Statistics
| Branch: | Revision:

root / hw / char / cadence_uart.c @ dccfcd0e

History | View | Annotate | Download (13.2 kB)

1
/*
2
 * Device model for Cadence UART
3
 *
4
 * Copyright (c) 2010 Xilinx Inc.
5
 * Copyright (c) 2012 Peter A.G. Crosthwaite (peter.crosthwaite@petalogix.com)
6
 * Copyright (c) 2012 PetaLogix Pty Ltd.
7
 * Written by Haibing Ma
8
 *            M.Habib
9
 *
10
 * This program is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU General Public License
12
 * as published by the Free Software Foundation; either version
13
 * 2 of the License, or (at your option) any later version.
14
 *
15
 * You should have received a copy of the GNU General Public License along
16
 * with this program; if not, see <http://www.gnu.org/licenses/>.
17
 */
18

    
19
#include "hw/sysbus.h"
20
#include "sysemu/char.h"
21
#include "qemu/timer.h"
22

    
23
#ifdef CADENCE_UART_ERR_DEBUG
24
#define DB_PRINT(...) do { \
25
    fprintf(stderr,  ": %s: ", __func__); \
26
    fprintf(stderr, ## __VA_ARGS__); \
27
    } while (0);
28
#else
29
    #define DB_PRINT(...)
30
#endif
31

    
32
#define UART_SR_INTR_RTRIG     0x00000001
33
#define UART_SR_INTR_REMPTY    0x00000002
34
#define UART_SR_INTR_RFUL      0x00000004
35
#define UART_SR_INTR_TEMPTY    0x00000008
36
#define UART_SR_INTR_TFUL      0x00000010
37
/* bits fields in CSR that correlate to CISR. If any of these bits are set in
38
 * SR, then the same bit in CISR is set high too */
39
#define UART_SR_TO_CISR_MASK   0x0000001F
40

    
41
#define UART_INTR_ROVR         0x00000020
42
#define UART_INTR_FRAME        0x00000040
43
#define UART_INTR_PARE         0x00000080
44
#define UART_INTR_TIMEOUT      0x00000100
45
#define UART_INTR_DMSI         0x00000200
46

    
47
#define UART_SR_RACTIVE    0x00000400
48
#define UART_SR_TACTIVE    0x00000800
49
#define UART_SR_FDELT      0x00001000
50

    
51
#define UART_CR_RXRST       0x00000001
52
#define UART_CR_TXRST       0x00000002
53
#define UART_CR_RX_EN       0x00000004
54
#define UART_CR_RX_DIS      0x00000008
55
#define UART_CR_TX_EN       0x00000010
56
#define UART_CR_TX_DIS      0x00000020
57
#define UART_CR_RST_TO      0x00000040
58
#define UART_CR_STARTBRK    0x00000080
59
#define UART_CR_STOPBRK     0x00000100
60

    
61
#define UART_MR_CLKS            0x00000001
62
#define UART_MR_CHRL            0x00000006
63
#define UART_MR_CHRL_SH         1
64
#define UART_MR_PAR             0x00000038
65
#define UART_MR_PAR_SH          3
66
#define UART_MR_NBSTOP          0x000000C0
67
#define UART_MR_NBSTOP_SH       6
68
#define UART_MR_CHMODE          0x00000300
69
#define UART_MR_CHMODE_SH       8
70
#define UART_MR_UCLKEN          0x00000400
71
#define UART_MR_IRMODE          0x00000800
72

    
73
#define UART_DATA_BITS_6       (0x3 << UART_MR_CHRL_SH)
74
#define UART_DATA_BITS_7       (0x2 << UART_MR_CHRL_SH)
75
#define UART_PARITY_ODD        (0x1 << UART_MR_PAR_SH)
76
#define UART_PARITY_EVEN       (0x0 << UART_MR_PAR_SH)
77
#define UART_STOP_BITS_1       (0x3 << UART_MR_NBSTOP_SH)
78
#define UART_STOP_BITS_2       (0x2 << UART_MR_NBSTOP_SH)
79
#define NORMAL_MODE            (0x0 << UART_MR_CHMODE_SH)
80
#define ECHO_MODE              (0x1 << UART_MR_CHMODE_SH)
81
#define LOCAL_LOOPBACK         (0x2 << UART_MR_CHMODE_SH)
82
#define REMOTE_LOOPBACK        (0x3 << UART_MR_CHMODE_SH)
83

    
84
#define RX_FIFO_SIZE           16
85
#define TX_FIFO_SIZE           16
86
#define UART_INPUT_CLK         50000000
87

    
88
#define R_CR       (0x00/4)
89
#define R_MR       (0x04/4)
90
#define R_IER      (0x08/4)
91
#define R_IDR      (0x0C/4)
92
#define R_IMR      (0x10/4)
93
#define R_CISR     (0x14/4)
94
#define R_BRGR     (0x18/4)
95
#define R_RTOR     (0x1C/4)
96
#define R_RTRIG    (0x20/4)
97
#define R_MCR      (0x24/4)
98
#define R_MSR      (0x28/4)
99
#define R_SR       (0x2C/4)
100
#define R_TX_RX    (0x30/4)
101
#define R_BDIV     (0x34/4)
102
#define R_FDEL     (0x38/4)
103
#define R_PMIN     (0x3C/4)
104
#define R_PWID     (0x40/4)
105
#define R_TTRIG    (0x44/4)
106

    
107
#define R_MAX (R_TTRIG + 1)
108

    
109
typedef struct {
110
    SysBusDevice busdev;
111
    MemoryRegion iomem;
112
    uint32_t r[R_MAX];
113
    uint8_t r_fifo[RX_FIFO_SIZE];
114
    uint32_t rx_wpos;
115
    uint32_t rx_count;
116
    uint64_t char_tx_time;
117
    CharDriverState *chr;
118
    qemu_irq irq;
119
    struct QEMUTimer *fifo_trigger_handle;
120
    struct QEMUTimer *tx_time_handle;
121
} UartState;
122

    
123
static void uart_update_status(UartState *s)
124
{
125
    s->r[R_CISR] |= s->r[R_SR] & UART_SR_TO_CISR_MASK;
126
    qemu_set_irq(s->irq, !!(s->r[R_IMR] & s->r[R_CISR]));
127
}
128

    
129
static void fifo_trigger_update(void *opaque)
130
{
131
    UartState *s = (UartState *)opaque;
132

    
133
    s->r[R_CISR] |= UART_INTR_TIMEOUT;
134

    
135
    uart_update_status(s);
136
}
137

    
138
static void uart_tx_redo(UartState *s)
139
{
140
    uint64_t new_tx_time = qemu_get_clock_ns(vm_clock);
141

    
142
    qemu_mod_timer(s->tx_time_handle, new_tx_time + s->char_tx_time);
143

    
144
    s->r[R_SR] |= UART_SR_INTR_TEMPTY;
145

    
146
    uart_update_status(s);
147
}
148

    
149
static void uart_tx_write(void *opaque)
150
{
151
    UartState *s = (UartState *)opaque;
152

    
153
    uart_tx_redo(s);
154
}
155

    
156
static void uart_rx_reset(UartState *s)
157
{
158
    s->rx_wpos = 0;
159
    s->rx_count = 0;
160
    qemu_chr_accept_input(s->chr);
161

    
162
    s->r[R_SR] |= UART_SR_INTR_REMPTY;
163
    s->r[R_SR] &= ~UART_SR_INTR_RFUL;
164
}
165

    
166
static void uart_tx_reset(UartState *s)
167
{
168
    s->r[R_SR] |= UART_SR_INTR_TEMPTY;
169
    s->r[R_SR] &= ~UART_SR_INTR_TFUL;
170
}
171

    
172
static void uart_send_breaks(UartState *s)
173
{
174
    int break_enabled = 1;
175

    
176
    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_BREAK,
177
                               &break_enabled);
178
}
179

    
180
static void uart_parameters_setup(UartState *s)
181
{
182
    QEMUSerialSetParams ssp;
183
    unsigned int baud_rate, packet_size;
184

    
185
    baud_rate = (s->r[R_MR] & UART_MR_CLKS) ?
186
            UART_INPUT_CLK / 8 : UART_INPUT_CLK;
187

    
188
    ssp.speed = baud_rate / (s->r[R_BRGR] * (s->r[R_BDIV] + 1));
189
    packet_size = 1;
190

    
191
    switch (s->r[R_MR] & UART_MR_PAR) {
192
    case UART_PARITY_EVEN:
193
        ssp.parity = 'E';
194
        packet_size++;
195
        break;
196
    case UART_PARITY_ODD:
197
        ssp.parity = 'O';
198
        packet_size++;
199
        break;
200
    default:
201
        ssp.parity = 'N';
202
        break;
203
    }
204

    
205
    switch (s->r[R_MR] & UART_MR_CHRL) {
206
    case UART_DATA_BITS_6:
207
        ssp.data_bits = 6;
208
        break;
209
    case UART_DATA_BITS_7:
210
        ssp.data_bits = 7;
211
        break;
212
    default:
213
        ssp.data_bits = 8;
214
        break;
215
    }
216

    
217
    switch (s->r[R_MR] & UART_MR_NBSTOP) {
218
    case UART_STOP_BITS_1:
219
        ssp.stop_bits = 1;
220
        break;
221
    default:
222
        ssp.stop_bits = 2;
223
        break;
224
    }
225

    
226
    packet_size += ssp.data_bits + ssp.stop_bits;
227
    s->char_tx_time = (get_ticks_per_sec() / ssp.speed) * packet_size;
228
    qemu_chr_fe_ioctl(s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp);
229
}
230

    
231
static int uart_can_receive(void *opaque)
232
{
233
    UartState *s = (UartState *)opaque;
234

    
235
    return RX_FIFO_SIZE - s->rx_count;
236
}
237

    
238
static void uart_ctrl_update(UartState *s)
239
{
240
    if (s->r[R_CR] & UART_CR_TXRST) {
241
        uart_tx_reset(s);
242
    }
243

    
244
    if (s->r[R_CR] & UART_CR_RXRST) {
245
        uart_rx_reset(s);
246
    }
247

    
248
    s->r[R_CR] &= ~(UART_CR_TXRST | UART_CR_RXRST);
249

    
250
    if ((s->r[R_CR] & UART_CR_TX_EN) && !(s->r[R_CR] & UART_CR_TX_DIS)) {
251
            uart_tx_redo(s);
252
    }
253

    
254
    if (s->r[R_CR] & UART_CR_STARTBRK && !(s->r[R_CR] & UART_CR_STOPBRK)) {
255
        uart_send_breaks(s);
256
    }
257
}
258

    
259
static void uart_write_rx_fifo(void *opaque, const uint8_t *buf, int size)
260
{
261
    UartState *s = (UartState *)opaque;
262
    uint64_t new_rx_time = qemu_get_clock_ns(vm_clock);
263
    int i;
264

    
265
    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
266
        return;
267
    }
268

    
269
    s->r[R_SR] &= ~UART_SR_INTR_REMPTY;
270

    
271
    if (s->rx_count == RX_FIFO_SIZE) {
272
        s->r[R_CISR] |= UART_INTR_ROVR;
273
    } else {
274
        for (i = 0; i < size; i++) {
275
            s->r_fifo[s->rx_wpos] = buf[i];
276
            s->rx_wpos = (s->rx_wpos + 1) % RX_FIFO_SIZE;
277
            s->rx_count++;
278

    
279
            if (s->rx_count == RX_FIFO_SIZE) {
280
                s->r[R_SR] |= UART_SR_INTR_RFUL;
281
                break;
282
            }
283

    
284
            if (s->rx_count >= s->r[R_RTRIG]) {
285
                s->r[R_SR] |= UART_SR_INTR_RTRIG;
286
            }
287
        }
288
        qemu_mod_timer(s->fifo_trigger_handle, new_rx_time +
289
                                                (s->char_tx_time * 4));
290
    }
291
    uart_update_status(s);
292
}
293

    
294
static void uart_write_tx_fifo(UartState *s, const uint8_t *buf, int size)
295
{
296
    if ((s->r[R_CR] & UART_CR_TX_DIS) || !(s->r[R_CR] & UART_CR_TX_EN)) {
297
        return;
298
    }
299

    
300
    while (size) {
301
        size -= qemu_chr_fe_write(s->chr, buf, size);
302
    }
303
}
304

    
305
static void uart_receive(void *opaque, const uint8_t *buf, int size)
306
{
307
    UartState *s = (UartState *)opaque;
308
    uint32_t ch_mode = s->r[R_MR] & UART_MR_CHMODE;
309

    
310
    if (ch_mode == NORMAL_MODE || ch_mode == ECHO_MODE) {
311
        uart_write_rx_fifo(opaque, buf, size);
312
    }
313
    if (ch_mode == REMOTE_LOOPBACK || ch_mode == ECHO_MODE) {
314
        uart_write_tx_fifo(s, buf, size);
315
    }
316
}
317

    
318
static void uart_event(void *opaque, int event)
319
{
320
    UartState *s = (UartState *)opaque;
321
    uint8_t buf = '\0';
322

    
323
    if (event == CHR_EVENT_BREAK) {
324
        uart_write_rx_fifo(opaque, &buf, 1);
325
    }
326

    
327
    uart_update_status(s);
328
}
329

    
330
static void uart_read_rx_fifo(UartState *s, uint32_t *c)
331
{
332
    if ((s->r[R_CR] & UART_CR_RX_DIS) || !(s->r[R_CR] & UART_CR_RX_EN)) {
333
        return;
334
    }
335

    
336
    s->r[R_SR] &= ~UART_SR_INTR_RFUL;
337

    
338
    if (s->rx_count) {
339
        uint32_t rx_rpos =
340
                (RX_FIFO_SIZE + s->rx_wpos - s->rx_count) % RX_FIFO_SIZE;
341
        *c = s->r_fifo[rx_rpos];
342
        s->rx_count--;
343

    
344
        if (!s->rx_count) {
345
            s->r[R_SR] |= UART_SR_INTR_REMPTY;
346
        }
347
        qemu_chr_accept_input(s->chr);
348
    } else {
349
        *c = 0;
350
        s->r[R_SR] |= UART_SR_INTR_REMPTY;
351
    }
352

    
353
    if (s->rx_count < s->r[R_RTRIG]) {
354
        s->r[R_SR] &= ~UART_SR_INTR_RTRIG;
355
    }
356
    uart_update_status(s);
357
}
358

    
359
static void uart_write(void *opaque, hwaddr offset,
360
                          uint64_t value, unsigned size)
361
{
362
    UartState *s = (UartState *)opaque;
363

    
364
    DB_PRINT(" offset:%x data:%08x\n", (unsigned)offset, (unsigned)value);
365
    offset >>= 2;
366
    switch (offset) {
367
    case R_IER: /* ier (wts imr) */
368
        s->r[R_IMR] |= value;
369
        break;
370
    case R_IDR: /* idr (wtc imr) */
371
        s->r[R_IMR] &= ~value;
372
        break;
373
    case R_IMR: /* imr (read only) */
374
        break;
375
    case R_CISR: /* cisr (wtc) */
376
        s->r[R_CISR] &= ~value;
377
        break;
378
    case R_TX_RX: /* UARTDR */
379
        switch (s->r[R_MR] & UART_MR_CHMODE) {
380
        case NORMAL_MODE:
381
            uart_write_tx_fifo(s, (uint8_t *) &value, 1);
382
            break;
383
        case LOCAL_LOOPBACK:
384
            uart_write_rx_fifo(opaque, (uint8_t *) &value, 1);
385
            break;
386
        }
387
        break;
388
    default:
389
        s->r[offset] = value;
390
    }
391

    
392
    switch (offset) {
393
    case R_CR:
394
        uart_ctrl_update(s);
395
        break;
396
    case R_MR:
397
        uart_parameters_setup(s);
398
        break;
399
    }
400
}
401

    
402
static uint64_t uart_read(void *opaque, hwaddr offset,
403
        unsigned size)
404
{
405
    UartState *s = (UartState *)opaque;
406
    uint32_t c = 0;
407

    
408
    offset >>= 2;
409
    if (offset >= R_MAX) {
410
        c = 0;
411
    } else if (offset == R_TX_RX) {
412
        uart_read_rx_fifo(s, &c);
413
    } else {
414
       c = s->r[offset];
415
    }
416

    
417
    DB_PRINT(" offset:%x data:%08x\n", (unsigned)(offset << 2), (unsigned)c);
418
    return c;
419
}
420

    
421
static const MemoryRegionOps uart_ops = {
422
    .read = uart_read,
423
    .write = uart_write,
424
    .endianness = DEVICE_NATIVE_ENDIAN,
425
};
426

    
427
static void cadence_uart_reset(UartState *s)
428
{
429
    s->r[R_CR] = 0x00000128;
430
    s->r[R_IMR] = 0;
431
    s->r[R_CISR] = 0;
432
    s->r[R_RTRIG] = 0x00000020;
433
    s->r[R_BRGR] = 0x0000000F;
434
    s->r[R_TTRIG] = 0x00000020;
435

    
436
    uart_rx_reset(s);
437
    uart_tx_reset(s);
438

    
439
    s->rx_count = 0;
440
    s->rx_wpos = 0;
441
}
442

    
443
static int cadence_uart_init(SysBusDevice *dev)
444
{
445
    UartState *s = FROM_SYSBUS(UartState, dev);
446

    
447
    memory_region_init_io(&s->iomem, &uart_ops, s, "uart", 0x1000);
448
    sysbus_init_mmio(dev, &s->iomem);
449
    sysbus_init_irq(dev, &s->irq);
450

    
451
    s->fifo_trigger_handle = qemu_new_timer_ns(vm_clock,
452
            (QEMUTimerCB *)fifo_trigger_update, s);
453

    
454
    s->tx_time_handle = qemu_new_timer_ns(vm_clock,
455
            (QEMUTimerCB *)uart_tx_write, s);
456

    
457
    s->char_tx_time = (get_ticks_per_sec() / 9600) * 10;
458

    
459
    s->chr = qemu_char_get_next_serial();
460

    
461
    cadence_uart_reset(s);
462

    
463
    if (s->chr) {
464
        qemu_chr_add_handlers(s->chr, uart_can_receive, uart_receive,
465
                              uart_event, s);
466
    }
467

    
468
    return 0;
469
}
470

    
471
static int cadence_uart_post_load(void *opaque, int version_id)
472
{
473
    UartState *s = opaque;
474

    
475
    uart_parameters_setup(s);
476
    uart_update_status(s);
477
    return 0;
478
}
479

    
480
static const VMStateDescription vmstate_cadence_uart = {
481
    .name = "cadence_uart",
482
    .version_id = 1,
483
    .minimum_version_id = 1,
484
    .minimum_version_id_old = 1,
485
    .post_load = cadence_uart_post_load,
486
    .fields = (VMStateField[]) {
487
        VMSTATE_UINT32_ARRAY(r, UartState, R_MAX),
488
        VMSTATE_UINT8_ARRAY(r_fifo, UartState, RX_FIFO_SIZE),
489
        VMSTATE_UINT32(rx_count, UartState),
490
        VMSTATE_UINT32(rx_wpos, UartState),
491
        VMSTATE_TIMER(fifo_trigger_handle, UartState),
492
        VMSTATE_TIMER(tx_time_handle, UartState),
493
        VMSTATE_END_OF_LIST()
494
    }
495
};
496

    
497
static void cadence_uart_class_init(ObjectClass *klass, void *data)
498
{
499
    DeviceClass *dc = DEVICE_CLASS(klass);
500
    SysBusDeviceClass *sdc = SYS_BUS_DEVICE_CLASS(klass);
501

    
502
    sdc->init = cadence_uart_init;
503
    dc->vmsd = &vmstate_cadence_uart;
504
}
505

    
506
static const TypeInfo cadence_uart_info = {
507
    .name          = "cadence_uart",
508
    .parent        = TYPE_SYS_BUS_DEVICE,
509
    .instance_size = sizeof(UartState),
510
    .class_init    = cadence_uart_class_init,
511
};
512

    
513
static void cadence_uart_register_types(void)
514
{
515
    type_register_static(&cadence_uart_info);
516
}
517

    
518
type_init(cadence_uart_register_types)