Statistics
| Branch: | Revision:

root / hw / arm / pxa2xx.c @ dccfcd0e

History | View | Annotate | Download (68.3 kB)

1
/*
2
 * Intel XScale PXA255/270 processor support.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Written by Andrzej Zaborowski <balrog@zabor.org>
6
 *
7
 * This code is licensed under the GPL.
8
 */
9

    
10
#include "hw/sysbus.h"
11
#include "hw/arm/pxa.h"
12
#include "sysemu/sysemu.h"
13
#include "hw/char/serial.h"
14
#include "hw/i2c/i2c.h"
15
#include "hw/ssi.h"
16
#include "sysemu/char.h"
17
#include "sysemu/blockdev.h"
18

    
19
static struct {
20
    hwaddr io_base;
21
    int irqn;
22
} pxa255_serial[] = {
23
    { 0x40100000, PXA2XX_PIC_FFUART },
24
    { 0x40200000, PXA2XX_PIC_BTUART },
25
    { 0x40700000, PXA2XX_PIC_STUART },
26
    { 0x41600000, PXA25X_PIC_HWUART },
27
    { 0, 0 }
28
}, pxa270_serial[] = {
29
    { 0x40100000, PXA2XX_PIC_FFUART },
30
    { 0x40200000, PXA2XX_PIC_BTUART },
31
    { 0x40700000, PXA2XX_PIC_STUART },
32
    { 0, 0 }
33
};
34

    
35
typedef struct PXASSPDef {
36
    hwaddr io_base;
37
    int irqn;
38
} PXASSPDef;
39

    
40
#if 0
41
static PXASSPDef pxa250_ssp[] = {
42
    { 0x41000000, PXA2XX_PIC_SSP },
43
    { 0, 0 }
44
};
45
#endif
46

    
47
static PXASSPDef pxa255_ssp[] = {
48
    { 0x41000000, PXA2XX_PIC_SSP },
49
    { 0x41400000, PXA25X_PIC_NSSP },
50
    { 0, 0 }
51
};
52

    
53
#if 0
54
static PXASSPDef pxa26x_ssp[] = {
55
    { 0x41000000, PXA2XX_PIC_SSP },
56
    { 0x41400000, PXA25X_PIC_NSSP },
57
    { 0x41500000, PXA26X_PIC_ASSP },
58
    { 0, 0 }
59
};
60
#endif
61

    
62
static PXASSPDef pxa27x_ssp[] = {
63
    { 0x41000000, PXA2XX_PIC_SSP },
64
    { 0x41700000, PXA27X_PIC_SSP2 },
65
    { 0x41900000, PXA2XX_PIC_SSP3 },
66
    { 0, 0 }
67
};
68

    
69
#define PMCR        0x00        /* Power Manager Control register */
70
#define PSSR        0x04        /* Power Manager Sleep Status register */
71
#define PSPR        0x08        /* Power Manager Scratch-Pad register */
72
#define PWER        0x0c        /* Power Manager Wake-Up Enable register */
73
#define PRER        0x10        /* Power Manager Rising-Edge Detect Enable register */
74
#define PFER        0x14        /* Power Manager Falling-Edge Detect Enable register */
75
#define PEDR        0x18        /* Power Manager Edge-Detect Status register */
76
#define PCFR        0x1c        /* Power Manager General Configuration register */
77
#define PGSR0        0x20        /* Power Manager GPIO Sleep-State register 0 */
78
#define PGSR1        0x24        /* Power Manager GPIO Sleep-State register 1 */
79
#define PGSR2        0x28        /* Power Manager GPIO Sleep-State register 2 */
80
#define PGSR3        0x2c        /* Power Manager GPIO Sleep-State register 3 */
81
#define RCSR        0x30        /* Reset Controller Status register */
82
#define PSLR        0x34        /* Power Manager Sleep Configuration register */
83
#define PTSR        0x38        /* Power Manager Standby Configuration register */
84
#define PVCR        0x40        /* Power Manager Voltage Change Control register */
85
#define PUCR        0x4c        /* Power Manager USIM Card Control/Status register */
86
#define PKWR        0x50        /* Power Manager Keyboard Wake-Up Enable register */
87
#define PKSR        0x54        /* Power Manager Keyboard Level-Detect Status */
88
#define PCMD0        0x80        /* Power Manager I2C Command register File 0 */
89
#define PCMD31        0xfc        /* Power Manager I2C Command register File 31 */
90

    
91
static uint64_t pxa2xx_pm_read(void *opaque, hwaddr addr,
92
                               unsigned size)
93
{
94
    PXA2xxState *s = (PXA2xxState *) opaque;
95

    
96
    switch (addr) {
97
    case PMCR ... PCMD31:
98
        if (addr & 3)
99
            goto fail;
100

    
101
        return s->pm_regs[addr >> 2];
102
    default:
103
    fail:
104
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
105
        break;
106
    }
107
    return 0;
108
}
109

    
110
static void pxa2xx_pm_write(void *opaque, hwaddr addr,
111
                            uint64_t value, unsigned size)
112
{
113
    PXA2xxState *s = (PXA2xxState *) opaque;
114

    
115
    switch (addr) {
116
    case PMCR:
117
        /* Clear the write-one-to-clear bits... */
118
        s->pm_regs[addr >> 2] &= ~(value & 0x2a);
119
        /* ...and set the plain r/w bits */
120
        s->pm_regs[addr >> 2] &= ~0x15;
121
        s->pm_regs[addr >> 2] |= value & 0x15;
122
        break;
123

    
124
    case PSSR:        /* Read-clean registers */
125
    case RCSR:
126
    case PKSR:
127
        s->pm_regs[addr >> 2] &= ~value;
128
        break;
129

    
130
    default:        /* Read-write registers */
131
        if (!(addr & 3)) {
132
            s->pm_regs[addr >> 2] = value;
133
            break;
134
        }
135

    
136
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
137
        break;
138
    }
139
}
140

    
141
static const MemoryRegionOps pxa2xx_pm_ops = {
142
    .read = pxa2xx_pm_read,
143
    .write = pxa2xx_pm_write,
144
    .endianness = DEVICE_NATIVE_ENDIAN,
145
};
146

    
147
static const VMStateDescription vmstate_pxa2xx_pm = {
148
    .name = "pxa2xx_pm",
149
    .version_id = 0,
150
    .minimum_version_id = 0,
151
    .minimum_version_id_old = 0,
152
    .fields      = (VMStateField[]) {
153
        VMSTATE_UINT32_ARRAY(pm_regs, PXA2xxState, 0x40),
154
        VMSTATE_END_OF_LIST()
155
    }
156
};
157

    
158
#define CCCR        0x00        /* Core Clock Configuration register */
159
#define CKEN        0x04        /* Clock Enable register */
160
#define OSCC        0x08        /* Oscillator Configuration register */
161
#define CCSR        0x0c        /* Core Clock Status register */
162

    
163
static uint64_t pxa2xx_cm_read(void *opaque, hwaddr addr,
164
                               unsigned size)
165
{
166
    PXA2xxState *s = (PXA2xxState *) opaque;
167

    
168
    switch (addr) {
169
    case CCCR:
170
    case CKEN:
171
    case OSCC:
172
        return s->cm_regs[addr >> 2];
173

    
174
    case CCSR:
175
        return s->cm_regs[CCCR >> 2] | (3 << 28);
176

    
177
    default:
178
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
179
        break;
180
    }
181
    return 0;
182
}
183

    
184
static void pxa2xx_cm_write(void *opaque, hwaddr addr,
185
                            uint64_t value, unsigned size)
186
{
187
    PXA2xxState *s = (PXA2xxState *) opaque;
188

    
189
    switch (addr) {
190
    case CCCR:
191
    case CKEN:
192
        s->cm_regs[addr >> 2] = value;
193
        break;
194

    
195
    case OSCC:
196
        s->cm_regs[addr >> 2] &= ~0x6c;
197
        s->cm_regs[addr >> 2] |= value & 0x6e;
198
        if ((value >> 1) & 1)                        /* OON */
199
            s->cm_regs[addr >> 2] |= 1 << 0;        /* Oscillator is now stable */
200
        break;
201

    
202
    default:
203
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
204
        break;
205
    }
206
}
207

    
208
static const MemoryRegionOps pxa2xx_cm_ops = {
209
    .read = pxa2xx_cm_read,
210
    .write = pxa2xx_cm_write,
211
    .endianness = DEVICE_NATIVE_ENDIAN,
212
};
213

    
214
static const VMStateDescription vmstate_pxa2xx_cm = {
215
    .name = "pxa2xx_cm",
216
    .version_id = 0,
217
    .minimum_version_id = 0,
218
    .minimum_version_id_old = 0,
219
    .fields      = (VMStateField[]) {
220
        VMSTATE_UINT32_ARRAY(cm_regs, PXA2xxState, 4),
221
        VMSTATE_UINT32(clkcfg, PXA2xxState),
222
        VMSTATE_UINT32(pmnc, PXA2xxState),
223
        VMSTATE_END_OF_LIST()
224
    }
225
};
226

    
227
static int pxa2xx_clkcfg_read(CPUARMState *env, const ARMCPRegInfo *ri,
228
                              uint64_t *value)
229
{
230
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
231
    *value = s->clkcfg;
232
    return 0;
233
}
234

    
235
static int pxa2xx_clkcfg_write(CPUARMState *env, const ARMCPRegInfo *ri,
236
                               uint64_t value)
237
{
238
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
239
    s->clkcfg = value & 0xf;
240
    if (value & 2) {
241
        printf("%s: CPU frequency change attempt\n", __func__);
242
    }
243
    return 0;
244
}
245

    
246
static int pxa2xx_pwrmode_write(CPUARMState *env, const ARMCPRegInfo *ri,
247
                                uint64_t value)
248
{
249
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
250
    static const char *pwrmode[8] = {
251
        "Normal", "Idle", "Deep-idle", "Standby",
252
        "Sleep", "reserved (!)", "reserved (!)", "Deep-sleep",
253
    };
254

    
255
    if (value & 8) {
256
        printf("%s: CPU voltage change attempt\n", __func__);
257
    }
258
    switch (value & 7) {
259
    case 0:
260
        /* Do nothing */
261
        break;
262

    
263
    case 1:
264
        /* Idle */
265
        if (!(s->cm_regs[CCCR >> 2] & (1 << 31))) { /* CPDIS */
266
            cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
267
            break;
268
        }
269
        /* Fall through.  */
270

    
271
    case 2:
272
        /* Deep-Idle */
273
        cpu_interrupt(CPU(s->cpu), CPU_INTERRUPT_HALT);
274
        s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
275
        goto message;
276

    
277
    case 3:
278
        s->cpu->env.uncached_cpsr =
279
            ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
280
        s->cpu->env.cp15.c1_sys = 0;
281
        s->cpu->env.cp15.c1_coproc = 0;
282
        s->cpu->env.cp15.c2_base0 = 0;
283
        s->cpu->env.cp15.c3 = 0;
284
        s->pm_regs[PSSR >> 2] |= 0x8; /* Set STS */
285
        s->pm_regs[RCSR >> 2] |= 0x8; /* Set GPR */
286

    
287
        /*
288
         * The scratch-pad register is almost universally used
289
         * for storing the return address on suspend.  For the
290
         * lack of a resuming bootloader, perform a jump
291
         * directly to that address.
292
         */
293
        memset(s->cpu->env.regs, 0, 4 * 15);
294
        s->cpu->env.regs[15] = s->pm_regs[PSPR >> 2];
295

    
296
#if 0
297
        buffer = 0xe59ff000; /* ldr     pc, [pc, #0] */
298
        cpu_physical_memory_write(0, &buffer, 4);
299
        buffer = s->pm_regs[PSPR >> 2];
300
        cpu_physical_memory_write(8, &buffer, 4);
301
#endif
302

    
303
        /* Suspend */
304
        cpu_interrupt(CPU(arm_env_get_cpu(cpu_single_env)),
305
                      CPU_INTERRUPT_HALT);
306

    
307
        goto message;
308

    
309
    default:
310
    message:
311
        printf("%s: machine entered %s mode\n", __func__,
312
               pwrmode[value & 7]);
313
    }
314

    
315
    return 0;
316
}
317

    
318
static int pxa2xx_cppmnc_read(CPUARMState *env, const ARMCPRegInfo *ri,
319
                              uint64_t *value)
320
{
321
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
322
    *value = s->pmnc;
323
    return 0;
324
}
325

    
326
static int pxa2xx_cppmnc_write(CPUARMState *env, const ARMCPRegInfo *ri,
327
                               uint64_t value)
328
{
329
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
330
    s->pmnc = value;
331
    return 0;
332
}
333

    
334
static int pxa2xx_cpccnt_read(CPUARMState *env, const ARMCPRegInfo *ri,
335
                              uint64_t *value)
336
{
337
    PXA2xxState *s = (PXA2xxState *)ri->opaque;
338
    if (s->pmnc & 1) {
339
        *value = qemu_get_clock_ns(vm_clock);
340
    } else {
341
        *value = 0;
342
    }
343
    return 0;
344
}
345

    
346
static const ARMCPRegInfo pxa_cp_reginfo[] = {
347
    /* cp14 crm==1: perf registers */
348
    { .name = "CPPMNC", .cp = 14, .crn = 0, .crm = 1, .opc1 = 0, .opc2 = 0,
349
      .access = PL1_RW,
350
      .readfn = pxa2xx_cppmnc_read, .writefn = pxa2xx_cppmnc_write },
351
    { .name = "CPCCNT", .cp = 14, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
352
      .access = PL1_RW,
353
      .readfn = pxa2xx_cpccnt_read, .writefn = arm_cp_write_ignore },
354
    { .name = "CPINTEN", .cp = 14, .crn = 4, .crm = 1, .opc1 = 0, .opc2 = 0,
355
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
356
    { .name = "CPFLAG", .cp = 14, .crn = 5, .crm = 1, .opc1 = 0, .opc2 = 0,
357
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
358
    { .name = "CPEVTSEL", .cp = 14, .crn = 8, .crm = 1, .opc1 = 0, .opc2 = 0,
359
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
360
    /* cp14 crm==2: performance count registers */
361
    { .name = "CPPMN0", .cp = 14, .crn = 0, .crm = 2, .opc1 = 0, .opc2 = 0,
362
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
363
    { .name = "CPPMN1", .cp = 14, .crn = 1, .crm = 2, .opc1 = 0, .opc2 = 0,
364
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
365
    { .name = "CPPMN2", .cp = 14, .crn = 2, .crm = 2, .opc1 = 0, .opc2 = 0,
366
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
367
    { .name = "CPPMN3", .cp = 14, .crn = 2, .crm = 3, .opc1 = 0, .opc2 = 0,
368
      .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
369
    /* cp14 crn==6: CLKCFG */
370
    { .name = "CLKCFG", .cp = 14, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
371
      .access = PL1_RW,
372
      .readfn = pxa2xx_clkcfg_read, .writefn = pxa2xx_clkcfg_write },
373
    /* cp14 crn==7: PWRMODE */
374
    { .name = "PWRMODE", .cp = 14, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 0,
375
      .access = PL1_RW,
376
      .readfn = arm_cp_read_zero, .writefn = pxa2xx_pwrmode_write },
377
    REGINFO_SENTINEL
378
};
379

    
380
static void pxa2xx_setup_cp14(PXA2xxState *s)
381
{
382
    define_arm_cp_regs_with_opaque(s->cpu, pxa_cp_reginfo, s);
383
}
384

    
385
#define MDCNFG                0x00        /* SDRAM Configuration register */
386
#define MDREFR                0x04        /* SDRAM Refresh Control register */
387
#define MSC0                0x08        /* Static Memory Control register 0 */
388
#define MSC1                0x0c        /* Static Memory Control register 1 */
389
#define MSC2                0x10        /* Static Memory Control register 2 */
390
#define MECR                0x14        /* Expansion Memory Bus Config register */
391
#define SXCNFG                0x1c        /* Synchronous Static Memory Config register */
392
#define MCMEM0                0x28        /* PC Card Memory Socket 0 Timing register */
393
#define MCMEM1                0x2c        /* PC Card Memory Socket 1 Timing register */
394
#define MCATT0                0x30        /* PC Card Attribute Socket 0 register */
395
#define MCATT1                0x34        /* PC Card Attribute Socket 1 register */
396
#define MCIO0                0x38        /* PC Card I/O Socket 0 Timing register */
397
#define MCIO1                0x3c        /* PC Card I/O Socket 1 Timing register */
398
#define MDMRS                0x40        /* SDRAM Mode Register Set Config register */
399
#define BOOT_DEF        0x44        /* Boot-time Default Configuration register */
400
#define ARB_CNTL        0x48        /* Arbiter Control register */
401
#define BSCNTR0                0x4c        /* Memory Buffer Strength Control register 0 */
402
#define BSCNTR1                0x50        /* Memory Buffer Strength Control register 1 */
403
#define LCDBSCNTR        0x54        /* LCD Buffer Strength Control register */
404
#define MDMRSLP                0x58        /* Low Power SDRAM Mode Set Config register */
405
#define BSCNTR2                0x5c        /* Memory Buffer Strength Control register 2 */
406
#define BSCNTR3                0x60        /* Memory Buffer Strength Control register 3 */
407
#define SA1110                0x64        /* SA-1110 Memory Compatibility register */
408

    
409
static uint64_t pxa2xx_mm_read(void *opaque, hwaddr addr,
410
                               unsigned size)
411
{
412
    PXA2xxState *s = (PXA2xxState *) opaque;
413

    
414
    switch (addr) {
415
    case MDCNFG ... SA1110:
416
        if ((addr & 3) == 0)
417
            return s->mm_regs[addr >> 2];
418

    
419
    default:
420
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
421
        break;
422
    }
423
    return 0;
424
}
425

    
426
static void pxa2xx_mm_write(void *opaque, hwaddr addr,
427
                            uint64_t value, unsigned size)
428
{
429
    PXA2xxState *s = (PXA2xxState *) opaque;
430

    
431
    switch (addr) {
432
    case MDCNFG ... SA1110:
433
        if ((addr & 3) == 0) {
434
            s->mm_regs[addr >> 2] = value;
435
            break;
436
        }
437

    
438
    default:
439
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
440
        break;
441
    }
442
}
443

    
444
static const MemoryRegionOps pxa2xx_mm_ops = {
445
    .read = pxa2xx_mm_read,
446
    .write = pxa2xx_mm_write,
447
    .endianness = DEVICE_NATIVE_ENDIAN,
448
};
449

    
450
static const VMStateDescription vmstate_pxa2xx_mm = {
451
    .name = "pxa2xx_mm",
452
    .version_id = 0,
453
    .minimum_version_id = 0,
454
    .minimum_version_id_old = 0,
455
    .fields      = (VMStateField[]) {
456
        VMSTATE_UINT32_ARRAY(mm_regs, PXA2xxState, 0x1a),
457
        VMSTATE_END_OF_LIST()
458
    }
459
};
460

    
461
/* Synchronous Serial Ports */
462
typedef struct {
463
    SysBusDevice busdev;
464
    MemoryRegion iomem;
465
    qemu_irq irq;
466
    int enable;
467
    SSIBus *bus;
468

    
469
    uint32_t sscr[2];
470
    uint32_t sspsp;
471
    uint32_t ssto;
472
    uint32_t ssitr;
473
    uint32_t sssr;
474
    uint8_t sstsa;
475
    uint8_t ssrsa;
476
    uint8_t ssacd;
477

    
478
    uint32_t rx_fifo[16];
479
    int rx_level;
480
    int rx_start;
481
} PXA2xxSSPState;
482

    
483
#define SSCR0        0x00        /* SSP Control register 0 */
484
#define SSCR1        0x04        /* SSP Control register 1 */
485
#define SSSR        0x08        /* SSP Status register */
486
#define SSITR        0x0c        /* SSP Interrupt Test register */
487
#define SSDR        0x10        /* SSP Data register */
488
#define SSTO        0x28        /* SSP Time-Out register */
489
#define SSPSP        0x2c        /* SSP Programmable Serial Protocol register */
490
#define SSTSA        0x30        /* SSP TX Time Slot Active register */
491
#define SSRSA        0x34        /* SSP RX Time Slot Active register */
492
#define SSTSS        0x38        /* SSP Time Slot Status register */
493
#define SSACD        0x3c        /* SSP Audio Clock Divider register */
494

    
495
/* Bitfields for above registers */
496
#define SSCR0_SPI(x)        (((x) & 0x30) == 0x00)
497
#define SSCR0_SSP(x)        (((x) & 0x30) == 0x10)
498
#define SSCR0_UWIRE(x)        (((x) & 0x30) == 0x20)
499
#define SSCR0_PSP(x)        (((x) & 0x30) == 0x30)
500
#define SSCR0_SSE        (1 << 7)
501
#define SSCR0_RIM        (1 << 22)
502
#define SSCR0_TIM        (1 << 23)
503
#define SSCR0_MOD        (1 << 31)
504
#define SSCR0_DSS(x)        (((((x) >> 16) & 0x10) | ((x) & 0xf)) + 1)
505
#define SSCR1_RIE        (1 << 0)
506
#define SSCR1_TIE        (1 << 1)
507
#define SSCR1_LBM        (1 << 2)
508
#define SSCR1_MWDS        (1 << 5)
509
#define SSCR1_TFT(x)        ((((x) >> 6) & 0xf) + 1)
510
#define SSCR1_RFT(x)        ((((x) >> 10) & 0xf) + 1)
511
#define SSCR1_EFWR        (1 << 14)
512
#define SSCR1_PINTE        (1 << 18)
513
#define SSCR1_TINTE        (1 << 19)
514
#define SSCR1_RSRE        (1 << 20)
515
#define SSCR1_TSRE        (1 << 21)
516
#define SSCR1_EBCEI        (1 << 29)
517
#define SSITR_INT        (7 << 5)
518
#define SSSR_TNF        (1 << 2)
519
#define SSSR_RNE        (1 << 3)
520
#define SSSR_TFS        (1 << 5)
521
#define SSSR_RFS        (1 << 6)
522
#define SSSR_ROR        (1 << 7)
523
#define SSSR_PINT        (1 << 18)
524
#define SSSR_TINT        (1 << 19)
525
#define SSSR_EOC        (1 << 20)
526
#define SSSR_TUR        (1 << 21)
527
#define SSSR_BCE        (1 << 23)
528
#define SSSR_RW                0x00bc0080
529

    
530
static void pxa2xx_ssp_int_update(PXA2xxSSPState *s)
531
{
532
    int level = 0;
533

    
534
    level |= s->ssitr & SSITR_INT;
535
    level |= (s->sssr & SSSR_BCE)  &&  (s->sscr[1] & SSCR1_EBCEI);
536
    level |= (s->sssr & SSSR_TUR)  && !(s->sscr[0] & SSCR0_TIM);
537
    level |= (s->sssr & SSSR_EOC)  &&  (s->sssr & (SSSR_TINT | SSSR_PINT));
538
    level |= (s->sssr & SSSR_TINT) &&  (s->sscr[1] & SSCR1_TINTE);
539
    level |= (s->sssr & SSSR_PINT) &&  (s->sscr[1] & SSCR1_PINTE);
540
    level |= (s->sssr & SSSR_ROR)  && !(s->sscr[0] & SSCR0_RIM);
541
    level |= (s->sssr & SSSR_RFS)  &&  (s->sscr[1] & SSCR1_RIE);
542
    level |= (s->sssr & SSSR_TFS)  &&  (s->sscr[1] & SSCR1_TIE);
543
    qemu_set_irq(s->irq, !!level);
544
}
545

    
546
static void pxa2xx_ssp_fifo_update(PXA2xxSSPState *s)
547
{
548
    s->sssr &= ~(0xf << 12);        /* Clear RFL */
549
    s->sssr &= ~(0xf << 8);        /* Clear TFL */
550
    s->sssr &= ~SSSR_TFS;
551
    s->sssr &= ~SSSR_TNF;
552
    if (s->enable) {
553
        s->sssr |= ((s->rx_level - 1) & 0xf) << 12;
554
        if (s->rx_level >= SSCR1_RFT(s->sscr[1]))
555
            s->sssr |= SSSR_RFS;
556
        else
557
            s->sssr &= ~SSSR_RFS;
558
        if (s->rx_level)
559
            s->sssr |= SSSR_RNE;
560
        else
561
            s->sssr &= ~SSSR_RNE;
562
        /* TX FIFO is never filled, so it is always in underrun
563
           condition if SSP is enabled */
564
        s->sssr |= SSSR_TFS;
565
        s->sssr |= SSSR_TNF;
566
    }
567

    
568
    pxa2xx_ssp_int_update(s);
569
}
570

    
571
static uint64_t pxa2xx_ssp_read(void *opaque, hwaddr addr,
572
                                unsigned size)
573
{
574
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
575
    uint32_t retval;
576

    
577
    switch (addr) {
578
    case SSCR0:
579
        return s->sscr[0];
580
    case SSCR1:
581
        return s->sscr[1];
582
    case SSPSP:
583
        return s->sspsp;
584
    case SSTO:
585
        return s->ssto;
586
    case SSITR:
587
        return s->ssitr;
588
    case SSSR:
589
        return s->sssr | s->ssitr;
590
    case SSDR:
591
        if (!s->enable)
592
            return 0xffffffff;
593
        if (s->rx_level < 1) {
594
            printf("%s: SSP Rx Underrun\n", __FUNCTION__);
595
            return 0xffffffff;
596
        }
597
        s->rx_level --;
598
        retval = s->rx_fifo[s->rx_start ++];
599
        s->rx_start &= 0xf;
600
        pxa2xx_ssp_fifo_update(s);
601
        return retval;
602
    case SSTSA:
603
        return s->sstsa;
604
    case SSRSA:
605
        return s->ssrsa;
606
    case SSTSS:
607
        return 0;
608
    case SSACD:
609
        return s->ssacd;
610
    default:
611
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
612
        break;
613
    }
614
    return 0;
615
}
616

    
617
static void pxa2xx_ssp_write(void *opaque, hwaddr addr,
618
                             uint64_t value64, unsigned size)
619
{
620
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
621
    uint32_t value = value64;
622

    
623
    switch (addr) {
624
    case SSCR0:
625
        s->sscr[0] = value & 0xc7ffffff;
626
        s->enable = value & SSCR0_SSE;
627
        if (value & SSCR0_MOD)
628
            printf("%s: Attempt to use network mode\n", __FUNCTION__);
629
        if (s->enable && SSCR0_DSS(value) < 4)
630
            printf("%s: Wrong data size: %i bits\n", __FUNCTION__,
631
                            SSCR0_DSS(value));
632
        if (!(value & SSCR0_SSE)) {
633
            s->sssr = 0;
634
            s->ssitr = 0;
635
            s->rx_level = 0;
636
        }
637
        pxa2xx_ssp_fifo_update(s);
638
        break;
639

    
640
    case SSCR1:
641
        s->sscr[1] = value;
642
        if (value & (SSCR1_LBM | SSCR1_EFWR))
643
            printf("%s: Attempt to use SSP test mode\n", __FUNCTION__);
644
        pxa2xx_ssp_fifo_update(s);
645
        break;
646

    
647
    case SSPSP:
648
        s->sspsp = value;
649
        break;
650

    
651
    case SSTO:
652
        s->ssto = value;
653
        break;
654

    
655
    case SSITR:
656
        s->ssitr = value & SSITR_INT;
657
        pxa2xx_ssp_int_update(s);
658
        break;
659

    
660
    case SSSR:
661
        s->sssr &= ~(value & SSSR_RW);
662
        pxa2xx_ssp_int_update(s);
663
        break;
664

    
665
    case SSDR:
666
        if (SSCR0_UWIRE(s->sscr[0])) {
667
            if (s->sscr[1] & SSCR1_MWDS)
668
                value &= 0xffff;
669
            else
670
                value &= 0xff;
671
        } else
672
            /* Note how 32bits overflow does no harm here */
673
            value &= (1 << SSCR0_DSS(s->sscr[0])) - 1;
674

    
675
        /* Data goes from here to the Tx FIFO and is shifted out from
676
         * there directly to the slave, no need to buffer it.
677
         */
678
        if (s->enable) {
679
            uint32_t readval;
680
            readval = ssi_transfer(s->bus, value);
681
            if (s->rx_level < 0x10) {
682
                s->rx_fifo[(s->rx_start + s->rx_level ++) & 0xf] = readval;
683
            } else {
684
                s->sssr |= SSSR_ROR;
685
            }
686
        }
687
        pxa2xx_ssp_fifo_update(s);
688
        break;
689

    
690
    case SSTSA:
691
        s->sstsa = value;
692
        break;
693

    
694
    case SSRSA:
695
        s->ssrsa = value;
696
        break;
697

    
698
    case SSACD:
699
        s->ssacd = value;
700
        break;
701

    
702
    default:
703
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
704
        break;
705
    }
706
}
707

    
708
static const MemoryRegionOps pxa2xx_ssp_ops = {
709
    .read = pxa2xx_ssp_read,
710
    .write = pxa2xx_ssp_write,
711
    .endianness = DEVICE_NATIVE_ENDIAN,
712
};
713

    
714
static void pxa2xx_ssp_save(QEMUFile *f, void *opaque)
715
{
716
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
717
    int i;
718

    
719
    qemu_put_be32(f, s->enable);
720

    
721
    qemu_put_be32s(f, &s->sscr[0]);
722
    qemu_put_be32s(f, &s->sscr[1]);
723
    qemu_put_be32s(f, &s->sspsp);
724
    qemu_put_be32s(f, &s->ssto);
725
    qemu_put_be32s(f, &s->ssitr);
726
    qemu_put_be32s(f, &s->sssr);
727
    qemu_put_8s(f, &s->sstsa);
728
    qemu_put_8s(f, &s->ssrsa);
729
    qemu_put_8s(f, &s->ssacd);
730

    
731
    qemu_put_byte(f, s->rx_level);
732
    for (i = 0; i < s->rx_level; i ++)
733
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 0xf]);
734
}
735

    
736
static int pxa2xx_ssp_load(QEMUFile *f, void *opaque, int version_id)
737
{
738
    PXA2xxSSPState *s = (PXA2xxSSPState *) opaque;
739
    int i;
740

    
741
    s->enable = qemu_get_be32(f);
742

    
743
    qemu_get_be32s(f, &s->sscr[0]);
744
    qemu_get_be32s(f, &s->sscr[1]);
745
    qemu_get_be32s(f, &s->sspsp);
746
    qemu_get_be32s(f, &s->ssto);
747
    qemu_get_be32s(f, &s->ssitr);
748
    qemu_get_be32s(f, &s->sssr);
749
    qemu_get_8s(f, &s->sstsa);
750
    qemu_get_8s(f, &s->ssrsa);
751
    qemu_get_8s(f, &s->ssacd);
752

    
753
    s->rx_level = qemu_get_byte(f);
754
    s->rx_start = 0;
755
    for (i = 0; i < s->rx_level; i ++)
756
        s->rx_fifo[i] = qemu_get_byte(f);
757

    
758
    return 0;
759
}
760

    
761
static int pxa2xx_ssp_init(SysBusDevice *dev)
762
{
763
    PXA2xxSSPState *s = FROM_SYSBUS(PXA2xxSSPState, dev);
764

    
765
    sysbus_init_irq(dev, &s->irq);
766

    
767
    memory_region_init_io(&s->iomem, &pxa2xx_ssp_ops, s, "pxa2xx-ssp", 0x1000);
768
    sysbus_init_mmio(dev, &s->iomem);
769
    register_savevm(&dev->qdev, "pxa2xx_ssp", -1, 0,
770
                    pxa2xx_ssp_save, pxa2xx_ssp_load, s);
771

    
772
    s->bus = ssi_create_bus(&dev->qdev, "ssi");
773
    return 0;
774
}
775

    
776
/* Real-Time Clock */
777
#define RCNR                0x00        /* RTC Counter register */
778
#define RTAR                0x04        /* RTC Alarm register */
779
#define RTSR                0x08        /* RTC Status register */
780
#define RTTR                0x0c        /* RTC Timer Trim register */
781
#define RDCR                0x10        /* RTC Day Counter register */
782
#define RYCR                0x14        /* RTC Year Counter register */
783
#define RDAR1                0x18        /* RTC Wristwatch Day Alarm register 1 */
784
#define RYAR1                0x1c        /* RTC Wristwatch Year Alarm register 1 */
785
#define RDAR2                0x20        /* RTC Wristwatch Day Alarm register 2 */
786
#define RYAR2                0x24        /* RTC Wristwatch Year Alarm register 2 */
787
#define SWCR                0x28        /* RTC Stopwatch Counter register */
788
#define SWAR1                0x2c        /* RTC Stopwatch Alarm register 1 */
789
#define SWAR2                0x30        /* RTC Stopwatch Alarm register 2 */
790
#define RTCPICR                0x34        /* RTC Periodic Interrupt Counter register */
791
#define PIAR                0x38        /* RTC Periodic Interrupt Alarm register */
792

    
793
typedef struct {
794
    SysBusDevice busdev;
795
    MemoryRegion iomem;
796
    uint32_t rttr;
797
    uint32_t rtsr;
798
    uint32_t rtar;
799
    uint32_t rdar1;
800
    uint32_t rdar2;
801
    uint32_t ryar1;
802
    uint32_t ryar2;
803
    uint32_t swar1;
804
    uint32_t swar2;
805
    uint32_t piar;
806
    uint32_t last_rcnr;
807
    uint32_t last_rdcr;
808
    uint32_t last_rycr;
809
    uint32_t last_swcr;
810
    uint32_t last_rtcpicr;
811
    int64_t last_hz;
812
    int64_t last_sw;
813
    int64_t last_pi;
814
    QEMUTimer *rtc_hz;
815
    QEMUTimer *rtc_rdal1;
816
    QEMUTimer *rtc_rdal2;
817
    QEMUTimer *rtc_swal1;
818
    QEMUTimer *rtc_swal2;
819
    QEMUTimer *rtc_pi;
820
    qemu_irq rtc_irq;
821
} PXA2xxRTCState;
822

    
823
static inline void pxa2xx_rtc_int_update(PXA2xxRTCState *s)
824
{
825
    qemu_set_irq(s->rtc_irq, !!(s->rtsr & 0x2553));
826
}
827

    
828
static void pxa2xx_rtc_hzupdate(PXA2xxRTCState *s)
829
{
830
    int64_t rt = qemu_get_clock_ms(rtc_clock);
831
    s->last_rcnr += ((rt - s->last_hz) << 15) /
832
            (1000 * ((s->rttr & 0xffff) + 1));
833
    s->last_rdcr += ((rt - s->last_hz) << 15) /
834
            (1000 * ((s->rttr & 0xffff) + 1));
835
    s->last_hz = rt;
836
}
837

    
838
static void pxa2xx_rtc_swupdate(PXA2xxRTCState *s)
839
{
840
    int64_t rt = qemu_get_clock_ms(rtc_clock);
841
    if (s->rtsr & (1 << 12))
842
        s->last_swcr += (rt - s->last_sw) / 10;
843
    s->last_sw = rt;
844
}
845

    
846
static void pxa2xx_rtc_piupdate(PXA2xxRTCState *s)
847
{
848
    int64_t rt = qemu_get_clock_ms(rtc_clock);
849
    if (s->rtsr & (1 << 15))
850
        s->last_swcr += rt - s->last_pi;
851
    s->last_pi = rt;
852
}
853

    
854
static inline void pxa2xx_rtc_alarm_update(PXA2xxRTCState *s,
855
                uint32_t rtsr)
856
{
857
    if ((rtsr & (1 << 2)) && !(rtsr & (1 << 0)))
858
        qemu_mod_timer(s->rtc_hz, s->last_hz +
859
                (((s->rtar - s->last_rcnr) * 1000 *
860
                  ((s->rttr & 0xffff) + 1)) >> 15));
861
    else
862
        qemu_del_timer(s->rtc_hz);
863

    
864
    if ((rtsr & (1 << 5)) && !(rtsr & (1 << 4)))
865
        qemu_mod_timer(s->rtc_rdal1, s->last_hz +
866
                (((s->rdar1 - s->last_rdcr) * 1000 *
867
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
868
    else
869
        qemu_del_timer(s->rtc_rdal1);
870

    
871
    if ((rtsr & (1 << 7)) && !(rtsr & (1 << 6)))
872
        qemu_mod_timer(s->rtc_rdal2, s->last_hz +
873
                (((s->rdar2 - s->last_rdcr) * 1000 *
874
                  ((s->rttr & 0xffff) + 1)) >> 15)); /* TODO: fixup */
875
    else
876
        qemu_del_timer(s->rtc_rdal2);
877

    
878
    if ((rtsr & 0x1200) == 0x1200 && !(rtsr & (1 << 8)))
879
        qemu_mod_timer(s->rtc_swal1, s->last_sw +
880
                        (s->swar1 - s->last_swcr) * 10); /* TODO: fixup */
881
    else
882
        qemu_del_timer(s->rtc_swal1);
883

    
884
    if ((rtsr & 0x1800) == 0x1800 && !(rtsr & (1 << 10)))
885
        qemu_mod_timer(s->rtc_swal2, s->last_sw +
886
                        (s->swar2 - s->last_swcr) * 10); /* TODO: fixup */
887
    else
888
        qemu_del_timer(s->rtc_swal2);
889

    
890
    if ((rtsr & 0xc000) == 0xc000 && !(rtsr & (1 << 13)))
891
        qemu_mod_timer(s->rtc_pi, s->last_pi +
892
                        (s->piar & 0xffff) - s->last_rtcpicr);
893
    else
894
        qemu_del_timer(s->rtc_pi);
895
}
896

    
897
static inline void pxa2xx_rtc_hz_tick(void *opaque)
898
{
899
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
900
    s->rtsr |= (1 << 0);
901
    pxa2xx_rtc_alarm_update(s, s->rtsr);
902
    pxa2xx_rtc_int_update(s);
903
}
904

    
905
static inline void pxa2xx_rtc_rdal1_tick(void *opaque)
906
{
907
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
908
    s->rtsr |= (1 << 4);
909
    pxa2xx_rtc_alarm_update(s, s->rtsr);
910
    pxa2xx_rtc_int_update(s);
911
}
912

    
913
static inline void pxa2xx_rtc_rdal2_tick(void *opaque)
914
{
915
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
916
    s->rtsr |= (1 << 6);
917
    pxa2xx_rtc_alarm_update(s, s->rtsr);
918
    pxa2xx_rtc_int_update(s);
919
}
920

    
921
static inline void pxa2xx_rtc_swal1_tick(void *opaque)
922
{
923
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
924
    s->rtsr |= (1 << 8);
925
    pxa2xx_rtc_alarm_update(s, s->rtsr);
926
    pxa2xx_rtc_int_update(s);
927
}
928

    
929
static inline void pxa2xx_rtc_swal2_tick(void *opaque)
930
{
931
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
932
    s->rtsr |= (1 << 10);
933
    pxa2xx_rtc_alarm_update(s, s->rtsr);
934
    pxa2xx_rtc_int_update(s);
935
}
936

    
937
static inline void pxa2xx_rtc_pi_tick(void *opaque)
938
{
939
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
940
    s->rtsr |= (1 << 13);
941
    pxa2xx_rtc_piupdate(s);
942
    s->last_rtcpicr = 0;
943
    pxa2xx_rtc_alarm_update(s, s->rtsr);
944
    pxa2xx_rtc_int_update(s);
945
}
946

    
947
static uint64_t pxa2xx_rtc_read(void *opaque, hwaddr addr,
948
                                unsigned size)
949
{
950
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
951

    
952
    switch (addr) {
953
    case RTTR:
954
        return s->rttr;
955
    case RTSR:
956
        return s->rtsr;
957
    case RTAR:
958
        return s->rtar;
959
    case RDAR1:
960
        return s->rdar1;
961
    case RDAR2:
962
        return s->rdar2;
963
    case RYAR1:
964
        return s->ryar1;
965
    case RYAR2:
966
        return s->ryar2;
967
    case SWAR1:
968
        return s->swar1;
969
    case SWAR2:
970
        return s->swar2;
971
    case PIAR:
972
        return s->piar;
973
    case RCNR:
974
        return s->last_rcnr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
975
                (1000 * ((s->rttr & 0xffff) + 1));
976
    case RDCR:
977
        return s->last_rdcr + ((qemu_get_clock_ms(rtc_clock) - s->last_hz) << 15) /
978
                (1000 * ((s->rttr & 0xffff) + 1));
979
    case RYCR:
980
        return s->last_rycr;
981
    case SWCR:
982
        if (s->rtsr & (1 << 12))
983
            return s->last_swcr + (qemu_get_clock_ms(rtc_clock) - s->last_sw) / 10;
984
        else
985
            return s->last_swcr;
986
    default:
987
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
988
        break;
989
    }
990
    return 0;
991
}
992

    
993
static void pxa2xx_rtc_write(void *opaque, hwaddr addr,
994
                             uint64_t value64, unsigned size)
995
{
996
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
997
    uint32_t value = value64;
998

    
999
    switch (addr) {
1000
    case RTTR:
1001
        if (!(s->rttr & (1 << 31))) {
1002
            pxa2xx_rtc_hzupdate(s);
1003
            s->rttr = value;
1004
            pxa2xx_rtc_alarm_update(s, s->rtsr);
1005
        }
1006
        break;
1007

    
1008
    case RTSR:
1009
        if ((s->rtsr ^ value) & (1 << 15))
1010
            pxa2xx_rtc_piupdate(s);
1011

    
1012
        if ((s->rtsr ^ value) & (1 << 12))
1013
            pxa2xx_rtc_swupdate(s);
1014

    
1015
        if (((s->rtsr ^ value) & 0x4aac) | (value & ~0xdaac))
1016
            pxa2xx_rtc_alarm_update(s, value);
1017

    
1018
        s->rtsr = (value & 0xdaac) | (s->rtsr & ~(value & ~0xdaac));
1019
        pxa2xx_rtc_int_update(s);
1020
        break;
1021

    
1022
    case RTAR:
1023
        s->rtar = value;
1024
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1025
        break;
1026

    
1027
    case RDAR1:
1028
        s->rdar1 = value;
1029
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1030
        break;
1031

    
1032
    case RDAR2:
1033
        s->rdar2 = value;
1034
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1035
        break;
1036

    
1037
    case RYAR1:
1038
        s->ryar1 = value;
1039
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1040
        break;
1041

    
1042
    case RYAR2:
1043
        s->ryar2 = value;
1044
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1045
        break;
1046

    
1047
    case SWAR1:
1048
        pxa2xx_rtc_swupdate(s);
1049
        s->swar1 = value;
1050
        s->last_swcr = 0;
1051
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1052
        break;
1053

    
1054
    case SWAR2:
1055
        s->swar2 = value;
1056
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1057
        break;
1058

    
1059
    case PIAR:
1060
        s->piar = value;
1061
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1062
        break;
1063

    
1064
    case RCNR:
1065
        pxa2xx_rtc_hzupdate(s);
1066
        s->last_rcnr = value;
1067
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1068
        break;
1069

    
1070
    case RDCR:
1071
        pxa2xx_rtc_hzupdate(s);
1072
        s->last_rdcr = value;
1073
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1074
        break;
1075

    
1076
    case RYCR:
1077
        s->last_rycr = value;
1078
        break;
1079

    
1080
    case SWCR:
1081
        pxa2xx_rtc_swupdate(s);
1082
        s->last_swcr = value;
1083
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1084
        break;
1085

    
1086
    case RTCPICR:
1087
        pxa2xx_rtc_piupdate(s);
1088
        s->last_rtcpicr = value & 0xffff;
1089
        pxa2xx_rtc_alarm_update(s, s->rtsr);
1090
        break;
1091

    
1092
    default:
1093
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1094
    }
1095
}
1096

    
1097
static const MemoryRegionOps pxa2xx_rtc_ops = {
1098
    .read = pxa2xx_rtc_read,
1099
    .write = pxa2xx_rtc_write,
1100
    .endianness = DEVICE_NATIVE_ENDIAN,
1101
};
1102

    
1103
static int pxa2xx_rtc_init(SysBusDevice *dev)
1104
{
1105
    PXA2xxRTCState *s = FROM_SYSBUS(PXA2xxRTCState, dev);
1106
    struct tm tm;
1107
    int wom;
1108

    
1109
    s->rttr = 0x7fff;
1110
    s->rtsr = 0;
1111

    
1112
    qemu_get_timedate(&tm, 0);
1113
    wom = ((tm.tm_mday - 1) / 7) + 1;
1114

    
1115
    s->last_rcnr = (uint32_t) mktimegm(&tm);
1116
    s->last_rdcr = (wom << 20) | ((tm.tm_wday + 1) << 17) |
1117
            (tm.tm_hour << 12) | (tm.tm_min << 6) | tm.tm_sec;
1118
    s->last_rycr = ((tm.tm_year + 1900) << 9) |
1119
            ((tm.tm_mon + 1) << 5) | tm.tm_mday;
1120
    s->last_swcr = (tm.tm_hour << 19) |
1121
            (tm.tm_min << 13) | (tm.tm_sec << 7);
1122
    s->last_rtcpicr = 0;
1123
    s->last_hz = s->last_sw = s->last_pi = qemu_get_clock_ms(rtc_clock);
1124

    
1125
    s->rtc_hz    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_hz_tick,    s);
1126
    s->rtc_rdal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal1_tick, s);
1127
    s->rtc_rdal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_rdal2_tick, s);
1128
    s->rtc_swal1 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal1_tick, s);
1129
    s->rtc_swal2 = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_swal2_tick, s);
1130
    s->rtc_pi    = qemu_new_timer_ms(rtc_clock, pxa2xx_rtc_pi_tick,    s);
1131

    
1132
    sysbus_init_irq(dev, &s->rtc_irq);
1133

    
1134
    memory_region_init_io(&s->iomem, &pxa2xx_rtc_ops, s, "pxa2xx-rtc", 0x10000);
1135
    sysbus_init_mmio(dev, &s->iomem);
1136

    
1137
    return 0;
1138
}
1139

    
1140
static void pxa2xx_rtc_pre_save(void *opaque)
1141
{
1142
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1143

    
1144
    pxa2xx_rtc_hzupdate(s);
1145
    pxa2xx_rtc_piupdate(s);
1146
    pxa2xx_rtc_swupdate(s);
1147
}
1148

    
1149
static int pxa2xx_rtc_post_load(void *opaque, int version_id)
1150
{
1151
    PXA2xxRTCState *s = (PXA2xxRTCState *) opaque;
1152

    
1153
    pxa2xx_rtc_alarm_update(s, s->rtsr);
1154

    
1155
    return 0;
1156
}
1157

    
1158
static const VMStateDescription vmstate_pxa2xx_rtc_regs = {
1159
    .name = "pxa2xx_rtc",
1160
    .version_id = 0,
1161
    .minimum_version_id = 0,
1162
    .minimum_version_id_old = 0,
1163
    .pre_save = pxa2xx_rtc_pre_save,
1164
    .post_load = pxa2xx_rtc_post_load,
1165
    .fields = (VMStateField[]) {
1166
        VMSTATE_UINT32(rttr, PXA2xxRTCState),
1167
        VMSTATE_UINT32(rtsr, PXA2xxRTCState),
1168
        VMSTATE_UINT32(rtar, PXA2xxRTCState),
1169
        VMSTATE_UINT32(rdar1, PXA2xxRTCState),
1170
        VMSTATE_UINT32(rdar2, PXA2xxRTCState),
1171
        VMSTATE_UINT32(ryar1, PXA2xxRTCState),
1172
        VMSTATE_UINT32(ryar2, PXA2xxRTCState),
1173
        VMSTATE_UINT32(swar1, PXA2xxRTCState),
1174
        VMSTATE_UINT32(swar2, PXA2xxRTCState),
1175
        VMSTATE_UINT32(piar, PXA2xxRTCState),
1176
        VMSTATE_UINT32(last_rcnr, PXA2xxRTCState),
1177
        VMSTATE_UINT32(last_rdcr, PXA2xxRTCState),
1178
        VMSTATE_UINT32(last_rycr, PXA2xxRTCState),
1179
        VMSTATE_UINT32(last_swcr, PXA2xxRTCState),
1180
        VMSTATE_UINT32(last_rtcpicr, PXA2xxRTCState),
1181
        VMSTATE_INT64(last_hz, PXA2xxRTCState),
1182
        VMSTATE_INT64(last_sw, PXA2xxRTCState),
1183
        VMSTATE_INT64(last_pi, PXA2xxRTCState),
1184
        VMSTATE_END_OF_LIST(),
1185
    },
1186
};
1187

    
1188
static void pxa2xx_rtc_sysbus_class_init(ObjectClass *klass, void *data)
1189
{
1190
    DeviceClass *dc = DEVICE_CLASS(klass);
1191
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1192

    
1193
    k->init = pxa2xx_rtc_init;
1194
    dc->desc = "PXA2xx RTC Controller";
1195
    dc->vmsd = &vmstate_pxa2xx_rtc_regs;
1196
}
1197

    
1198
static const TypeInfo pxa2xx_rtc_sysbus_info = {
1199
    .name          = "pxa2xx_rtc",
1200
    .parent        = TYPE_SYS_BUS_DEVICE,
1201
    .instance_size = sizeof(PXA2xxRTCState),
1202
    .class_init    = pxa2xx_rtc_sysbus_class_init,
1203
};
1204

    
1205
/* I2C Interface */
1206
typedef struct {
1207
    I2CSlave i2c;
1208
    PXA2xxI2CState *host;
1209
} PXA2xxI2CSlaveState;
1210

    
1211
struct PXA2xxI2CState {
1212
    SysBusDevice busdev;
1213
    MemoryRegion iomem;
1214
    PXA2xxI2CSlaveState *slave;
1215
    i2c_bus *bus;
1216
    qemu_irq irq;
1217
    uint32_t offset;
1218
    uint32_t region_size;
1219

    
1220
    uint16_t control;
1221
    uint16_t status;
1222
    uint8_t ibmr;
1223
    uint8_t data;
1224
};
1225

    
1226
#define IBMR        0x80        /* I2C Bus Monitor register */
1227
#define IDBR        0x88        /* I2C Data Buffer register */
1228
#define ICR        0x90        /* I2C Control register */
1229
#define ISR        0x98        /* I2C Status register */
1230
#define ISAR        0xa0        /* I2C Slave Address register */
1231

    
1232
static void pxa2xx_i2c_update(PXA2xxI2CState *s)
1233
{
1234
    uint16_t level = 0;
1235
    level |= s->status & s->control & (1 << 10);                /* BED */
1236
    level |= (s->status & (1 << 7)) && (s->control & (1 << 9));        /* IRF */
1237
    level |= (s->status & (1 << 6)) && (s->control & (1 << 8));        /* ITE */
1238
    level |= s->status & (1 << 9);                                /* SAD */
1239
    qemu_set_irq(s->irq, !!level);
1240
}
1241

    
1242
/* These are only stubs now.  */
1243
static void pxa2xx_i2c_event(I2CSlave *i2c, enum i2c_event event)
1244
{
1245
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1246
    PXA2xxI2CState *s = slave->host;
1247

    
1248
    switch (event) {
1249
    case I2C_START_SEND:
1250
        s->status |= (1 << 9);                                /* set SAD */
1251
        s->status &= ~(1 << 0);                                /* clear RWM */
1252
        break;
1253
    case I2C_START_RECV:
1254
        s->status |= (1 << 9);                                /* set SAD */
1255
        s->status |= 1 << 0;                                /* set RWM */
1256
        break;
1257
    case I2C_FINISH:
1258
        s->status |= (1 << 4);                                /* set SSD */
1259
        break;
1260
    case I2C_NACK:
1261
        s->status |= 1 << 1;                                /* set ACKNAK */
1262
        break;
1263
    }
1264
    pxa2xx_i2c_update(s);
1265
}
1266

    
1267
static int pxa2xx_i2c_rx(I2CSlave *i2c)
1268
{
1269
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1270
    PXA2xxI2CState *s = slave->host;
1271
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1272
        return 0;
1273

    
1274
    if (s->status & (1 << 0)) {                        /* RWM */
1275
        s->status |= 1 << 6;                        /* set ITE */
1276
    }
1277
    pxa2xx_i2c_update(s);
1278

    
1279
    return s->data;
1280
}
1281

    
1282
static int pxa2xx_i2c_tx(I2CSlave *i2c, uint8_t data)
1283
{
1284
    PXA2xxI2CSlaveState *slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, i2c);
1285
    PXA2xxI2CState *s = slave->host;
1286
    if ((s->control & (1 << 14)) || !(s->control & (1 << 6)))
1287
        return 1;
1288

    
1289
    if (!(s->status & (1 << 0))) {                /* RWM */
1290
        s->status |= 1 << 7;                        /* set IRF */
1291
        s->data = data;
1292
    }
1293
    pxa2xx_i2c_update(s);
1294

    
1295
    return 1;
1296
}
1297

    
1298
static uint64_t pxa2xx_i2c_read(void *opaque, hwaddr addr,
1299
                                unsigned size)
1300
{
1301
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1302

    
1303
    addr -= s->offset;
1304
    switch (addr) {
1305
    case ICR:
1306
        return s->control;
1307
    case ISR:
1308
        return s->status | (i2c_bus_busy(s->bus) << 2);
1309
    case ISAR:
1310
        return s->slave->i2c.address;
1311
    case IDBR:
1312
        return s->data;
1313
    case IBMR:
1314
        if (s->status & (1 << 2))
1315
            s->ibmr ^= 3;        /* Fake SCL and SDA pin changes */
1316
        else
1317
            s->ibmr = 0;
1318
        return s->ibmr;
1319
    default:
1320
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1321
        break;
1322
    }
1323
    return 0;
1324
}
1325

    
1326
static void pxa2xx_i2c_write(void *opaque, hwaddr addr,
1327
                             uint64_t value64, unsigned size)
1328
{
1329
    PXA2xxI2CState *s = (PXA2xxI2CState *) opaque;
1330
    uint32_t value = value64;
1331
    int ack;
1332

    
1333
    addr -= s->offset;
1334
    switch (addr) {
1335
    case ICR:
1336
        s->control = value & 0xfff7;
1337
        if ((value & (1 << 3)) && (value & (1 << 6))) {        /* TB and IUE */
1338
            /* TODO: slave mode */
1339
            if (value & (1 << 0)) {                        /* START condition */
1340
                if (s->data & 1)
1341
                    s->status |= 1 << 0;                /* set RWM */
1342
                else
1343
                    s->status &= ~(1 << 0);                /* clear RWM */
1344
                ack = !i2c_start_transfer(s->bus, s->data >> 1, s->data & 1);
1345
            } else {
1346
                if (s->status & (1 << 0)) {                /* RWM */
1347
                    s->data = i2c_recv(s->bus);
1348
                    if (value & (1 << 2))                /* ACKNAK */
1349
                        i2c_nack(s->bus);
1350
                    ack = 1;
1351
                } else
1352
                    ack = !i2c_send(s->bus, s->data);
1353
            }
1354

    
1355
            if (value & (1 << 1))                        /* STOP condition */
1356
                i2c_end_transfer(s->bus);
1357

    
1358
            if (ack) {
1359
                if (value & (1 << 0))                        /* START condition */
1360
                    s->status |= 1 << 6;                /* set ITE */
1361
                else
1362
                    if (s->status & (1 << 0))                /* RWM */
1363
                        s->status |= 1 << 7;                /* set IRF */
1364
                    else
1365
                        s->status |= 1 << 6;                /* set ITE */
1366
                s->status &= ~(1 << 1);                        /* clear ACKNAK */
1367
            } else {
1368
                s->status |= 1 << 6;                        /* set ITE */
1369
                s->status |= 1 << 10;                        /* set BED */
1370
                s->status |= 1 << 1;                        /* set ACKNAK */
1371
            }
1372
        }
1373
        if (!(value & (1 << 3)) && (value & (1 << 6)))        /* !TB and IUE */
1374
            if (value & (1 << 4))                        /* MA */
1375
                i2c_end_transfer(s->bus);
1376
        pxa2xx_i2c_update(s);
1377
        break;
1378

    
1379
    case ISR:
1380
        s->status &= ~(value & 0x07f0);
1381
        pxa2xx_i2c_update(s);
1382
        break;
1383

    
1384
    case ISAR:
1385
        i2c_set_slave_address(&s->slave->i2c, value & 0x7f);
1386
        break;
1387

    
1388
    case IDBR:
1389
        s->data = value & 0xff;
1390
        break;
1391

    
1392
    default:
1393
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1394
    }
1395
}
1396

    
1397
static const MemoryRegionOps pxa2xx_i2c_ops = {
1398
    .read = pxa2xx_i2c_read,
1399
    .write = pxa2xx_i2c_write,
1400
    .endianness = DEVICE_NATIVE_ENDIAN,
1401
};
1402

    
1403
static const VMStateDescription vmstate_pxa2xx_i2c_slave = {
1404
    .name = "pxa2xx_i2c_slave",
1405
    .version_id = 1,
1406
    .minimum_version_id = 1,
1407
    .minimum_version_id_old = 1,
1408
    .fields      = (VMStateField []) {
1409
        VMSTATE_I2C_SLAVE(i2c, PXA2xxI2CSlaveState),
1410
        VMSTATE_END_OF_LIST()
1411
    }
1412
};
1413

    
1414
static const VMStateDescription vmstate_pxa2xx_i2c = {
1415
    .name = "pxa2xx_i2c",
1416
    .version_id = 1,
1417
    .minimum_version_id = 1,
1418
    .minimum_version_id_old = 1,
1419
    .fields      = (VMStateField []) {
1420
        VMSTATE_UINT16(control, PXA2xxI2CState),
1421
        VMSTATE_UINT16(status, PXA2xxI2CState),
1422
        VMSTATE_UINT8(ibmr, PXA2xxI2CState),
1423
        VMSTATE_UINT8(data, PXA2xxI2CState),
1424
        VMSTATE_STRUCT_POINTER(slave, PXA2xxI2CState,
1425
                               vmstate_pxa2xx_i2c_slave, PXA2xxI2CSlaveState *),
1426
        VMSTATE_END_OF_LIST()
1427
    }
1428
};
1429

    
1430
static int pxa2xx_i2c_slave_init(I2CSlave *i2c)
1431
{
1432
    /* Nothing to do.  */
1433
    return 0;
1434
}
1435

    
1436
static void pxa2xx_i2c_slave_class_init(ObjectClass *klass, void *data)
1437
{
1438
    I2CSlaveClass *k = I2C_SLAVE_CLASS(klass);
1439

    
1440
    k->init = pxa2xx_i2c_slave_init;
1441
    k->event = pxa2xx_i2c_event;
1442
    k->recv = pxa2xx_i2c_rx;
1443
    k->send = pxa2xx_i2c_tx;
1444
}
1445

    
1446
static const TypeInfo pxa2xx_i2c_slave_info = {
1447
    .name          = "pxa2xx-i2c-slave",
1448
    .parent        = TYPE_I2C_SLAVE,
1449
    .instance_size = sizeof(PXA2xxI2CSlaveState),
1450
    .class_init    = pxa2xx_i2c_slave_class_init,
1451
};
1452

    
1453
PXA2xxI2CState *pxa2xx_i2c_init(hwaddr base,
1454
                qemu_irq irq, uint32_t region_size)
1455
{
1456
    DeviceState *dev;
1457
    SysBusDevice *i2c_dev;
1458
    PXA2xxI2CState *s;
1459

    
1460
    i2c_dev = SYS_BUS_DEVICE(qdev_create(NULL, "pxa2xx_i2c"));
1461
    qdev_prop_set_uint32(&i2c_dev->qdev, "size", region_size + 1);
1462
    qdev_prop_set_uint32(&i2c_dev->qdev, "offset", base & region_size);
1463

    
1464
    qdev_init_nofail(&i2c_dev->qdev);
1465

    
1466
    sysbus_mmio_map(i2c_dev, 0, base & ~region_size);
1467
    sysbus_connect_irq(i2c_dev, 0, irq);
1468

    
1469
    s = FROM_SYSBUS(PXA2xxI2CState, i2c_dev);
1470
    /* FIXME: Should the slave device really be on a separate bus?  */
1471
    dev = i2c_create_slave(i2c_init_bus(NULL, "dummy"), "pxa2xx-i2c-slave", 0);
1472
    s->slave = FROM_I2C_SLAVE(PXA2xxI2CSlaveState, I2C_SLAVE(dev));
1473
    s->slave->host = s;
1474

    
1475
    return s;
1476
}
1477

    
1478
static int pxa2xx_i2c_initfn(SysBusDevice *dev)
1479
{
1480
    PXA2xxI2CState *s = FROM_SYSBUS(PXA2xxI2CState, dev);
1481

    
1482
    s->bus = i2c_init_bus(&dev->qdev, "i2c");
1483

    
1484
    memory_region_init_io(&s->iomem, &pxa2xx_i2c_ops, s,
1485
                          "pxa2xx-i2x", s->region_size);
1486
    sysbus_init_mmio(dev, &s->iomem);
1487
    sysbus_init_irq(dev, &s->irq);
1488

    
1489
    return 0;
1490
}
1491

    
1492
i2c_bus *pxa2xx_i2c_bus(PXA2xxI2CState *s)
1493
{
1494
    return s->bus;
1495
}
1496

    
1497
static Property pxa2xx_i2c_properties[] = {
1498
    DEFINE_PROP_UINT32("size", PXA2xxI2CState, region_size, 0x10000),
1499
    DEFINE_PROP_UINT32("offset", PXA2xxI2CState, offset, 0),
1500
    DEFINE_PROP_END_OF_LIST(),
1501
};
1502

    
1503
static void pxa2xx_i2c_class_init(ObjectClass *klass, void *data)
1504
{
1505
    DeviceClass *dc = DEVICE_CLASS(klass);
1506
    SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
1507

    
1508
    k->init = pxa2xx_i2c_initfn;
1509
    dc->desc = "PXA2xx I2C Bus Controller";
1510
    dc->vmsd = &vmstate_pxa2xx_i2c;
1511
    dc->props = pxa2xx_i2c_properties;
1512
}
1513

    
1514
static const TypeInfo pxa2xx_i2c_info = {
1515
    .name          = "pxa2xx_i2c",
1516
    .parent        = TYPE_SYS_BUS_DEVICE,
1517
    .instance_size = sizeof(PXA2xxI2CState),
1518
    .class_init    = pxa2xx_i2c_class_init,
1519
};
1520

    
1521
/* PXA Inter-IC Sound Controller */
1522
static void pxa2xx_i2s_reset(PXA2xxI2SState *i2s)
1523
{
1524
    i2s->rx_len = 0;
1525
    i2s->tx_len = 0;
1526
    i2s->fifo_len = 0;
1527
    i2s->clk = 0x1a;
1528
    i2s->control[0] = 0x00;
1529
    i2s->control[1] = 0x00;
1530
    i2s->status = 0x00;
1531
    i2s->mask = 0x00;
1532
}
1533

    
1534
#define SACR_TFTH(val)        ((val >> 8) & 0xf)
1535
#define SACR_RFTH(val)        ((val >> 12) & 0xf)
1536
#define SACR_DREC(val)        (val & (1 << 3))
1537
#define SACR_DPRL(val)        (val & (1 << 4))
1538

    
1539
static inline void pxa2xx_i2s_update(PXA2xxI2SState *i2s)
1540
{
1541
    int rfs, tfs;
1542
    rfs = SACR_RFTH(i2s->control[0]) < i2s->rx_len &&
1543
            !SACR_DREC(i2s->control[1]);
1544
    tfs = (i2s->tx_len || i2s->fifo_len < SACR_TFTH(i2s->control[0])) &&
1545
            i2s->enable && !SACR_DPRL(i2s->control[1]);
1546

    
1547
    qemu_set_irq(i2s->rx_dma, rfs);
1548
    qemu_set_irq(i2s->tx_dma, tfs);
1549

    
1550
    i2s->status &= 0xe0;
1551
    if (i2s->fifo_len < 16 || !i2s->enable)
1552
        i2s->status |= 1 << 0;                        /* TNF */
1553
    if (i2s->rx_len)
1554
        i2s->status |= 1 << 1;                        /* RNE */
1555
    if (i2s->enable)
1556
        i2s->status |= 1 << 2;                        /* BSY */
1557
    if (tfs)
1558
        i2s->status |= 1 << 3;                        /* TFS */
1559
    if (rfs)
1560
        i2s->status |= 1 << 4;                        /* RFS */
1561
    if (!(i2s->tx_len && i2s->enable))
1562
        i2s->status |= i2s->fifo_len << 8;        /* TFL */
1563
    i2s->status |= MAX(i2s->rx_len, 0xf) << 12;        /* RFL */
1564

    
1565
    qemu_set_irq(i2s->irq, i2s->status & i2s->mask);
1566
}
1567

    
1568
#define SACR0        0x00        /* Serial Audio Global Control register */
1569
#define SACR1        0x04        /* Serial Audio I2S/MSB-Justified Control register */
1570
#define SASR0        0x0c        /* Serial Audio Interface and FIFO Status register */
1571
#define SAIMR        0x14        /* Serial Audio Interrupt Mask register */
1572
#define SAICR        0x18        /* Serial Audio Interrupt Clear register */
1573
#define SADIV        0x60        /* Serial Audio Clock Divider register */
1574
#define SADR        0x80        /* Serial Audio Data register */
1575

    
1576
static uint64_t pxa2xx_i2s_read(void *opaque, hwaddr addr,
1577
                                unsigned size)
1578
{
1579
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1580

    
1581
    switch (addr) {
1582
    case SACR0:
1583
        return s->control[0];
1584
    case SACR1:
1585
        return s->control[1];
1586
    case SASR0:
1587
        return s->status;
1588
    case SAIMR:
1589
        return s->mask;
1590
    case SAICR:
1591
        return 0;
1592
    case SADIV:
1593
        return s->clk;
1594
    case SADR:
1595
        if (s->rx_len > 0) {
1596
            s->rx_len --;
1597
            pxa2xx_i2s_update(s);
1598
            return s->codec_in(s->opaque);
1599
        }
1600
        return 0;
1601
    default:
1602
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1603
        break;
1604
    }
1605
    return 0;
1606
}
1607

    
1608
static void pxa2xx_i2s_write(void *opaque, hwaddr addr,
1609
                             uint64_t value, unsigned size)
1610
{
1611
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1612
    uint32_t *sample;
1613

    
1614
    switch (addr) {
1615
    case SACR0:
1616
        if (value & (1 << 3))                                /* RST */
1617
            pxa2xx_i2s_reset(s);
1618
        s->control[0] = value & 0xff3d;
1619
        if (!s->enable && (value & 1) && s->tx_len) {        /* ENB */
1620
            for (sample = s->fifo; s->fifo_len > 0; s->fifo_len --, sample ++)
1621
                s->codec_out(s->opaque, *sample);
1622
            s->status &= ~(1 << 7);                        /* I2SOFF */
1623
        }
1624
        if (value & (1 << 4))                                /* EFWR */
1625
            printf("%s: Attempt to use special function\n", __FUNCTION__);
1626
        s->enable = (value & 9) == 1;                        /* ENB && !RST*/
1627
        pxa2xx_i2s_update(s);
1628
        break;
1629
    case SACR1:
1630
        s->control[1] = value & 0x0039;
1631
        if (value & (1 << 5))                                /* ENLBF */
1632
            printf("%s: Attempt to use loopback function\n", __FUNCTION__);
1633
        if (value & (1 << 4))                                /* DPRL */
1634
            s->fifo_len = 0;
1635
        pxa2xx_i2s_update(s);
1636
        break;
1637
    case SAIMR:
1638
        s->mask = value & 0x0078;
1639
        pxa2xx_i2s_update(s);
1640
        break;
1641
    case SAICR:
1642
        s->status &= ~(value & (3 << 5));
1643
        pxa2xx_i2s_update(s);
1644
        break;
1645
    case SADIV:
1646
        s->clk = value & 0x007f;
1647
        break;
1648
    case SADR:
1649
        if (s->tx_len && s->enable) {
1650
            s->tx_len --;
1651
            pxa2xx_i2s_update(s);
1652
            s->codec_out(s->opaque, value);
1653
        } else if (s->fifo_len < 16) {
1654
            s->fifo[s->fifo_len ++] = value;
1655
            pxa2xx_i2s_update(s);
1656
        }
1657
        break;
1658
    default:
1659
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1660
    }
1661
}
1662

    
1663
static const MemoryRegionOps pxa2xx_i2s_ops = {
1664
    .read = pxa2xx_i2s_read,
1665
    .write = pxa2xx_i2s_write,
1666
    .endianness = DEVICE_NATIVE_ENDIAN,
1667
};
1668

    
1669
static const VMStateDescription vmstate_pxa2xx_i2s = {
1670
    .name = "pxa2xx_i2s",
1671
    .version_id = 0,
1672
    .minimum_version_id = 0,
1673
    .minimum_version_id_old = 0,
1674
    .fields      = (VMStateField[]) {
1675
        VMSTATE_UINT32_ARRAY(control, PXA2xxI2SState, 2),
1676
        VMSTATE_UINT32(status, PXA2xxI2SState),
1677
        VMSTATE_UINT32(mask, PXA2xxI2SState),
1678
        VMSTATE_UINT32(clk, PXA2xxI2SState),
1679
        VMSTATE_INT32(enable, PXA2xxI2SState),
1680
        VMSTATE_INT32(rx_len, PXA2xxI2SState),
1681
        VMSTATE_INT32(tx_len, PXA2xxI2SState),
1682
        VMSTATE_INT32(fifo_len, PXA2xxI2SState),
1683
        VMSTATE_END_OF_LIST()
1684
    }
1685
};
1686

    
1687
static void pxa2xx_i2s_data_req(void *opaque, int tx, int rx)
1688
{
1689
    PXA2xxI2SState *s = (PXA2xxI2SState *) opaque;
1690
    uint32_t *sample;
1691

    
1692
    /* Signal FIFO errors */
1693
    if (s->enable && s->tx_len)
1694
        s->status |= 1 << 5;                /* TUR */
1695
    if (s->enable && s->rx_len)
1696
        s->status |= 1 << 6;                /* ROR */
1697

    
1698
    /* Should be tx - MIN(tx, s->fifo_len) but we don't really need to
1699
     * handle the cases where it makes a difference.  */
1700
    s->tx_len = tx - s->fifo_len;
1701
    s->rx_len = rx;
1702
    /* Note that is s->codec_out wasn't set, we wouldn't get called.  */
1703
    if (s->enable)
1704
        for (sample = s->fifo; s->fifo_len; s->fifo_len --, sample ++)
1705
            s->codec_out(s->opaque, *sample);
1706
    pxa2xx_i2s_update(s);
1707
}
1708

    
1709
static PXA2xxI2SState *pxa2xx_i2s_init(MemoryRegion *sysmem,
1710
                hwaddr base,
1711
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma)
1712
{
1713
    PXA2xxI2SState *s = (PXA2xxI2SState *)
1714
            g_malloc0(sizeof(PXA2xxI2SState));
1715

    
1716
    s->irq = irq;
1717
    s->rx_dma = rx_dma;
1718
    s->tx_dma = tx_dma;
1719
    s->data_req = pxa2xx_i2s_data_req;
1720

    
1721
    pxa2xx_i2s_reset(s);
1722

    
1723
    memory_region_init_io(&s->iomem, &pxa2xx_i2s_ops, s,
1724
                          "pxa2xx-i2s", 0x100000);
1725
    memory_region_add_subregion(sysmem, base, &s->iomem);
1726

    
1727
    vmstate_register(NULL, base, &vmstate_pxa2xx_i2s, s);
1728

    
1729
    return s;
1730
}
1731

    
1732
/* PXA Fast Infra-red Communications Port */
1733
struct PXA2xxFIrState {
1734
    MemoryRegion iomem;
1735
    qemu_irq irq;
1736
    qemu_irq rx_dma;
1737
    qemu_irq tx_dma;
1738
    int enable;
1739
    CharDriverState *chr;
1740

    
1741
    uint8_t control[3];
1742
    uint8_t status[2];
1743

    
1744
    int rx_len;
1745
    int rx_start;
1746
    uint8_t rx_fifo[64];
1747
};
1748

    
1749
static void pxa2xx_fir_reset(PXA2xxFIrState *s)
1750
{
1751
    s->control[0] = 0x00;
1752
    s->control[1] = 0x00;
1753
    s->control[2] = 0x00;
1754
    s->status[0] = 0x00;
1755
    s->status[1] = 0x00;
1756
    s->enable = 0;
1757
}
1758

    
1759
static inline void pxa2xx_fir_update(PXA2xxFIrState *s)
1760
{
1761
    static const int tresh[4] = { 8, 16, 32, 0 };
1762
    int intr = 0;
1763
    if ((s->control[0] & (1 << 4)) &&                        /* RXE */
1764
                    s->rx_len >= tresh[s->control[2] & 3])        /* TRIG */
1765
        s->status[0] |= 1 << 4;                                /* RFS */
1766
    else
1767
        s->status[0] &= ~(1 << 4);                        /* RFS */
1768
    if (s->control[0] & (1 << 3))                        /* TXE */
1769
        s->status[0] |= 1 << 3;                                /* TFS */
1770
    else
1771
        s->status[0] &= ~(1 << 3);                        /* TFS */
1772
    if (s->rx_len)
1773
        s->status[1] |= 1 << 2;                                /* RNE */
1774
    else
1775
        s->status[1] &= ~(1 << 2);                        /* RNE */
1776
    if (s->control[0] & (1 << 4))                        /* RXE */
1777
        s->status[1] |= 1 << 0;                                /* RSY */
1778
    else
1779
        s->status[1] &= ~(1 << 0);                        /* RSY */
1780

    
1781
    intr |= (s->control[0] & (1 << 5)) &&                /* RIE */
1782
            (s->status[0] & (1 << 4));                        /* RFS */
1783
    intr |= (s->control[0] & (1 << 6)) &&                /* TIE */
1784
            (s->status[0] & (1 << 3));                        /* TFS */
1785
    intr |= (s->control[2] & (1 << 4)) &&                /* TRAIL */
1786
            (s->status[0] & (1 << 6));                        /* EOC */
1787
    intr |= (s->control[0] & (1 << 2)) &&                /* TUS */
1788
            (s->status[0] & (1 << 1));                        /* TUR */
1789
    intr |= s->status[0] & 0x25;                        /* FRE, RAB, EIF */
1790

    
1791
    qemu_set_irq(s->rx_dma, (s->status[0] >> 4) & 1);
1792
    qemu_set_irq(s->tx_dma, (s->status[0] >> 3) & 1);
1793

    
1794
    qemu_set_irq(s->irq, intr && s->enable);
1795
}
1796

    
1797
#define ICCR0        0x00        /* FICP Control register 0 */
1798
#define ICCR1        0x04        /* FICP Control register 1 */
1799
#define ICCR2        0x08        /* FICP Control register 2 */
1800
#define ICDR        0x0c        /* FICP Data register */
1801
#define ICSR0        0x14        /* FICP Status register 0 */
1802
#define ICSR1        0x18        /* FICP Status register 1 */
1803
#define ICFOR        0x1c        /* FICP FIFO Occupancy Status register */
1804

    
1805
static uint64_t pxa2xx_fir_read(void *opaque, hwaddr addr,
1806
                                unsigned size)
1807
{
1808
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1809
    uint8_t ret;
1810

    
1811
    switch (addr) {
1812
    case ICCR0:
1813
        return s->control[0];
1814
    case ICCR1:
1815
        return s->control[1];
1816
    case ICCR2:
1817
        return s->control[2];
1818
    case ICDR:
1819
        s->status[0] &= ~0x01;
1820
        s->status[1] &= ~0x72;
1821
        if (s->rx_len) {
1822
            s->rx_len --;
1823
            ret = s->rx_fifo[s->rx_start ++];
1824
            s->rx_start &= 63;
1825
            pxa2xx_fir_update(s);
1826
            return ret;
1827
        }
1828
        printf("%s: Rx FIFO underrun.\n", __FUNCTION__);
1829
        break;
1830
    case ICSR0:
1831
        return s->status[0];
1832
    case ICSR1:
1833
        return s->status[1] | (1 << 3);                        /* TNF */
1834
    case ICFOR:
1835
        return s->rx_len;
1836
    default:
1837
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1838
        break;
1839
    }
1840
    return 0;
1841
}
1842

    
1843
static void pxa2xx_fir_write(void *opaque, hwaddr addr,
1844
                             uint64_t value64, unsigned size)
1845
{
1846
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1847
    uint32_t value = value64;
1848
    uint8_t ch;
1849

    
1850
    switch (addr) {
1851
    case ICCR0:
1852
        s->control[0] = value;
1853
        if (!(value & (1 << 4)))                        /* RXE */
1854
            s->rx_len = s->rx_start = 0;
1855
        if (!(value & (1 << 3))) {                      /* TXE */
1856
            /* Nop */
1857
        }
1858
        s->enable = value & 1;                                /* ITR */
1859
        if (!s->enable)
1860
            s->status[0] = 0;
1861
        pxa2xx_fir_update(s);
1862
        break;
1863
    case ICCR1:
1864
        s->control[1] = value;
1865
        break;
1866
    case ICCR2:
1867
        s->control[2] = value & 0x3f;
1868
        pxa2xx_fir_update(s);
1869
        break;
1870
    case ICDR:
1871
        if (s->control[2] & (1 << 2))                        /* TXP */
1872
            ch = value;
1873
        else
1874
            ch = ~value;
1875
        if (s->chr && s->enable && (s->control[0] & (1 << 3)))        /* TXE */
1876
            qemu_chr_fe_write(s->chr, &ch, 1);
1877
        break;
1878
    case ICSR0:
1879
        s->status[0] &= ~(value & 0x66);
1880
        pxa2xx_fir_update(s);
1881
        break;
1882
    case ICFOR:
1883
        break;
1884
    default:
1885
        printf("%s: Bad register " REG_FMT "\n", __FUNCTION__, addr);
1886
    }
1887
}
1888

    
1889
static const MemoryRegionOps pxa2xx_fir_ops = {
1890
    .read = pxa2xx_fir_read,
1891
    .write = pxa2xx_fir_write,
1892
    .endianness = DEVICE_NATIVE_ENDIAN,
1893
};
1894

    
1895
static int pxa2xx_fir_is_empty(void *opaque)
1896
{
1897
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1898
    return (s->rx_len < 64);
1899
}
1900

    
1901
static void pxa2xx_fir_rx(void *opaque, const uint8_t *buf, int size)
1902
{
1903
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1904
    if (!(s->control[0] & (1 << 4)))                        /* RXE */
1905
        return;
1906

    
1907
    while (size --) {
1908
        s->status[1] |= 1 << 4;                                /* EOF */
1909
        if (s->rx_len >= 64) {
1910
            s->status[1] |= 1 << 6;                        /* ROR */
1911
            break;
1912
        }
1913

    
1914
        if (s->control[2] & (1 << 3))                        /* RXP */
1915
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = *(buf ++);
1916
        else
1917
            s->rx_fifo[(s->rx_start + s->rx_len ++) & 63] = ~*(buf ++);
1918
    }
1919

    
1920
    pxa2xx_fir_update(s);
1921
}
1922

    
1923
static void pxa2xx_fir_event(void *opaque, int event)
1924
{
1925
}
1926

    
1927
static void pxa2xx_fir_save(QEMUFile *f, void *opaque)
1928
{
1929
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1930
    int i;
1931

    
1932
    qemu_put_be32(f, s->enable);
1933

    
1934
    qemu_put_8s(f, &s->control[0]);
1935
    qemu_put_8s(f, &s->control[1]);
1936
    qemu_put_8s(f, &s->control[2]);
1937
    qemu_put_8s(f, &s->status[0]);
1938
    qemu_put_8s(f, &s->status[1]);
1939

    
1940
    qemu_put_byte(f, s->rx_len);
1941
    for (i = 0; i < s->rx_len; i ++)
1942
        qemu_put_byte(f, s->rx_fifo[(s->rx_start + i) & 63]);
1943
}
1944

    
1945
static int pxa2xx_fir_load(QEMUFile *f, void *opaque, int version_id)
1946
{
1947
    PXA2xxFIrState *s = (PXA2xxFIrState *) opaque;
1948
    int i;
1949

    
1950
    s->enable = qemu_get_be32(f);
1951

    
1952
    qemu_get_8s(f, &s->control[0]);
1953
    qemu_get_8s(f, &s->control[1]);
1954
    qemu_get_8s(f, &s->control[2]);
1955
    qemu_get_8s(f, &s->status[0]);
1956
    qemu_get_8s(f, &s->status[1]);
1957

    
1958
    s->rx_len = qemu_get_byte(f);
1959
    s->rx_start = 0;
1960
    for (i = 0; i < s->rx_len; i ++)
1961
        s->rx_fifo[i] = qemu_get_byte(f);
1962

    
1963
    return 0;
1964
}
1965

    
1966
static PXA2xxFIrState *pxa2xx_fir_init(MemoryRegion *sysmem,
1967
                hwaddr base,
1968
                qemu_irq irq, qemu_irq rx_dma, qemu_irq tx_dma,
1969
                CharDriverState *chr)
1970
{
1971
    PXA2xxFIrState *s = (PXA2xxFIrState *)
1972
            g_malloc0(sizeof(PXA2xxFIrState));
1973

    
1974
    s->irq = irq;
1975
    s->rx_dma = rx_dma;
1976
    s->tx_dma = tx_dma;
1977
    s->chr = chr;
1978

    
1979
    pxa2xx_fir_reset(s);
1980

    
1981
    memory_region_init_io(&s->iomem, &pxa2xx_fir_ops, s, "pxa2xx-fir", 0x1000);
1982
    memory_region_add_subregion(sysmem, base, &s->iomem);
1983

    
1984
    if (chr) {
1985
        qemu_chr_fe_claim_no_fail(chr);
1986
        qemu_chr_add_handlers(chr, pxa2xx_fir_is_empty,
1987
                        pxa2xx_fir_rx, pxa2xx_fir_event, s);
1988
    }
1989

    
1990
    register_savevm(NULL, "pxa2xx_fir", 0, 0, pxa2xx_fir_save,
1991
                    pxa2xx_fir_load, s);
1992

    
1993
    return s;
1994
}
1995

    
1996
static void pxa2xx_reset(void *opaque, int line, int level)
1997
{
1998
    PXA2xxState *s = (PXA2xxState *) opaque;
1999

    
2000
    if (level && (s->pm_regs[PCFR >> 2] & 0x10)) {        /* GPR_EN */
2001
        cpu_reset(CPU(s->cpu));
2002
        /* TODO: reset peripherals */
2003
    }
2004
}
2005

    
2006
/* Initialise a PXA270 integrated chip (ARM based core).  */
2007
PXA2xxState *pxa270_init(MemoryRegion *address_space,
2008
                         unsigned int sdram_size, const char *revision)
2009
{
2010
    PXA2xxState *s;
2011
    int i;
2012
    DriveInfo *dinfo;
2013
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2014

    
2015
    if (revision && strncmp(revision, "pxa27", 5)) {
2016
        fprintf(stderr, "Machine requires a PXA27x processor.\n");
2017
        exit(1);
2018
    }
2019
    if (!revision)
2020
        revision = "pxa270";
2021
    
2022
    s->cpu = cpu_arm_init(revision);
2023
    if (s->cpu == NULL) {
2024
        fprintf(stderr, "Unable to find CPU definition\n");
2025
        exit(1);
2026
    }
2027
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2028

    
2029
    /* SDRAM & Internal Memory Storage */
2030
    memory_region_init_ram(&s->sdram, "pxa270.sdram", sdram_size);
2031
    vmstate_register_ram_global(&s->sdram);
2032
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2033
    memory_region_init_ram(&s->internal, "pxa270.internal", 0x40000);
2034
    vmstate_register_ram_global(&s->internal);
2035
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2036
                                &s->internal);
2037

    
2038
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2039

    
2040
    s->dma = pxa27x_dma_init(0x40000000,
2041
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2042

    
2043
    sysbus_create_varargs("pxa27x-timer", 0x40a00000,
2044
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2045
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2046
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2047
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2048
                    qdev_get_gpio_in(s->pic, PXA27X_PIC_OST_4_11),
2049
                    NULL);
2050

    
2051
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 121);
2052

    
2053
    dinfo = drive_get(IF_SD, 0, 0);
2054
    if (!dinfo) {
2055
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2056
        exit(1);
2057
    }
2058
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2059
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2060
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2061
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2062

    
2063
    for (i = 0; pxa270_serial[i].io_base; i++) {
2064
        if (serial_hds[i]) {
2065
            serial_mm_init(address_space, pxa270_serial[i].io_base, 2,
2066
                           qdev_get_gpio_in(s->pic, pxa270_serial[i].irqn),
2067
                           14857000 / 16, serial_hds[i],
2068
                           DEVICE_NATIVE_ENDIAN);
2069
        } else {
2070
            break;
2071
        }
2072
    }
2073
    if (serial_hds[i])
2074
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2075
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2076
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2077
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2078
                        serial_hds[i]);
2079

    
2080
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2081
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2082

    
2083
    s->cm_base = 0x41300000;
2084
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2085
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2086
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2087
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2088
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2089

    
2090
    pxa2xx_setup_cp14(s);
2091

    
2092
    s->mm_base = 0x48000000;
2093
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2094
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2095
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2096
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2097
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2098
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2099

    
2100
    s->pm_base = 0x40f00000;
2101
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2102
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2103
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2104

    
2105
    for (i = 0; pxa27x_ssp[i].io_base; i ++);
2106
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2107
    for (i = 0; pxa27x_ssp[i].io_base; i ++) {
2108
        DeviceState *dev;
2109
        dev = sysbus_create_simple("pxa2xx-ssp", pxa27x_ssp[i].io_base,
2110
                        qdev_get_gpio_in(s->pic, pxa27x_ssp[i].irqn));
2111
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2112
    }
2113

    
2114
    if (usb_enabled(false)) {
2115
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2116
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2117
    }
2118

    
2119
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2120
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2121

    
2122
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2123
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2124

    
2125
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2126
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2127
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2128
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2129

    
2130
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2131
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2132
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2133
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2134

    
2135
    s->kp = pxa27x_keypad_init(address_space, 0x41500000,
2136
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_KEYPAD));
2137

    
2138
    /* GPIO1 resets the processor */
2139
    /* The handler can be overridden by board-specific code */
2140
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2141
    return s;
2142
}
2143

    
2144
/* Initialise a PXA255 integrated chip (ARM based core).  */
2145
PXA2xxState *pxa255_init(MemoryRegion *address_space, unsigned int sdram_size)
2146
{
2147
    PXA2xxState *s;
2148
    int i;
2149
    DriveInfo *dinfo;
2150

    
2151
    s = (PXA2xxState *) g_malloc0(sizeof(PXA2xxState));
2152

    
2153
    s->cpu = cpu_arm_init("pxa255");
2154
    if (s->cpu == NULL) {
2155
        fprintf(stderr, "Unable to find CPU definition\n");
2156
        exit(1);
2157
    }
2158
    s->reset = qemu_allocate_irqs(pxa2xx_reset, s, 1)[0];
2159

    
2160
    /* SDRAM & Internal Memory Storage */
2161
    memory_region_init_ram(&s->sdram, "pxa255.sdram", sdram_size);
2162
    vmstate_register_ram_global(&s->sdram);
2163
    memory_region_add_subregion(address_space, PXA2XX_SDRAM_BASE, &s->sdram);
2164
    memory_region_init_ram(&s->internal, "pxa255.internal",
2165
                           PXA2XX_INTERNAL_SIZE);
2166
    vmstate_register_ram_global(&s->internal);
2167
    memory_region_add_subregion(address_space, PXA2XX_INTERNAL_BASE,
2168
                                &s->internal);
2169

    
2170
    s->pic = pxa2xx_pic_init(0x40d00000, s->cpu);
2171

    
2172
    s->dma = pxa255_dma_init(0x40000000,
2173
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_DMA));
2174

    
2175
    sysbus_create_varargs("pxa25x-timer", 0x40a00000,
2176
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 0),
2177
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 1),
2178
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 2),
2179
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_OST_0 + 3),
2180
                    NULL);
2181

    
2182
    s->gpio = pxa2xx_gpio_init(0x40e00000, s->cpu, s->pic, 85);
2183

    
2184
    dinfo = drive_get(IF_SD, 0, 0);
2185
    if (!dinfo) {
2186
        fprintf(stderr, "qemu: missing SecureDigital device\n");
2187
        exit(1);
2188
    }
2189
    s->mmc = pxa2xx_mmci_init(address_space, 0x41100000, dinfo->bdrv,
2190
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_MMC),
2191
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_MMCI),
2192
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_MMCI));
2193

    
2194
    for (i = 0; pxa255_serial[i].io_base; i++) {
2195
        if (serial_hds[i]) {
2196
            serial_mm_init(address_space, pxa255_serial[i].io_base, 2,
2197
                           qdev_get_gpio_in(s->pic, pxa255_serial[i].irqn),
2198
                           14745600 / 16, serial_hds[i],
2199
                           DEVICE_NATIVE_ENDIAN);
2200
        } else {
2201
            break;
2202
        }
2203
    }
2204
    if (serial_hds[i])
2205
        s->fir = pxa2xx_fir_init(address_space, 0x40800000,
2206
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_ICP),
2207
                        qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_ICP),
2208
                        qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_ICP),
2209
                        serial_hds[i]);
2210

    
2211
    s->lcd = pxa2xx_lcdc_init(address_space, 0x44000000,
2212
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_LCD));
2213

    
2214
    s->cm_base = 0x41300000;
2215
    s->cm_regs[CCCR >> 2] = 0x02000210;        /* 416.0 MHz */
2216
    s->clkcfg = 0x00000009;                /* Turbo mode active */
2217
    memory_region_init_io(&s->cm_iomem, &pxa2xx_cm_ops, s, "pxa2xx-cm", 0x1000);
2218
    memory_region_add_subregion(address_space, s->cm_base, &s->cm_iomem);
2219
    vmstate_register(NULL, 0, &vmstate_pxa2xx_cm, s);
2220

    
2221
    pxa2xx_setup_cp14(s);
2222

    
2223
    s->mm_base = 0x48000000;
2224
    s->mm_regs[MDMRS >> 2] = 0x00020002;
2225
    s->mm_regs[MDREFR >> 2] = 0x03ca4000;
2226
    s->mm_regs[MECR >> 2] = 0x00000001;        /* Two PC Card sockets */
2227
    memory_region_init_io(&s->mm_iomem, &pxa2xx_mm_ops, s, "pxa2xx-mm", 0x1000);
2228
    memory_region_add_subregion(address_space, s->mm_base, &s->mm_iomem);
2229
    vmstate_register(NULL, 0, &vmstate_pxa2xx_mm, s);
2230

    
2231
    s->pm_base = 0x40f00000;
2232
    memory_region_init_io(&s->pm_iomem, &pxa2xx_pm_ops, s, "pxa2xx-pm", 0x100);
2233
    memory_region_add_subregion(address_space, s->pm_base, &s->pm_iomem);
2234
    vmstate_register(NULL, 0, &vmstate_pxa2xx_pm, s);
2235

    
2236
    for (i = 0; pxa255_ssp[i].io_base; i ++);
2237
    s->ssp = (SSIBus **)g_malloc0(sizeof(SSIBus *) * i);
2238
    for (i = 0; pxa255_ssp[i].io_base; i ++) {
2239
        DeviceState *dev;
2240
        dev = sysbus_create_simple("pxa2xx-ssp", pxa255_ssp[i].io_base,
2241
                        qdev_get_gpio_in(s->pic, pxa255_ssp[i].irqn));
2242
        s->ssp[i] = (SSIBus *)qdev_get_child_bus(dev, "ssi");
2243
    }
2244

    
2245
    if (usb_enabled(false)) {
2246
        sysbus_create_simple("sysbus-ohci", 0x4c000000,
2247
                        qdev_get_gpio_in(s->pic, PXA2XX_PIC_USBH1));
2248
    }
2249

    
2250
    s->pcmcia[0] = pxa2xx_pcmcia_init(address_space, 0x20000000);
2251
    s->pcmcia[1] = pxa2xx_pcmcia_init(address_space, 0x30000000);
2252

    
2253
    sysbus_create_simple("pxa2xx_rtc", 0x40900000,
2254
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_RTCALARM));
2255

    
2256
    s->i2c[0] = pxa2xx_i2c_init(0x40301600,
2257
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2C), 0xffff);
2258
    s->i2c[1] = pxa2xx_i2c_init(0x40f00100,
2259
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_PWRI2C), 0xff);
2260

    
2261
    s->i2s = pxa2xx_i2s_init(address_space, 0x40400000,
2262
                    qdev_get_gpio_in(s->pic, PXA2XX_PIC_I2S),
2263
                    qdev_get_gpio_in(s->dma, PXA2XX_RX_RQ_I2S),
2264
                    qdev_get_gpio_in(s->dma, PXA2XX_TX_RQ_I2S));
2265

    
2266
    /* GPIO1 resets the processor */
2267
    /* The handler can be overridden by board-specific code */
2268
    qdev_connect_gpio_out(s->gpio, 1, s->reset);
2269
    return s;
2270
}
2271

    
2272
static void pxa2xx_ssp_class_init(ObjectClass *klass, void *data)
2273
{
2274
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
2275

    
2276
    sdc->init = pxa2xx_ssp_init;
2277
}
2278

    
2279
static const TypeInfo pxa2xx_ssp_info = {
2280
    .name          = "pxa2xx-ssp",
2281
    .parent        = TYPE_SYS_BUS_DEVICE,
2282
    .instance_size = sizeof(PXA2xxSSPState),
2283
    .class_init    = pxa2xx_ssp_class_init,
2284
};
2285

    
2286
static void pxa2xx_register_types(void)
2287
{
2288
    type_register_static(&pxa2xx_i2c_slave_info);
2289
    type_register_static(&pxa2xx_ssp_info);
2290
    type_register_static(&pxa2xx_i2c_info);
2291
    type_register_static(&pxa2xx_rtc_sysbus_info);
2292
}
2293

    
2294
type_init(pxa2xx_register_types)