Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ dfe5fff3

History | View | Annotate | Download (18.6 kB)

1
/*============================================================================
2

3
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
4
Package, Release 2b.
5

6
Written by John R. Hauser.  This work was made possible in part by the
7
International Computer Science Institute, located at Suite 600, 1947 Center
8
Street, Berkeley, California 94704.  Funding was partially provided by the
9
National Science Foundation under grant MIP-9311980.  The original version
10
of this code was written as part of a project to build a fixed-point vector
11
processor in collaboration with the University of California at Berkeley,
12
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
13
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
14
arithmetic/SoftFloat.html'.
15

16
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
17
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
18
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
19
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
20
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
21
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
22
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
23
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
24

25
Derivative works are acceptable, even for commercial purposes, so long as
26
(1) the source code for the derivative work includes prominent notice that
27
the work is derivative, and (2) the source code includes prominent notice with
28
these four paragraphs for those parts of this code that are retained.
29

30
=============================================================================*/
31

    
32
#ifndef SOFTFLOAT_H
33
#define SOFTFLOAT_H
34

    
35
#if defined(CONFIG_SOLARIS) && defined(NEEDS_LIBSUNMATH)
36
#include <sunmath.h>
37
#endif
38

    
39
#include <inttypes.h>
40
#include "config.h"
41

    
42
/*----------------------------------------------------------------------------
43
| Each of the following `typedef's defines the most convenient type that holds
44
| integers of at least as many bits as specified.  For example, `uint8' should
45
| be the most convenient type that can hold unsigned integers of as many as
46
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
47
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
48
| to the same as `int'.
49
*----------------------------------------------------------------------------*/
50
typedef uint8_t flag;
51
typedef uint8_t uint8;
52
typedef int8_t int8;
53
#ifndef _AIX
54
typedef int uint16;
55
typedef int int16;
56
#endif
57
typedef unsigned int uint32;
58
typedef signed int int32;
59
typedef uint64_t uint64;
60
typedef int64_t int64;
61

    
62
/*----------------------------------------------------------------------------
63
| Each of the following `typedef's defines a type that holds integers
64
| of _exactly_ the number of bits specified.  For instance, for most
65
| implementation of C, `bits16' and `sbits16' should be `typedef'ed to
66
| `unsigned short int' and `signed short int' (or `short int'), respectively.
67
*----------------------------------------------------------------------------*/
68
typedef uint8_t bits8;
69
typedef int8_t sbits8;
70
typedef uint16_t bits16;
71
typedef int16_t sbits16;
72
typedef uint32_t bits32;
73
typedef int32_t sbits32;
74
typedef uint64_t bits64;
75
typedef int64_t sbits64;
76

    
77
#define LIT64( a ) a##LL
78
#define INLINE static inline
79

    
80
/*----------------------------------------------------------------------------
81
| The macro `FLOATX80' must be defined to enable the extended double-precision
82
| floating-point format `floatx80'.  If this macro is not defined, the
83
| `floatx80' type will not be defined, and none of the functions that either
84
| input or output the `floatx80' type will be defined.  The same applies to
85
| the `FLOAT128' macro and the quadruple-precision format `float128'.
86
*----------------------------------------------------------------------------*/
87
#ifdef CONFIG_SOFTFLOAT
88
/* bit exact soft float support */
89
#define FLOATX80
90
#define FLOAT128
91
#else
92
/* native float support */
93
#if (defined(__i386__) || defined(__x86_64__)) && !defined(HOST_BSD)
94
#define FLOATX80
95
#endif
96
#endif /* !CONFIG_SOFTFLOAT */
97

    
98
#define STATUS_PARAM , float_status *status
99
#define STATUS(field) status->field
100
#define STATUS_VAR , status
101

    
102
/*----------------------------------------------------------------------------
103
| Software IEC/IEEE floating-point ordering relations
104
*----------------------------------------------------------------------------*/
105
enum {
106
    float_relation_less      = -1,
107
    float_relation_equal     =  0,
108
    float_relation_greater   =  1,
109
    float_relation_unordered =  2
110
};
111

    
112
#ifdef CONFIG_SOFTFLOAT
113
/*----------------------------------------------------------------------------
114
| Software IEC/IEEE floating-point types.
115
*----------------------------------------------------------------------------*/
116
/* Use structures for soft-float types.  This prevents accidentally mixing
117
   them with native int/float types.  A sufficiently clever compiler and
118
   sane ABI should be able to see though these structs.  However
119
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
120
//#define USE_SOFTFLOAT_STRUCT_TYPES
121
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
122
typedef struct {
123
    uint32_t v;
124
} float32;
125
/* The cast ensures an error if the wrong type is passed.  */
126
#define float32_val(x) (((float32)(x)).v)
127
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
128
typedef struct {
129
    uint64_t v;
130
} float64;
131
#define float64_val(x) (((float64)(x)).v)
132
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
133
#else
134
typedef uint32_t float32;
135
typedef uint64_t float64;
136
#define float32_val(x) (x)
137
#define float64_val(x) (x)
138
#define make_float32(x) (x)
139
#define make_float64(x) (x)
140
#endif
141
#ifdef FLOATX80
142
typedef struct {
143
    uint64_t low;
144
    uint16_t high;
145
} floatx80;
146
#endif
147
#ifdef FLOAT128
148
typedef struct {
149
#ifdef WORDS_BIGENDIAN
150
    uint64_t high, low;
151
#else
152
    uint64_t low, high;
153
#endif
154
} float128;
155
#endif
156

    
157
/*----------------------------------------------------------------------------
158
| Software IEC/IEEE floating-point underflow tininess-detection mode.
159
*----------------------------------------------------------------------------*/
160
enum {
161
    float_tininess_after_rounding  = 0,
162
    float_tininess_before_rounding = 1
163
};
164

    
165
/*----------------------------------------------------------------------------
166
| Software IEC/IEEE floating-point rounding mode.
167
*----------------------------------------------------------------------------*/
168
enum {
169
    float_round_nearest_even = 0,
170
    float_round_down         = 1,
171
    float_round_up           = 2,
172
    float_round_to_zero      = 3
173
};
174

    
175
/*----------------------------------------------------------------------------
176
| Software IEC/IEEE floating-point exception flags.
177
*----------------------------------------------------------------------------*/
178
enum {
179
    float_flag_invalid   =  1,
180
    float_flag_divbyzero =  4,
181
    float_flag_overflow  =  8,
182
    float_flag_underflow = 16,
183
    float_flag_inexact   = 32
184
};
185

    
186
typedef struct float_status {
187
    signed char float_detect_tininess;
188
    signed char float_rounding_mode;
189
    signed char float_exception_flags;
190
#ifdef FLOATX80
191
    signed char floatx80_rounding_precision;
192
#endif
193
    flag flush_to_zero;
194
    flag default_nan_mode;
195
} float_status;
196

    
197
void set_float_rounding_mode(int val STATUS_PARAM);
198
void set_float_exception_flags(int val STATUS_PARAM);
199
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
200
{
201
    STATUS(flush_to_zero) = val;
202
}
203
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
204
{
205
    STATUS(default_nan_mode) = val;
206
}
207
INLINE int get_float_exception_flags(float_status *status)
208
{
209
    return STATUS(float_exception_flags);
210
}
211
#ifdef FLOATX80
212
void set_floatx80_rounding_precision(int val STATUS_PARAM);
213
#endif
214

    
215
/*----------------------------------------------------------------------------
216
| Routine to raise any or all of the software IEC/IEEE floating-point
217
| exception flags.
218
*----------------------------------------------------------------------------*/
219
void float_raise( int8 flags STATUS_PARAM);
220

    
221
/*----------------------------------------------------------------------------
222
| Software IEC/IEEE integer-to-floating-point conversion routines.
223
*----------------------------------------------------------------------------*/
224
float32 int32_to_float32( int STATUS_PARAM );
225
float64 int32_to_float64( int STATUS_PARAM );
226
float32 uint32_to_float32( unsigned int STATUS_PARAM );
227
float64 uint32_to_float64( unsigned int STATUS_PARAM );
228
#ifdef FLOATX80
229
floatx80 int32_to_floatx80( int STATUS_PARAM );
230
#endif
231
#ifdef FLOAT128
232
float128 int32_to_float128( int STATUS_PARAM );
233
#endif
234
float32 int64_to_float32( int64_t STATUS_PARAM );
235
float32 uint64_to_float32( uint64_t STATUS_PARAM );
236
float64 int64_to_float64( int64_t STATUS_PARAM );
237
float64 uint64_to_float64( uint64_t STATUS_PARAM );
238
#ifdef FLOATX80
239
floatx80 int64_to_floatx80( int64_t STATUS_PARAM );
240
#endif
241
#ifdef FLOAT128
242
float128 int64_to_float128( int64_t STATUS_PARAM );
243
#endif
244

    
245
/*----------------------------------------------------------------------------
246
| Software IEC/IEEE single-precision conversion routines.
247
*----------------------------------------------------------------------------*/
248
int float32_to_int32( float32 STATUS_PARAM );
249
int float32_to_int32_round_to_zero( float32 STATUS_PARAM );
250
unsigned int float32_to_uint32( float32 STATUS_PARAM );
251
unsigned int float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
252
int64_t float32_to_int64( float32 STATUS_PARAM );
253
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM );
254
float64 float32_to_float64( float32 STATUS_PARAM );
255
#ifdef FLOATX80
256
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
257
#endif
258
#ifdef FLOAT128
259
float128 float32_to_float128( float32 STATUS_PARAM );
260
#endif
261

    
262
/*----------------------------------------------------------------------------
263
| Software IEC/IEEE single-precision operations.
264
*----------------------------------------------------------------------------*/
265
float32 float32_round_to_int( float32 STATUS_PARAM );
266
float32 float32_add( float32, float32 STATUS_PARAM );
267
float32 float32_sub( float32, float32 STATUS_PARAM );
268
float32 float32_mul( float32, float32 STATUS_PARAM );
269
float32 float32_div( float32, float32 STATUS_PARAM );
270
float32 float32_rem( float32, float32 STATUS_PARAM );
271
float32 float32_sqrt( float32 STATUS_PARAM );
272
float32 float32_log2( float32 STATUS_PARAM );
273
int float32_eq( float32, float32 STATUS_PARAM );
274
int float32_le( float32, float32 STATUS_PARAM );
275
int float32_lt( float32, float32 STATUS_PARAM );
276
int float32_eq_signaling( float32, float32 STATUS_PARAM );
277
int float32_le_quiet( float32, float32 STATUS_PARAM );
278
int float32_lt_quiet( float32, float32 STATUS_PARAM );
279
int float32_compare( float32, float32 STATUS_PARAM );
280
int float32_compare_quiet( float32, float32 STATUS_PARAM );
281
int float32_is_nan( float32 );
282
int float32_is_signaling_nan( float32 );
283
float32 float32_scalbn( float32, int STATUS_PARAM );
284

    
285
INLINE float32 float32_abs(float32 a)
286
{
287
    return make_float32(float32_val(a) & 0x7fffffff);
288
}
289

    
290
INLINE float32 float32_chs(float32 a)
291
{
292
    return make_float32(float32_val(a) ^ 0x80000000);
293
}
294

    
295
INLINE int float32_is_infinity(float32 a)
296
{
297
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
298
}
299

    
300
INLINE int float32_is_neg(float32 a)
301
{
302
    return float32_val(a) >> 31;
303
}
304

    
305
INLINE int float32_is_zero(float32 a)
306
{
307
    return (float32_val(a) & 0x7fffffff) == 0;
308
}
309

    
310
#define float32_zero make_float32(0)
311
#define float32_one make_float32(0x3f800000)
312

    
313
/*----------------------------------------------------------------------------
314
| Software IEC/IEEE double-precision conversion routines.
315
*----------------------------------------------------------------------------*/
316
int float64_to_int32( float64 STATUS_PARAM );
317
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
318
unsigned int float64_to_uint32( float64 STATUS_PARAM );
319
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
320
int64_t float64_to_int64( float64 STATUS_PARAM );
321
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
322
uint64_t float64_to_uint64 (float64 a STATUS_PARAM);
323
uint64_t float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
324
float32 float64_to_float32( float64 STATUS_PARAM );
325
#ifdef FLOATX80
326
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
327
#endif
328
#ifdef FLOAT128
329
float128 float64_to_float128( float64 STATUS_PARAM );
330
#endif
331

    
332
/*----------------------------------------------------------------------------
333
| Software IEC/IEEE double-precision operations.
334
*----------------------------------------------------------------------------*/
335
float64 float64_round_to_int( float64 STATUS_PARAM );
336
float64 float64_trunc_to_int( float64 STATUS_PARAM );
337
float64 float64_add( float64, float64 STATUS_PARAM );
338
float64 float64_sub( float64, float64 STATUS_PARAM );
339
float64 float64_mul( float64, float64 STATUS_PARAM );
340
float64 float64_div( float64, float64 STATUS_PARAM );
341
float64 float64_rem( float64, float64 STATUS_PARAM );
342
float64 float64_sqrt( float64 STATUS_PARAM );
343
float64 float64_log2( float64 STATUS_PARAM );
344
int float64_eq( float64, float64 STATUS_PARAM );
345
int float64_le( float64, float64 STATUS_PARAM );
346
int float64_lt( float64, float64 STATUS_PARAM );
347
int float64_eq_signaling( float64, float64 STATUS_PARAM );
348
int float64_le_quiet( float64, float64 STATUS_PARAM );
349
int float64_lt_quiet( float64, float64 STATUS_PARAM );
350
int float64_compare( float64, float64 STATUS_PARAM );
351
int float64_compare_quiet( float64, float64 STATUS_PARAM );
352
int float64_is_nan( float64 a );
353
int float64_is_signaling_nan( float64 );
354
float64 float64_scalbn( float64, int STATUS_PARAM );
355

    
356
INLINE float64 float64_abs(float64 a)
357
{
358
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
359
}
360

    
361
INLINE float64 float64_chs(float64 a)
362
{
363
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
364
}
365

    
366
INLINE int float64_is_infinity(float64 a)
367
{
368
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
369
}
370

    
371
INLINE int float64_is_neg(float64 a)
372
{
373
    return float64_val(a) >> 63;
374
}
375

    
376
INLINE int float64_is_zero(float64 a)
377
{
378
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
379
}
380

    
381
#define float64_zero make_float64(0)
382
#define float64_one make_float64(0x3ff0000000000000LL)
383

    
384
#ifdef FLOATX80
385

    
386
/*----------------------------------------------------------------------------
387
| Software IEC/IEEE extended double-precision conversion routines.
388
*----------------------------------------------------------------------------*/
389
int floatx80_to_int32( floatx80 STATUS_PARAM );
390
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
391
int64_t floatx80_to_int64( floatx80 STATUS_PARAM );
392
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
393
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
394
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
395
#ifdef FLOAT128
396
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
397
#endif
398

    
399
/*----------------------------------------------------------------------------
400
| Software IEC/IEEE extended double-precision operations.
401
*----------------------------------------------------------------------------*/
402
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
403
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
404
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
405
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
406
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
407
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
408
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
409
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
410
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
411
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
412
int floatx80_eq_signaling( floatx80, floatx80 STATUS_PARAM );
413
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
414
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
415
int floatx80_is_nan( floatx80 );
416
int floatx80_is_signaling_nan( floatx80 );
417
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
418

    
419
INLINE floatx80 floatx80_abs(floatx80 a)
420
{
421
    a.high &= 0x7fff;
422
    return a;
423
}
424

    
425
INLINE floatx80 floatx80_chs(floatx80 a)
426
{
427
    a.high ^= 0x8000;
428
    return a;
429
}
430

    
431
INLINE int floatx80_is_infinity(floatx80 a)
432
{
433
    return (a.high & 0x7fff) == 0x7fff && a.low == 0;
434
}
435

    
436
INLINE int floatx80_is_neg(floatx80 a)
437
{
438
    return a.high >> 15;
439
}
440

    
441
INLINE int floatx80_is_zero(floatx80 a)
442
{
443
    return (a.high & 0x7fff) == 0 && a.low == 0;
444
}
445

    
446
#endif
447

    
448
#ifdef FLOAT128
449

    
450
/*----------------------------------------------------------------------------
451
| Software IEC/IEEE quadruple-precision conversion routines.
452
*----------------------------------------------------------------------------*/
453
int float128_to_int32( float128 STATUS_PARAM );
454
int float128_to_int32_round_to_zero( float128 STATUS_PARAM );
455
int64_t float128_to_int64( float128 STATUS_PARAM );
456
int64_t float128_to_int64_round_to_zero( float128 STATUS_PARAM );
457
float32 float128_to_float32( float128 STATUS_PARAM );
458
float64 float128_to_float64( float128 STATUS_PARAM );
459
#ifdef FLOATX80
460
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
461
#endif
462

    
463
/*----------------------------------------------------------------------------
464
| Software IEC/IEEE quadruple-precision operations.
465
*----------------------------------------------------------------------------*/
466
float128 float128_round_to_int( float128 STATUS_PARAM );
467
float128 float128_add( float128, float128 STATUS_PARAM );
468
float128 float128_sub( float128, float128 STATUS_PARAM );
469
float128 float128_mul( float128, float128 STATUS_PARAM );
470
float128 float128_div( float128, float128 STATUS_PARAM );
471
float128 float128_rem( float128, float128 STATUS_PARAM );
472
float128 float128_sqrt( float128 STATUS_PARAM );
473
int float128_eq( float128, float128 STATUS_PARAM );
474
int float128_le( float128, float128 STATUS_PARAM );
475
int float128_lt( float128, float128 STATUS_PARAM );
476
int float128_eq_signaling( float128, float128 STATUS_PARAM );
477
int float128_le_quiet( float128, float128 STATUS_PARAM );
478
int float128_lt_quiet( float128, float128 STATUS_PARAM );
479
int float128_compare( float128, float128 STATUS_PARAM );
480
int float128_compare_quiet( float128, float128 STATUS_PARAM );
481
int float128_is_nan( float128 );
482
int float128_is_signaling_nan( float128 );
483
float128 float128_scalbn( float128, int STATUS_PARAM );
484

    
485
INLINE float128 float128_abs(float128 a)
486
{
487
    a.high &= 0x7fffffffffffffffLL;
488
    return a;
489
}
490

    
491
INLINE float128 float128_chs(float128 a)
492
{
493
    a.high ^= 0x8000000000000000LL;
494
    return a;
495
}
496

    
497
INLINE int float128_is_infinity(float128 a)
498
{
499
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
500
}
501

    
502
INLINE int float128_is_neg(float128 a)
503
{
504
    return a.high >> 63;
505
}
506

    
507
INLINE int float128_is_zero(float128 a)
508
{
509
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
510
}
511

    
512
#endif
513

    
514
#else /* CONFIG_SOFTFLOAT */
515

    
516
#include "softfloat-native.h"
517

    
518
#endif /* !CONFIG_SOFTFLOAT */
519

    
520
#endif /* !SOFTFLOAT_H */