Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ ddced198

History | View | Annotate | Download (38.2 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "ioport.h"
29

    
30
#ifdef CONFIG_KVM_PARA
31
#include <linux/kvm_para.h>
32
#endif
33
//
34
//#define DEBUG_KVM
35

    
36
#ifdef DEBUG_KVM
37
#define DPRINTF(fmt, ...) \
38
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39
#else
40
#define DPRINTF(fmt, ...) \
41
    do { } while (0)
42
#endif
43

    
44
#define MSR_KVM_WALL_CLOCK  0x11
45
#define MSR_KVM_SYSTEM_TIME 0x12
46

    
47
#ifdef KVM_CAP_EXT_CPUID
48

    
49
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50
{
51
    struct kvm_cpuid2 *cpuid;
52
    int r, size;
53

    
54
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56
    cpuid->nent = max;
57
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58
    if (r == 0 && cpuid->nent >= max) {
59
        r = -E2BIG;
60
    }
61
    if (r < 0) {
62
        if (r == -E2BIG) {
63
            qemu_free(cpuid);
64
            return NULL;
65
        } else {
66
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67
                    strerror(-r));
68
            exit(1);
69
        }
70
    }
71
    return cpuid;
72
}
73

    
74
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75
                                      uint32_t index, int reg)
76
{
77
    struct kvm_cpuid2 *cpuid;
78
    int i, max;
79
    uint32_t ret = 0;
80
    uint32_t cpuid_1_edx;
81

    
82
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83
        return -1U;
84
    }
85

    
86
    max = 1;
87
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88
        max *= 2;
89
    }
90

    
91
    for (i = 0; i < cpuid->nent; ++i) {
92
        if (cpuid->entries[i].function == function &&
93
            cpuid->entries[i].index == index) {
94
            switch (reg) {
95
            case R_EAX:
96
                ret = cpuid->entries[i].eax;
97
                break;
98
            case R_EBX:
99
                ret = cpuid->entries[i].ebx;
100
                break;
101
            case R_ECX:
102
                ret = cpuid->entries[i].ecx;
103
                break;
104
            case R_EDX:
105
                ret = cpuid->entries[i].edx;
106
                switch (function) {
107
                case 1:
108
                    /* KVM before 2.6.30 misreports the following features */
109
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110
                    break;
111
                case 0x80000001:
112
                    /* On Intel, kvm returns cpuid according to the Intel spec,
113
                     * so add missing bits according to the AMD spec:
114
                     */
115
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116
                    ret |= cpuid_1_edx & 0x183f7ff;
117
                    break;
118
                }
119
                break;
120
            }
121
        }
122
    }
123

    
124
    qemu_free(cpuid);
125

    
126
    return ret;
127
}
128

    
129
#else
130

    
131
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132
                                      uint32_t index, int reg)
133
{
134
    return -1U;
135
}
136

    
137
#endif
138

    
139
#ifdef CONFIG_KVM_PARA
140
struct kvm_para_features {
141
        int cap;
142
        int feature;
143
} para_features[] = {
144
#ifdef KVM_CAP_CLOCKSOURCE
145
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146
#endif
147
#ifdef KVM_CAP_NOP_IO_DELAY
148
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149
#endif
150
#ifdef KVM_CAP_PV_MMU
151
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152
#endif
153
        { -1, -1 }
154
};
155

    
156
static int get_para_features(CPUState *env)
157
{
158
        int i, features = 0;
159

    
160
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162
                        features |= (1 << para_features[i].feature);
163
        }
164

    
165
        return features;
166
}
167
#endif
168

    
169
int kvm_arch_init_vcpu(CPUState *env)
170
{
171
    struct {
172
        struct kvm_cpuid2 cpuid;
173
        struct kvm_cpuid_entry2 entries[100];
174
    } __attribute__((packed)) cpuid_data;
175
    uint32_t limit, i, j, cpuid_i;
176
    uint32_t unused;
177
    struct kvm_cpuid_entry2 *c;
178
#ifdef KVM_CPUID_SIGNATURE
179
    uint32_t signature[3];
180
#endif
181

    
182
    env->mp_state = KVM_MP_STATE_RUNNABLE;
183

    
184
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
185

    
186
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
187
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
188
    env->cpuid_ext_features |= i;
189

    
190
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
191
                                                             0, R_EDX);
192
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
193
                                                             0, R_ECX);
194

    
195
    cpuid_i = 0;
196

    
197
#ifdef CONFIG_KVM_PARA
198
    /* Paravirtualization CPUIDs */
199
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
200
    c = &cpuid_data.entries[cpuid_i++];
201
    memset(c, 0, sizeof(*c));
202
    c->function = KVM_CPUID_SIGNATURE;
203
    c->eax = 0;
204
    c->ebx = signature[0];
205
    c->ecx = signature[1];
206
    c->edx = signature[2];
207

    
208
    c = &cpuid_data.entries[cpuid_i++];
209
    memset(c, 0, sizeof(*c));
210
    c->function = KVM_CPUID_FEATURES;
211
    c->eax = env->cpuid_kvm_features & get_para_features(env);
212
#endif
213

    
214
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215

    
216
    for (i = 0; i <= limit; i++) {
217
        c = &cpuid_data.entries[cpuid_i++];
218

    
219
        switch (i) {
220
        case 2: {
221
            /* Keep reading function 2 till all the input is received */
222
            int times;
223

    
224
            c->function = i;
225
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
226
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
227
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
228
            times = c->eax & 0xff;
229

    
230
            for (j = 1; j < times; ++j) {
231
                c = &cpuid_data.entries[cpuid_i++];
232
                c->function = i;
233
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
234
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235
            }
236
            break;
237
        }
238
        case 4:
239
        case 0xb:
240
        case 0xd:
241
            for (j = 0; ; j++) {
242
                c->function = i;
243
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
244
                c->index = j;
245
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246

    
247
                if (i == 4 && c->eax == 0)
248
                    break;
249
                if (i == 0xb && !(c->ecx & 0xff00))
250
                    break;
251
                if (i == 0xd && c->eax == 0)
252
                    break;
253

    
254
                c = &cpuid_data.entries[cpuid_i++];
255
            }
256
            break;
257
        default:
258
            c->function = i;
259
            c->flags = 0;
260
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
261
            break;
262
        }
263
    }
264
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265

    
266
    for (i = 0x80000000; i <= limit; i++) {
267
        c = &cpuid_data.entries[cpuid_i++];
268

    
269
        c->function = i;
270
        c->flags = 0;
271
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
272
    }
273

    
274
    cpuid_data.cpuid.nent = cpuid_i;
275

    
276
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
277
}
278

    
279
void kvm_arch_reset_vcpu(CPUState *env)
280
{
281
    env->exception_injected = -1;
282
    env->interrupt_injected = -1;
283
    env->nmi_injected = 0;
284
    env->nmi_pending = 0;
285
    if (kvm_irqchip_in_kernel()) {
286
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
287
                                          KVM_MP_STATE_UNINITIALIZED;
288
    } else {
289
        env->mp_state = KVM_MP_STATE_RUNNABLE;
290
    }
291
}
292

    
293
static int kvm_has_msr_star(CPUState *env)
294
{
295
    static int has_msr_star;
296
    int ret;
297

    
298
    /* first time */
299
    if (has_msr_star == 0) {        
300
        struct kvm_msr_list msr_list, *kvm_msr_list;
301

    
302
        has_msr_star = -1;
303

    
304
        /* Obtain MSR list from KVM.  These are the MSRs that we must
305
         * save/restore */
306
        msr_list.nmsrs = 0;
307
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
308
        if (ret < 0 && ret != -E2BIG) {
309
            return 0;
310
        }
311
        /* Old kernel modules had a bug and could write beyond the provided
312
           memory. Allocate at least a safe amount of 1K. */
313
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
314
                                              msr_list.nmsrs *
315
                                              sizeof(msr_list.indices[0])));
316

    
317
        kvm_msr_list->nmsrs = msr_list.nmsrs;
318
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
319
        if (ret >= 0) {
320
            int i;
321

    
322
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
323
                if (kvm_msr_list->indices[i] == MSR_STAR) {
324
                    has_msr_star = 1;
325
                    break;
326
                }
327
            }
328
        }
329

    
330
        free(kvm_msr_list);
331
    }
332

    
333
    if (has_msr_star == 1)
334
        return 1;
335
    return 0;
336
}
337

    
338
static int kvm_init_identity_map_page(KVMState *s)
339
{
340
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
341
    int ret;
342
    uint64_t addr = 0xfffbc000;
343

    
344
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
345
        return 0;
346
    }
347

    
348
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
349
    if (ret < 0) {
350
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
351
        return ret;
352
    }
353
#endif
354
    return 0;
355
}
356

    
357
int kvm_arch_init(KVMState *s, int smp_cpus)
358
{
359
    int ret;
360

    
361
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
362
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
363
     * must be part of guest physical memory, we need to allocate it.  Older
364
     * versions of KVM just assumed that it would be at the end of physical
365
     * memory but that doesn't work with more than 4GB of memory.  We simply
366
     * refuse to work with those older versions of KVM. */
367
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
368
    if (ret <= 0) {
369
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
370
        return ret;
371
    }
372

    
373
    /* this address is 3 pages before the bios, and the bios should present
374
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
375
     * this?
376
     */
377
    /*
378
     * Tell fw_cfg to notify the BIOS to reserve the range.
379
     */
380
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
381
        perror("e820_add_entry() table is full");
382
        exit(1);
383
    }
384
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
385
    if (ret < 0) {
386
        return ret;
387
    }
388

    
389
    return kvm_init_identity_map_page(s);
390
}
391
                    
392
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
393
{
394
    lhs->selector = rhs->selector;
395
    lhs->base = rhs->base;
396
    lhs->limit = rhs->limit;
397
    lhs->type = 3;
398
    lhs->present = 1;
399
    lhs->dpl = 3;
400
    lhs->db = 0;
401
    lhs->s = 1;
402
    lhs->l = 0;
403
    lhs->g = 0;
404
    lhs->avl = 0;
405
    lhs->unusable = 0;
406
}
407

    
408
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
409
{
410
    unsigned flags = rhs->flags;
411
    lhs->selector = rhs->selector;
412
    lhs->base = rhs->base;
413
    lhs->limit = rhs->limit;
414
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
415
    lhs->present = (flags & DESC_P_MASK) != 0;
416
    lhs->dpl = rhs->selector & 3;
417
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
418
    lhs->s = (flags & DESC_S_MASK) != 0;
419
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
420
    lhs->g = (flags & DESC_G_MASK) != 0;
421
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
422
    lhs->unusable = 0;
423
}
424

    
425
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
426
{
427
    lhs->selector = rhs->selector;
428
    lhs->base = rhs->base;
429
    lhs->limit = rhs->limit;
430
    lhs->flags =
431
        (rhs->type << DESC_TYPE_SHIFT)
432
        | (rhs->present * DESC_P_MASK)
433
        | (rhs->dpl << DESC_DPL_SHIFT)
434
        | (rhs->db << DESC_B_SHIFT)
435
        | (rhs->s * DESC_S_MASK)
436
        | (rhs->l << DESC_L_SHIFT)
437
        | (rhs->g * DESC_G_MASK)
438
        | (rhs->avl * DESC_AVL_MASK);
439
}
440

    
441
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
442
{
443
    if (set)
444
        *kvm_reg = *qemu_reg;
445
    else
446
        *qemu_reg = *kvm_reg;
447
}
448

    
449
static int kvm_getput_regs(CPUState *env, int set)
450
{
451
    struct kvm_regs regs;
452
    int ret = 0;
453

    
454
    if (!set) {
455
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
456
        if (ret < 0)
457
            return ret;
458
    }
459

    
460
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
461
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
462
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
463
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
464
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
465
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
466
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
467
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
468
#ifdef TARGET_X86_64
469
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
470
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
471
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
472
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
473
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
474
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
475
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
476
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
477
#endif
478

    
479
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
480
    kvm_getput_reg(&regs.rip, &env->eip, set);
481

    
482
    if (set)
483
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
484

    
485
    return ret;
486
}
487

    
488
static int kvm_put_fpu(CPUState *env)
489
{
490
    struct kvm_fpu fpu;
491
    int i;
492

    
493
    memset(&fpu, 0, sizeof fpu);
494
    fpu.fsw = env->fpus & ~(7 << 11);
495
    fpu.fsw |= (env->fpstt & 7) << 11;
496
    fpu.fcw = env->fpuc;
497
    for (i = 0; i < 8; ++i)
498
        fpu.ftwx |= (!env->fptags[i]) << i;
499
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
500
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
501
    fpu.mxcsr = env->mxcsr;
502

    
503
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
504
}
505

    
506
#ifdef KVM_CAP_XSAVE
507
#define XSAVE_CWD_RIP     2
508
#define XSAVE_CWD_RDP     4
509
#define XSAVE_MXCSR       6
510
#define XSAVE_ST_SPACE    8
511
#define XSAVE_XMM_SPACE   40
512
#define XSAVE_XSTATE_BV   128
513
#define XSAVE_YMMH_SPACE  144
514
#endif
515

    
516
static int kvm_put_xsave(CPUState *env)
517
{
518
#ifdef KVM_CAP_XSAVE
519
    int i;
520
    struct kvm_xsave* xsave;
521
    uint16_t cwd, swd, twd, fop;
522

    
523
    if (!kvm_has_xsave())
524
        return kvm_put_fpu(env);
525

    
526
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
527
    memset(xsave, 0, sizeof(struct kvm_xsave));
528
    cwd = swd = twd = fop = 0;
529
    swd = env->fpus & ~(7 << 11);
530
    swd |= (env->fpstt & 7) << 11;
531
    cwd = env->fpuc;
532
    for (i = 0; i < 8; ++i)
533
        twd |= (!env->fptags[i]) << i;
534
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
535
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
536
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
537
            sizeof env->fpregs);
538
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
539
            sizeof env->xmm_regs);
540
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
541
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
542
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
543
            sizeof env->ymmh_regs);
544
    return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
545
#else
546
    return kvm_put_fpu(env);
547
#endif
548
}
549

    
550
static int kvm_put_xcrs(CPUState *env)
551
{
552
#ifdef KVM_CAP_XCRS
553
    struct kvm_xcrs xcrs;
554

    
555
    if (!kvm_has_xcrs())
556
        return 0;
557

    
558
    xcrs.nr_xcrs = 1;
559
    xcrs.flags = 0;
560
    xcrs.xcrs[0].xcr = 0;
561
    xcrs.xcrs[0].value = env->xcr0;
562
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
563
#else
564
    return 0;
565
#endif
566
}
567

    
568
static int kvm_put_sregs(CPUState *env)
569
{
570
    struct kvm_sregs sregs;
571

    
572
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
573
    if (env->interrupt_injected >= 0) {
574
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
575
                (uint64_t)1 << (env->interrupt_injected % 64);
576
    }
577

    
578
    if ((env->eflags & VM_MASK)) {
579
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
580
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
581
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
582
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
583
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
584
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
585
    } else {
586
            set_seg(&sregs.cs, &env->segs[R_CS]);
587
            set_seg(&sregs.ds, &env->segs[R_DS]);
588
            set_seg(&sregs.es, &env->segs[R_ES]);
589
            set_seg(&sregs.fs, &env->segs[R_FS]);
590
            set_seg(&sregs.gs, &env->segs[R_GS]);
591
            set_seg(&sregs.ss, &env->segs[R_SS]);
592

    
593
            if (env->cr[0] & CR0_PE_MASK) {
594
                /* force ss cpl to cs cpl */
595
                sregs.ss.selector = (sregs.ss.selector & ~3) |
596
                        (sregs.cs.selector & 3);
597
                sregs.ss.dpl = sregs.ss.selector & 3;
598
            }
599
    }
600

    
601
    set_seg(&sregs.tr, &env->tr);
602
    set_seg(&sregs.ldt, &env->ldt);
603

    
604
    sregs.idt.limit = env->idt.limit;
605
    sregs.idt.base = env->idt.base;
606
    sregs.gdt.limit = env->gdt.limit;
607
    sregs.gdt.base = env->gdt.base;
608

    
609
    sregs.cr0 = env->cr[0];
610
    sregs.cr2 = env->cr[2];
611
    sregs.cr3 = env->cr[3];
612
    sregs.cr4 = env->cr[4];
613

    
614
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
615
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
616

    
617
    sregs.efer = env->efer;
618

    
619
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
620
}
621

    
622
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
623
                              uint32_t index, uint64_t value)
624
{
625
    entry->index = index;
626
    entry->data = value;
627
}
628

    
629
static int kvm_put_msrs(CPUState *env, int level)
630
{
631
    struct {
632
        struct kvm_msrs info;
633
        struct kvm_msr_entry entries[100];
634
    } msr_data;
635
    struct kvm_msr_entry *msrs = msr_data.entries;
636
    int n = 0;
637

    
638
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
639
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
640
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
641
    if (kvm_has_msr_star(env))
642
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
643
#ifdef TARGET_X86_64
644
    /* FIXME if lm capable */
645
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
646
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
647
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
648
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
649
#endif
650
    if (level == KVM_PUT_FULL_STATE) {
651
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
652
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
653
                          env->system_time_msr);
654
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
655
    }
656

    
657
    msr_data.info.nmsrs = n;
658

    
659
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
660

    
661
}
662

    
663

    
664
static int kvm_get_fpu(CPUState *env)
665
{
666
    struct kvm_fpu fpu;
667
    int i, ret;
668

    
669
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
670
    if (ret < 0)
671
        return ret;
672

    
673
    env->fpstt = (fpu.fsw >> 11) & 7;
674
    env->fpus = fpu.fsw;
675
    env->fpuc = fpu.fcw;
676
    for (i = 0; i < 8; ++i)
677
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
678
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
679
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
680
    env->mxcsr = fpu.mxcsr;
681

    
682
    return 0;
683
}
684

    
685
static int kvm_get_xsave(CPUState *env)
686
{
687
#ifdef KVM_CAP_XSAVE
688
    struct kvm_xsave* xsave;
689
    int ret, i;
690
    uint16_t cwd, swd, twd, fop;
691

    
692
    if (!kvm_has_xsave())
693
        return kvm_get_fpu(env);
694

    
695
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
696
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
697
    if (ret < 0)
698
        return ret;
699

    
700
    cwd = (uint16_t)xsave->region[0];
701
    swd = (uint16_t)(xsave->region[0] >> 16);
702
    twd = (uint16_t)xsave->region[1];
703
    fop = (uint16_t)(xsave->region[1] >> 16);
704
    env->fpstt = (swd >> 11) & 7;
705
    env->fpus = swd;
706
    env->fpuc = cwd;
707
    for (i = 0; i < 8; ++i)
708
        env->fptags[i] = !((twd >> i) & 1);
709
    env->mxcsr = xsave->region[XSAVE_MXCSR];
710
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
711
            sizeof env->fpregs);
712
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
713
            sizeof env->xmm_regs);
714
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
715
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
716
            sizeof env->ymmh_regs);
717
    return 0;
718
#else
719
    return kvm_get_fpu(env);
720
#endif
721
}
722

    
723
static int kvm_get_xcrs(CPUState *env)
724
{
725
#ifdef KVM_CAP_XCRS
726
    int i, ret;
727
    struct kvm_xcrs xcrs;
728

    
729
    if (!kvm_has_xcrs())
730
        return 0;
731

    
732
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
733
    if (ret < 0)
734
        return ret;
735

    
736
    for (i = 0; i < xcrs.nr_xcrs; i++)
737
        /* Only support xcr0 now */
738
        if (xcrs.xcrs[0].xcr == 0) {
739
            env->xcr0 = xcrs.xcrs[0].value;
740
            break;
741
        }
742
    return 0;
743
#else
744
    return 0;
745
#endif
746
}
747

    
748
static int kvm_get_sregs(CPUState *env)
749
{
750
    struct kvm_sregs sregs;
751
    uint32_t hflags;
752
    int bit, i, ret;
753

    
754
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
755
    if (ret < 0)
756
        return ret;
757

    
758
    /* There can only be one pending IRQ set in the bitmap at a time, so try
759
       to find it and save its number instead (-1 for none). */
760
    env->interrupt_injected = -1;
761
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
762
        if (sregs.interrupt_bitmap[i]) {
763
            bit = ctz64(sregs.interrupt_bitmap[i]);
764
            env->interrupt_injected = i * 64 + bit;
765
            break;
766
        }
767
    }
768

    
769
    get_seg(&env->segs[R_CS], &sregs.cs);
770
    get_seg(&env->segs[R_DS], &sregs.ds);
771
    get_seg(&env->segs[R_ES], &sregs.es);
772
    get_seg(&env->segs[R_FS], &sregs.fs);
773
    get_seg(&env->segs[R_GS], &sregs.gs);
774
    get_seg(&env->segs[R_SS], &sregs.ss);
775

    
776
    get_seg(&env->tr, &sregs.tr);
777
    get_seg(&env->ldt, &sregs.ldt);
778

    
779
    env->idt.limit = sregs.idt.limit;
780
    env->idt.base = sregs.idt.base;
781
    env->gdt.limit = sregs.gdt.limit;
782
    env->gdt.base = sregs.gdt.base;
783

    
784
    env->cr[0] = sregs.cr0;
785
    env->cr[2] = sregs.cr2;
786
    env->cr[3] = sregs.cr3;
787
    env->cr[4] = sregs.cr4;
788

    
789
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
790

    
791
    env->efer = sregs.efer;
792
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
793

    
794
#define HFLAG_COPY_MASK ~( \
795
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
796
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
797
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
798
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
799

    
800

    
801

    
802
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
803
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
804
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
805
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
806
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
807
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
808
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
809

    
810
    if (env->efer & MSR_EFER_LMA) {
811
        hflags |= HF_LMA_MASK;
812
    }
813

    
814
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
815
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
816
    } else {
817
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
818
                (DESC_B_SHIFT - HF_CS32_SHIFT);
819
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
820
                (DESC_B_SHIFT - HF_SS32_SHIFT);
821
        if (!(env->cr[0] & CR0_PE_MASK) ||
822
                   (env->eflags & VM_MASK) ||
823
                   !(hflags & HF_CS32_MASK)) {
824
                hflags |= HF_ADDSEG_MASK;
825
            } else {
826
                hflags |= ((env->segs[R_DS].base |
827
                                env->segs[R_ES].base |
828
                                env->segs[R_SS].base) != 0) <<
829
                    HF_ADDSEG_SHIFT;
830
            }
831
    }
832
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
833

    
834
    return 0;
835
}
836

    
837
static int kvm_get_msrs(CPUState *env)
838
{
839
    struct {
840
        struct kvm_msrs info;
841
        struct kvm_msr_entry entries[100];
842
    } msr_data;
843
    struct kvm_msr_entry *msrs = msr_data.entries;
844
    int ret, i, n;
845

    
846
    n = 0;
847
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
848
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
849
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
850
    if (kvm_has_msr_star(env))
851
        msrs[n++].index = MSR_STAR;
852
    msrs[n++].index = MSR_IA32_TSC;
853
#ifdef TARGET_X86_64
854
    /* FIXME lm_capable_kernel */
855
    msrs[n++].index = MSR_CSTAR;
856
    msrs[n++].index = MSR_KERNELGSBASE;
857
    msrs[n++].index = MSR_FMASK;
858
    msrs[n++].index = MSR_LSTAR;
859
#endif
860
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
861
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
862

    
863
    msr_data.info.nmsrs = n;
864
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
865
    if (ret < 0)
866
        return ret;
867

    
868
    for (i = 0; i < ret; i++) {
869
        switch (msrs[i].index) {
870
        case MSR_IA32_SYSENTER_CS:
871
            env->sysenter_cs = msrs[i].data;
872
            break;
873
        case MSR_IA32_SYSENTER_ESP:
874
            env->sysenter_esp = msrs[i].data;
875
            break;
876
        case MSR_IA32_SYSENTER_EIP:
877
            env->sysenter_eip = msrs[i].data;
878
            break;
879
        case MSR_STAR:
880
            env->star = msrs[i].data;
881
            break;
882
#ifdef TARGET_X86_64
883
        case MSR_CSTAR:
884
            env->cstar = msrs[i].data;
885
            break;
886
        case MSR_KERNELGSBASE:
887
            env->kernelgsbase = msrs[i].data;
888
            break;
889
        case MSR_FMASK:
890
            env->fmask = msrs[i].data;
891
            break;
892
        case MSR_LSTAR:
893
            env->lstar = msrs[i].data;
894
            break;
895
#endif
896
        case MSR_IA32_TSC:
897
            env->tsc = msrs[i].data;
898
            break;
899
        case MSR_KVM_SYSTEM_TIME:
900
            env->system_time_msr = msrs[i].data;
901
            break;
902
        case MSR_KVM_WALL_CLOCK:
903
            env->wall_clock_msr = msrs[i].data;
904
            break;
905
        }
906
    }
907

    
908
    return 0;
909
}
910

    
911
static int kvm_put_mp_state(CPUState *env)
912
{
913
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
914

    
915
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
916
}
917

    
918
static int kvm_get_mp_state(CPUState *env)
919
{
920
    struct kvm_mp_state mp_state;
921
    int ret;
922

    
923
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
924
    if (ret < 0) {
925
        return ret;
926
    }
927
    env->mp_state = mp_state.mp_state;
928
    return 0;
929
}
930

    
931
static int kvm_put_vcpu_events(CPUState *env, int level)
932
{
933
#ifdef KVM_CAP_VCPU_EVENTS
934
    struct kvm_vcpu_events events;
935

    
936
    if (!kvm_has_vcpu_events()) {
937
        return 0;
938
    }
939

    
940
    events.exception.injected = (env->exception_injected >= 0);
941
    events.exception.nr = env->exception_injected;
942
    events.exception.has_error_code = env->has_error_code;
943
    events.exception.error_code = env->error_code;
944

    
945
    events.interrupt.injected = (env->interrupt_injected >= 0);
946
    events.interrupt.nr = env->interrupt_injected;
947
    events.interrupt.soft = env->soft_interrupt;
948

    
949
    events.nmi.injected = env->nmi_injected;
950
    events.nmi.pending = env->nmi_pending;
951
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
952

    
953
    events.sipi_vector = env->sipi_vector;
954

    
955
    events.flags = 0;
956
    if (level >= KVM_PUT_RESET_STATE) {
957
        events.flags |=
958
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
959
    }
960

    
961
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
962
#else
963
    return 0;
964
#endif
965
}
966

    
967
static int kvm_get_vcpu_events(CPUState *env)
968
{
969
#ifdef KVM_CAP_VCPU_EVENTS
970
    struct kvm_vcpu_events events;
971
    int ret;
972

    
973
    if (!kvm_has_vcpu_events()) {
974
        return 0;
975
    }
976

    
977
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
978
    if (ret < 0) {
979
       return ret;
980
    }
981
    env->exception_injected =
982
       events.exception.injected ? events.exception.nr : -1;
983
    env->has_error_code = events.exception.has_error_code;
984
    env->error_code = events.exception.error_code;
985

    
986
    env->interrupt_injected =
987
        events.interrupt.injected ? events.interrupt.nr : -1;
988
    env->soft_interrupt = events.interrupt.soft;
989

    
990
    env->nmi_injected = events.nmi.injected;
991
    env->nmi_pending = events.nmi.pending;
992
    if (events.nmi.masked) {
993
        env->hflags2 |= HF2_NMI_MASK;
994
    } else {
995
        env->hflags2 &= ~HF2_NMI_MASK;
996
    }
997

    
998
    env->sipi_vector = events.sipi_vector;
999
#endif
1000

    
1001
    return 0;
1002
}
1003

    
1004
static int kvm_guest_debug_workarounds(CPUState *env)
1005
{
1006
    int ret = 0;
1007
#ifdef KVM_CAP_SET_GUEST_DEBUG
1008
    unsigned long reinject_trap = 0;
1009

    
1010
    if (!kvm_has_vcpu_events()) {
1011
        if (env->exception_injected == 1) {
1012
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1013
        } else if (env->exception_injected == 3) {
1014
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1015
        }
1016
        env->exception_injected = -1;
1017
    }
1018

    
1019
    /*
1020
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1021
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1022
     * by updating the debug state once again if single-stepping is on.
1023
     * Another reason to call kvm_update_guest_debug here is a pending debug
1024
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1025
     * reinject them via SET_GUEST_DEBUG.
1026
     */
1027
    if (reinject_trap ||
1028
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1029
        ret = kvm_update_guest_debug(env, reinject_trap);
1030
    }
1031
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1032
    return ret;
1033
}
1034

    
1035
static int kvm_put_debugregs(CPUState *env)
1036
{
1037
#ifdef KVM_CAP_DEBUGREGS
1038
    struct kvm_debugregs dbgregs;
1039
    int i;
1040

    
1041
    if (!kvm_has_debugregs()) {
1042
        return 0;
1043
    }
1044

    
1045
    for (i = 0; i < 4; i++) {
1046
        dbgregs.db[i] = env->dr[i];
1047
    }
1048
    dbgregs.dr6 = env->dr[6];
1049
    dbgregs.dr7 = env->dr[7];
1050
    dbgregs.flags = 0;
1051

    
1052
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1053
#else
1054
    return 0;
1055
#endif
1056
}
1057

    
1058
static int kvm_get_debugregs(CPUState *env)
1059
{
1060
#ifdef KVM_CAP_DEBUGREGS
1061
    struct kvm_debugregs dbgregs;
1062
    int i, ret;
1063

    
1064
    if (!kvm_has_debugregs()) {
1065
        return 0;
1066
    }
1067

    
1068
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1069
    if (ret < 0) {
1070
       return ret;
1071
    }
1072
    for (i = 0; i < 4; i++) {
1073
        env->dr[i] = dbgregs.db[i];
1074
    }
1075
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1076
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1077
#endif
1078

    
1079
    return 0;
1080
}
1081

    
1082
int kvm_arch_put_registers(CPUState *env, int level)
1083
{
1084
    int ret;
1085

    
1086
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1087

    
1088
    ret = kvm_getput_regs(env, 1);
1089
    if (ret < 0)
1090
        return ret;
1091

    
1092
    ret = kvm_put_xsave(env);
1093
    if (ret < 0)
1094
        return ret;
1095

    
1096
    ret = kvm_put_xcrs(env);
1097
    if (ret < 0)
1098
        return ret;
1099

    
1100
    ret = kvm_put_sregs(env);
1101
    if (ret < 0)
1102
        return ret;
1103

    
1104
    ret = kvm_put_msrs(env, level);
1105
    if (ret < 0)
1106
        return ret;
1107

    
1108
    if (level >= KVM_PUT_RESET_STATE) {
1109
        ret = kvm_put_mp_state(env);
1110
        if (ret < 0)
1111
            return ret;
1112
    }
1113

    
1114
    ret = kvm_put_vcpu_events(env, level);
1115
    if (ret < 0)
1116
        return ret;
1117

    
1118
    /* must be last */
1119
    ret = kvm_guest_debug_workarounds(env);
1120
    if (ret < 0)
1121
        return ret;
1122

    
1123
    ret = kvm_put_debugregs(env);
1124
    if (ret < 0)
1125
        return ret;
1126

    
1127
    return 0;
1128
}
1129

    
1130
int kvm_arch_get_registers(CPUState *env)
1131
{
1132
    int ret;
1133

    
1134
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1135

    
1136
    ret = kvm_getput_regs(env, 0);
1137
    if (ret < 0)
1138
        return ret;
1139

    
1140
    ret = kvm_get_xsave(env);
1141
    if (ret < 0)
1142
        return ret;
1143

    
1144
    ret = kvm_get_xcrs(env);
1145
    if (ret < 0)
1146
        return ret;
1147

    
1148
    ret = kvm_get_sregs(env);
1149
    if (ret < 0)
1150
        return ret;
1151

    
1152
    ret = kvm_get_msrs(env);
1153
    if (ret < 0)
1154
        return ret;
1155

    
1156
    ret = kvm_get_mp_state(env);
1157
    if (ret < 0)
1158
        return ret;
1159

    
1160
    ret = kvm_get_vcpu_events(env);
1161
    if (ret < 0)
1162
        return ret;
1163

    
1164
    ret = kvm_get_debugregs(env);
1165
    if (ret < 0)
1166
        return ret;
1167

    
1168
    return 0;
1169
}
1170

    
1171
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1172
{
1173
    /* Try to inject an interrupt if the guest can accept it */
1174
    if (run->ready_for_interrupt_injection &&
1175
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1176
        (env->eflags & IF_MASK)) {
1177
        int irq;
1178

    
1179
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1180
        irq = cpu_get_pic_interrupt(env);
1181
        if (irq >= 0) {
1182
            struct kvm_interrupt intr;
1183
            intr.irq = irq;
1184
            /* FIXME: errors */
1185
            DPRINTF("injected interrupt %d\n", irq);
1186
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1187
        }
1188
    }
1189

    
1190
    /* If we have an interrupt but the guest is not ready to receive an
1191
     * interrupt, request an interrupt window exit.  This will
1192
     * cause a return to userspace as soon as the guest is ready to
1193
     * receive interrupts. */
1194
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1195
        run->request_interrupt_window = 1;
1196
    else
1197
        run->request_interrupt_window = 0;
1198

    
1199
    DPRINTF("setting tpr\n");
1200
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1201

    
1202
    return 0;
1203
}
1204

    
1205
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1206
{
1207
    if (run->if_flag)
1208
        env->eflags |= IF_MASK;
1209
    else
1210
        env->eflags &= ~IF_MASK;
1211
    
1212
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1213
    cpu_set_apic_base(env->apic_state, run->apic_base);
1214

    
1215
    return 0;
1216
}
1217

    
1218
int kvm_arch_process_irqchip_events(CPUState *env)
1219
{
1220
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1221
        kvm_cpu_synchronize_state(env);
1222
        do_cpu_init(env);
1223
        env->exception_index = EXCP_HALTED;
1224
    }
1225

    
1226
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1227
        kvm_cpu_synchronize_state(env);
1228
        do_cpu_sipi(env);
1229
    }
1230

    
1231
    return env->halted;
1232
}
1233

    
1234
static int kvm_handle_halt(CPUState *env)
1235
{
1236
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1237
          (env->eflags & IF_MASK)) &&
1238
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1239
        env->halted = 1;
1240
        env->exception_index = EXCP_HLT;
1241
        return 0;
1242
    }
1243

    
1244
    return 1;
1245
}
1246

    
1247
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1248
{
1249
    int ret = 0;
1250

    
1251
    switch (run->exit_reason) {
1252
    case KVM_EXIT_HLT:
1253
        DPRINTF("handle_hlt\n");
1254
        ret = kvm_handle_halt(env);
1255
        break;
1256
    }
1257

    
1258
    return ret;
1259
}
1260

    
1261
#ifdef KVM_CAP_SET_GUEST_DEBUG
1262
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1263
{
1264
    static const uint8_t int3 = 0xcc;
1265

    
1266
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1267
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1268
        return -EINVAL;
1269
    return 0;
1270
}
1271

    
1272
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1273
{
1274
    uint8_t int3;
1275

    
1276
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1277
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1278
        return -EINVAL;
1279
    return 0;
1280
}
1281

    
1282
static struct {
1283
    target_ulong addr;
1284
    int len;
1285
    int type;
1286
} hw_breakpoint[4];
1287

    
1288
static int nb_hw_breakpoint;
1289

    
1290
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1291
{
1292
    int n;
1293

    
1294
    for (n = 0; n < nb_hw_breakpoint; n++)
1295
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1296
            (hw_breakpoint[n].len == len || len == -1))
1297
            return n;
1298
    return -1;
1299
}
1300

    
1301
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1302
                                  target_ulong len, int type)
1303
{
1304
    switch (type) {
1305
    case GDB_BREAKPOINT_HW:
1306
        len = 1;
1307
        break;
1308
    case GDB_WATCHPOINT_WRITE:
1309
    case GDB_WATCHPOINT_ACCESS:
1310
        switch (len) {
1311
        case 1:
1312
            break;
1313
        case 2:
1314
        case 4:
1315
        case 8:
1316
            if (addr & (len - 1))
1317
                return -EINVAL;
1318
            break;
1319
        default:
1320
            return -EINVAL;
1321
        }
1322
        break;
1323
    default:
1324
        return -ENOSYS;
1325
    }
1326

    
1327
    if (nb_hw_breakpoint == 4)
1328
        return -ENOBUFS;
1329

    
1330
    if (find_hw_breakpoint(addr, len, type) >= 0)
1331
        return -EEXIST;
1332

    
1333
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1334
    hw_breakpoint[nb_hw_breakpoint].len = len;
1335
    hw_breakpoint[nb_hw_breakpoint].type = type;
1336
    nb_hw_breakpoint++;
1337

    
1338
    return 0;
1339
}
1340

    
1341
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1342
                                  target_ulong len, int type)
1343
{
1344
    int n;
1345

    
1346
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1347
    if (n < 0)
1348
        return -ENOENT;
1349

    
1350
    nb_hw_breakpoint--;
1351
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1352

    
1353
    return 0;
1354
}
1355

    
1356
void kvm_arch_remove_all_hw_breakpoints(void)
1357
{
1358
    nb_hw_breakpoint = 0;
1359
}
1360

    
1361
static CPUWatchpoint hw_watchpoint;
1362

    
1363
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1364
{
1365
    int handle = 0;
1366
    int n;
1367

    
1368
    if (arch_info->exception == 1) {
1369
        if (arch_info->dr6 & (1 << 14)) {
1370
            if (cpu_single_env->singlestep_enabled)
1371
                handle = 1;
1372
        } else {
1373
            for (n = 0; n < 4; n++)
1374
                if (arch_info->dr6 & (1 << n))
1375
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1376
                    case 0x0:
1377
                        handle = 1;
1378
                        break;
1379
                    case 0x1:
1380
                        handle = 1;
1381
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1382
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1383
                        hw_watchpoint.flags = BP_MEM_WRITE;
1384
                        break;
1385
                    case 0x3:
1386
                        handle = 1;
1387
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1388
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1389
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1390
                        break;
1391
                    }
1392
        }
1393
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1394
        handle = 1;
1395

    
1396
    if (!handle) {
1397
        cpu_synchronize_state(cpu_single_env);
1398
        assert(cpu_single_env->exception_injected == -1);
1399

    
1400
        cpu_single_env->exception_injected = arch_info->exception;
1401
        cpu_single_env->has_error_code = 0;
1402
    }
1403

    
1404
    return handle;
1405
}
1406

    
1407
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1408
{
1409
    const uint8_t type_code[] = {
1410
        [GDB_BREAKPOINT_HW] = 0x0,
1411
        [GDB_WATCHPOINT_WRITE] = 0x1,
1412
        [GDB_WATCHPOINT_ACCESS] = 0x3
1413
    };
1414
    const uint8_t len_code[] = {
1415
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1416
    };
1417
    int n;
1418

    
1419
    if (kvm_sw_breakpoints_active(env))
1420
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1421

    
1422
    if (nb_hw_breakpoint > 0) {
1423
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1424
        dbg->arch.debugreg[7] = 0x0600;
1425
        for (n = 0; n < nb_hw_breakpoint; n++) {
1426
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1427
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1428
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1429
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1430
        }
1431
    }
1432
    /* Legal xcr0 for loading */
1433
    env->xcr0 = 1;
1434
}
1435
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1436

    
1437
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1438
{
1439
      return !(env->cr[0] & CR0_PE_MASK) ||
1440
              ((env->segs[R_CS].selector  & 3) != 3);
1441
}
1442