MMX_S(0);
1204
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1205
        d->MMX_S(1) = s->MMX_S(1);
1206
}
1207

    
1208
void helper_pfmul(MMXReg *d, MMXReg *s)
1209
{
1210
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1211
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1212
}
1213

    
1214
void helper_pfnacc(MMXReg *d, MMXReg *s)
1215
{
1216
    MMXReg r;
1217
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1218
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1219
    *d = r;
1220
}
1221

    
1222
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1223
{
1224
    MMXReg r;
1225
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1226
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1227
    *d = r;
1228
}
1229

    
1230
void helper_pfrcp(MMXReg *d, MMXReg *s)
1231
{
1232
    d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1233
    d->MMX_S(1) = d->MMX_S(0);
1234
}
1235

    
1236
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1237
{
1238
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1239
    d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1240
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1241
    d->MMX_L(0) = d->MMX_L(1);
1242
}
1243

    
1244
void helper_pfsub(MMXReg *d, MMXReg *s)
1245
{
1246
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1247
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1248
}
1249

    
1250
void helper_pfsubr(MMXReg *d, MMXReg *s)
1251
{
1252
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1253
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1254
}
1255

    
1256
void helper_pswapd(MMXReg *d, MMXReg *s)
1257
{
1258
    MMXReg r;
1259
    r.MMX_L(0) = s->MMX_L(1);
1260
    r.MMX_L(1) = s->MMX_L(0);
1261
    *d = r;
1262
}
1263
#endif
1264

    
1265
/* SSSE3 op helpers */
1266
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1267
{
1268
    int i;
1269
    Reg r;
1270

    
1271
    for (i = 0; i < (8 << SHIFT); i++)
1272
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1273

    
1274
    *d = r;
1275
}
1276

    
1277
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1278
{
1279
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1280
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1281
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1282
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1283
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1284
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1285
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1286
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1287
}
1288

    
1289
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1290
{
1291
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1292
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1293
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1294
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1295
}
1296

    
1297
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1298
{
1299
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1300
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1301
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1302
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1303
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1304
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1305
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1306
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1307
}
1308

    
1309
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1310
{
1311
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1312
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1313
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1314
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1315
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1316
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1317
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1318
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1319
#if SHIFT == 1
1320
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1321
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1322
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1323
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1324
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1325
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1326
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1327
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1328
#endif
1329
}
1330

    
1331
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1332
{
1333
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1334
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1335
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1336
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1337
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1338
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1339
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1340
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1341
}
1342

    
1343
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1344
{
1345
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1346
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1347
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1348
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1349
}
1350

    
1351
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1352
{
1353
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1354
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1355
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1356
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1357
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1358
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1359
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1360
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1361
}
1362

    
1363
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1364
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1365
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1366
SSE_HELPER_B(helper_pabsb, FABSB)
1367
SSE_HELPER_W(helper_pabsw, FABSW)
1368
SSE_HELPER_L(helper_pabsd, FABSL)
1369

    
1370
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1371
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1372

    
1373
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1374
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1375
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1376
SSE_HELPER_B(helper_psignb, FSIGNB)
1377
SSE_HELPER_W(helper_psignw, FSIGNW)
1378
SSE_HELPER_L(helper_psignd, FSIGNL)
1379

    
1380
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1381
{
1382
    Reg r;
1383

    
1384
    /* XXX could be checked during translation */
1385
    if (shift >= (16 << SHIFT)) {
1386
        r.Q(0) = 0;
1387
        XMM_ONLY(r.Q(1) = 0);
1388
    } else {
1389
        shift <<= 3;
1390
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1391
#if SHIFT == 0
1392
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1393
                 SHR(d->Q(0), shift -  64);
1394
#else
1395
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1396
                 SHR(s->Q(1), shift -  64) |
1397
                 SHR(d->Q(0), shift - 128) |
1398
                 SHR(d->Q(1), shift - 192);
1399
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1400
                 SHR(s->Q(1), shift -   0) |
1401
                 SHR(d->Q(0), shift -  64) |
1402
                 SHR(d->Q(1), shift - 128);
1403
#endif
1404
#undef SHR
1405
    }
1406

    
1407
    *d = r;
1408
}
1409

    
1410
#define XMM0 env->xmm_regs[0]
1411

    
1412
#if SHIFT == 1
1413
#define SSE_HELPER_V(name, elem, num, F)\
1414
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1415
{\
1416
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1417
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1418
    if (num > 2) {\
1419
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1420
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1421
        if (num > 4) {\
1422
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1423
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1424
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1425
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1426
            if (num > 8) {\
1427
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1428
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1429
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1430
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1431
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1432
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1433
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1434
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1435
            }\
1436
        }\
1437
    }\
1438
}
1439

    
1440
#define SSE_HELPER_I(name, elem, num, F)\
1441
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1442
{\
1443
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1444
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1445
    if (num > 2) {\
1446
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1447
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1448
        if (num > 4) {\
1449
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1450
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1451
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1452
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1453
            if (num > 8) {\
1454
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1455
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1456
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1457
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1458
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1459
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1460
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1461
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1462
            }\
1463
        }\
1464
    }\
1465
}
1466

    
1467
/* SSE4.1 op helpers */
1468
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1469
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1470
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1471
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1472
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1473
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1474

    
1475
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1476
{
1477
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1478
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1479

    
1480
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1481
}
1482

    
1483
#define SSE_HELPER_F(name, elem, num, F)\
1484
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1485
{\
1486
    d->elem(0) = F(0);\
1487
    d->elem(1) = F(1);\
1488
    if (num > 2) {\
1489
        d->elem(2) = F(2);\
1490
        d->elem(3) = F(3);\
1491
        if (num > 4) {\
1492
            d->elem(4) = F(4);\
1493
            d->elem(5) = F(5);\
1494
            d->elem(6) = F(6);\
1495
            d->elem(7) = F(7);\
1496
        }\
1497
    }\
1498
}
1499

    
1500
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1501
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1502
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1503
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1504
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1505
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1506
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1507
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1508
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1509
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1510
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1511
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1512

    
1513
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1514
{
1515
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1516
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1517
}
1518

    
1519
#define FCMPEQQ(d, s) d == s ? -1 : 0
1520
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1521

    
1522
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1523
{
1524
    d->W(0) = satuw((int32_t) d->L(0));
1525
    d->W(1) = satuw((int32_t) d->L(1));
1526
    d->W(2) = satuw((int32_t) d->L(2));
1527
    d->W(3) = satuw((int32_t) d->L(3));
1528
    d->W(4) = satuw((int32_t) s->L(0));
1529
    d->W(5) = satuw((int32_t) s->L(1));
1530
    d->W(6) = satuw((int32_t) s->L(2));
1531
    d->W(7) = satuw((int32_t) s->L(3));
1532
}
1533

    
1534
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1535
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1536
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1537
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1538
SSE_HELPER_B(helper_pminsb, FMINSB)
1539
SSE_HELPER_L(helper_pminsd, FMINSD)
1540
SSE_HELPER_W(helper_pminuw, MIN)
1541
SSE_HELPER_L(helper_pminud, MIN)
1542
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1543
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1544
SSE_HELPER_W(helper_pmaxuw, MAX)
1545
SSE_HELPER_L(helper_pmaxud, MAX)
1546

    
1547
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1548
SSE_HELPER_L(helper_pmulld, FMULLD)
1549

    
1550
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1551
{
1552
    int idx = 0;
1553

    
1554
    if (s->W(1) < s->W(idx))
1555
        idx = 1;
1556
    if (s->W(2) < s->W(idx))
1557
        idx = 2;
1558
    if (s->W(3) < s->W(idx))
1559
        idx = 3;
1560
    if (s->W(4) < s->W(idx))
1561
        idx = 4;
1562
    if (s->W(5) < s->W(idx))
1563
        idx = 5;
1564
    if (s->W(6) < s->W(idx))
1565
        idx = 6;
1566
    if (s->W(7) < s->W(idx))
1567
        idx = 7;
1568

    
1569
    d->Q(1) = 0;
1570
    d->L(1) = 0;
1571
    d->W(1) = idx;
1572
    d->W(0) = s->W(idx);
1573
}
1574

    
1575
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1576
{
1577
    signed char prev_rounding_mode;
1578

    
1579
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1580
    if (!(mode & (1 << 2)))
1581
        switch (mode & 3) {
1582
        case 0:
1583
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1584
            break;
1585
        case 1:
1586
            set_float_rounding_mode(float_round_down, &env->sse_status);
1587
            break;
1588
        case 2:
1589
            set_float_rounding_mode(float_round_up, &env->sse_status);
1590
            break;
1591
        case 3:
1592
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1593
            break;
1594
        }
1595

    
1596
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1597
    d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1598
    d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1599
    d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1600

    
1601
#if 0 /* TODO */
1602
    if (mode & (1 << 3))
1603
        set_float_exception_flags(
1604
                        get_float_exception_flags(&env->sse_status) &
1605
                        ~float_flag_inexact,
1606
                        &env->sse_status);
1607
#endif
1608
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1609
}
1610

    
1611
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1612
{
1613
    signed char prev_rounding_mode;
1614

    
1615
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1616
    if (!(mode & (1 << 2)))
1617
        switch (mode & 3) {
1618
        case 0:
1619
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1620
            break;
1621
        case 1:
1622
            set_float_rounding_mode(float_round_down, &env->sse_status);
1623
            break;
1624
        case 2:
1625
            set_float_rounding_mode(float_round_up, &env->sse_status);
1626
            break;
1627
        case 3:
1628
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1629
            break;
1630
        }
1631

    
1632
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1633
    d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1634

    
1635
#if 0 /* TODO */
1636
    if (mode & (1 << 3))
1637
        set_float_exception_flags(
1638
                        get_float_exception_flags(&env->sse_status) &
1639
                        ~float_flag_inexact,
1640
                        &env->sse_status);
1641
#endif
1642
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1643
}
1644

    
1645
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1646
{
1647
    signed char prev_rounding_mode;
1648

    
1649
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1650
    if (!(mode & (1 << 2)))
1651
        switch (mode & 3) {
1652
        case 0:
1653
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1654
            break;
1655
        case 1:
1656
            set_float_rounding_mode(float_round_down, &env->sse_status);
1657
            break;
1658
        case 2:
1659
            set_float_rounding_mode(float_round_up, &env->sse_status);
1660
            break;
1661
        case 3:
1662
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1663
            break;
1664
        }
1665

    
1666
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1667

    
1668
#if 0 /* TODO */
1669
    if (mode & (1 << 3))
1670
        set_float_exception_flags(
1671
                        get_float_exception_flags(&env->sse_status) &
1672
                        ~float_flag_inexact,
1673
                        &env->sse_status);
1674
#endif
1675
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1676
}
1677

    
1678
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1679
{
1680
    signed char prev_rounding_mode;
1681

    
1682
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1683
    if (!(mode & (1 << 2)))
1684
        switch (mode & 3) {
1685
        case 0:
1686
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1687
            break;
1688
        case 1:
1689
            set_float_rounding_mode(float_round_down, &env->sse_status);
1690
            break;
1691
        case 2:
1692
            set_float_rounding_mode(float_round_up, &env->sse_status);
1693
            break;
1694
        case 3:
1695
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1696
            break;
1697
        }
1698

    
1699
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1700

    
1701
#if 0 /* TODO */
1702
    if (mode & (1 << 3))
1703
        set_float_exception_flags(
1704
                        get_float_exception_flags(&env->sse_status) &
1705
                        ~float_flag_inexact,
1706
                        &env->sse_status);
1707
#endif
1708
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1709
}
1710

    
1711
#define FBLENDP(d, s, m) m ? s : d
1712
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1713
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1714
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1715

    
1716
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1717
{
1718
    float32 iresult = 0 /*float32_zero*/;
1719

    
1720
    if (mask & (1 << 4))
1721
        iresult = float32_add(iresult,
1722
                        float32_mul(d->L(0), s->L(0), &env->sse_status),
1723
                        &env->sse_status);
1724
    if (mask & (1 << 5))
1725
        iresult = float32_add(iresult,
1726
                        float32_mul(d->L(1), s->L(1), &env->sse_status),
1727
                        &env->sse_status);
1728
    if (mask & (1 << 6))
1729
        iresult = float32_add(iresult,
1730
                        float32_mul(d->L(2), s->L(2), &env->sse_status),
1731
                        &env->sse_status);
1732
    if (mask & (1 << 7))
1733
        iresult = float32_add(iresult,
1734
                        float32_mul(d->L(3), s->L(3), &env->sse_status),
1735
                        &env->sse_status);
1736
    d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1737
    d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1738
    d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1739
    d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1740
}
1741

    
1742
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1743
{
1744
    float64 iresult = 0 /*float64_zero*/;
1745

    
1746
    if (mask & (1 << 4))
1747
        iresult = float64_add(iresult,
1748
                        float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1749
                        &env->sse_status);
1750
    if (mask & (1 << 5))
1751
        iresult = float64_add(iresult,
1752
                        float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1753
                        &env->sse_status);
1754
    d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1755
    d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1756
}
1757

    
1758
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1759
{
1760
    int s0 = (offset & 3) << 2;
1761
    int d0 = (offset & 4) << 0;
1762
    int i;
1763
    Reg r;
1764

    
1765
    for (i = 0; i < 8; i++, d0++) {
1766
        r.W(i) = 0;
1767
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1768
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1769
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1770
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1771
    }
1772

    
1773
    *d = r;
1774
}
1775

    
1776
/* SSE4.2 op helpers */
1777
/* it's unclear whether signed or unsigned */
1778
#define FCMPGTQ(d, s) d > s ? -1 : 0
1779
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1780

    
1781
static inline int pcmp_elen(int reg, uint32_t ctrl)
1782
{
1783
    int val;
1784

    
1785
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1786
    if (ctrl >> 8)
1787
        val = abs1((int64_t) env->regs[reg]);
1788
    else
1789
        val = abs1((int32_t) env->regs[reg]);
1790

    
1791
    if (ctrl & 1) {
1792
        if (val > 8)
1793
            return 8;
1794
    } else
1795
        if (val > 16)
1796
            return 16;
1797

    
1798
    return val;
1799
}
1800

    
1801
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1802
{
1803
    int val = 0;
1804

    
1805
    if (ctrl & 1) {
1806
        while (val < 8 && r->W(val))
1807
            val++;
1808
    } else
1809
        while (val < 16 && r->B(val))
1810
            val++;
1811

    
1812
    return val;
1813
}
1814

    
1815
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1816
{
1817
    switch ((ctrl >> 0) & 3) {
1818
    case 0:
1819
        return r->B(i);
1820
    case 1:
1821
        return r->W(i);
1822
    case 2:
1823
        return (int8_t) r->B(i);
1824
    case 3:
1825
    default:
1826
        return (int16_t) r->W(i);
1827
    }
1828
}
1829

    
1830
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1831
                int8_t ctrl, int valids, int validd)
1832
{
1833
    unsigned int res = 0;
1834
    int v;
1835
    int j, i;
1836
    int upper = (ctrl & 1) ? 7 : 15;
1837

    
1838
    valids--;
1839
    validd--;
1840

    
1841
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1842

    
1843
    switch ((ctrl >> 2) & 3) {
1844
    case 0:
1845
        for (j = valids; j >= 0; j--) {
1846
            res <<= 1;
1847
            v = pcmp_val(s, ctrl, j);
1848
            for (i = validd; i >= 0; i--)
1849
                res |= (v == pcmp_val(d, ctrl, i));
1850
        }
1851
        break;
1852
    case 1:
1853
        for (j = valids; j >= 0; j--) {
1854
            res <<= 1;
1855
            v = pcmp_val(s, ctrl, j);
1856
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1857
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1858
                        pcmp_val(d, ctrl, i - 1) >= v);
1859
        }
1860
        break;
1861
    case 2:
1862
        res = (2 << (upper - MAX(valids, validd))) - 1;
1863
        res <<= MAX(valids, validd) - MIN(valids, validd);
1864
        for (i = MIN(valids, validd); i >= 0; i--) {
1865
            res <<= 1;
1866
            v = pcmp_val(s, ctrl, i);
1867
            res |= (v == pcmp_val(d, ctrl, i));
1868
        }
1869
        break;
1870
    case 3:
1871
        for (j = valids - validd; j >= 0; j--) {
1872
            res <<= 1;
1873
            res |= 1;
1874
            for (i = MIN(upper - j, validd); i >= 0; i--)
1875
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1876
        }
1877
        break;
1878
    }
1879

    
1880
    switch ((ctrl >> 4) & 3) {
1881
    case 1:
1882
        res ^= (2 << upper) - 1;
1883
        break;
1884
    case 3:
1885
        res ^= (2 << valids) - 1;
1886
        break;
1887
    }
1888

    
1889
    if (res)
1890
       CC_SRC |= CC_C;
1891
    if (res & 1)
1892
       CC_SRC |= CC_O;
1893

    
1894
    return res;
1895
}
1896

    
1897
static inline int rffs1(unsigned int val)
1898
{
1899
    int ret = 1, hi;
1900

    
1901
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1902
        if (val >> hi) {
1903
            val >>= hi;
1904
            ret += hi;
1905
        }
1906

    
1907
    return ret;
1908
}
1909

    
1910
static inline int ffs1(unsigned int val)
1911
{
1912
    int ret = 1, hi;
1913

    
1914
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1915
        if (val << hi) {
1916
            val <<= hi;
1917
            ret += hi;
1918
        }
1919

    
1920
    return ret;
1921
}
1922

    
1923
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1924
{
1925
    unsigned int res = pcmpxstrx(d, s, ctrl,
1926
                    pcmp_elen(R_EDX, ctrl),
1927
                    pcmp_elen(R_EAX, ctrl));
1928

    
1929
    if (res)
1930
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1931
    else
1932
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1933
}
1934

    
1935
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1936
{
1937
    int i;
1938
    unsigned int res = pcmpxstrx(d, s, ctrl,
1939
                    pcmp_elen(R_EDX, ctrl),
1940
                    pcmp_elen(R_EAX, ctrl));
1941

    
1942
    if ((ctrl >> 6) & 1) {
1943
        if (ctrl & 1)
1944
            for (i = 0; i <= 8; i--, res >>= 1)
1945
                d->W(i) = (res & 1) ? ~0 : 0;
1946
        else
1947
            for (i = 0; i <= 16; i--, res >>= 1)
1948
                d->B(i) = (res & 1) ? ~0 : 0;
1949
    } else {
1950
        d->Q(1) = 0;
1951
        d->Q(0) = res;
1952
    }
1953
}
1954

    
1955
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1956
{
1957
    unsigned int res = pcmpxstrx(d, s, ctrl,
1958
                    pcmp_ilen(s, ctrl),
1959
                    pcmp_ilen(d, ctrl));
1960

    
1961
    if (res)
1962
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1963
    else
1964
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1965
}
1966

    
1967
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1968
{
1969
    int i;
1970
    unsigned int res = pcmpxstrx(d, s, ctrl,
1971
                    pcmp_ilen(s, ctrl),
1972
                    pcmp_ilen(d, ctrl));
1973

    
1974
    if ((ctrl >> 6) & 1) {
1975
        if (ctrl & 1)
1976
            for (i = 0; i <= 8; i--, res >>= 1)
1977
                d->W(i) = (res & 1) ? ~0 : 0;
1978
        else
1979
            for (i = 0; i <= 16; i--, res >>= 1)
1980
                d->B(i) = (res & 1) ? ~0 : 0;
1981
    } else {
1982
        d->Q(1) = 0;
1983
        d->Q(0) = res;
1984
    }
1985
}
1986

    
1987
#define CRCPOLY        0x1edc6f41
1988
#define CRCPOLY_BITREV 0x82f63b78
1989
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
1990
{
1991
    target_ulong crc = (msg & ((target_ulong) -1 >>
1992
                            (TARGET_LONG_BITS - len))) ^ crc1;
1993

    
1994
    while (len--)
1995
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
1996

    
1997
    return crc;
1998
}
1999

    
2000
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2001
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2002
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2003
{
2004
    CC_SRC = n ? 0 : CC_Z;
2005

    
2006
    n = POPCOUNT(n, 0);
2007
    n = POPCOUNT(n, 1);
2008
    n = POPCOUNT(n, 2);
2009
    n = POPCOUNT(n, 3);
2010
    if (type == 1)
2011
        return n & 0xff;
2012

    
2013
    n = POPCOUNT(n, 4);
2014
#ifndef TARGET_X86_64
2015
    return n;
2016
#else
2017
    if (type == 2)
2018
        return n & 0xff;
2019

    
2020
    return POPCOUNT(n, 5);
2021
#endif
2022
}
2023
#endif
2024

    
2025
#undef SHIFT
2026
#undef XMM_ONLY
2027
#undef Reg
2028
#undef B
2029
#undef W
2030
#undef L
2031
#undef Q
2032
#undef SUFFIX