root / target-mips / op_helper.c @ e034e2c3
History | View | Annotate | Download (39.5 kB)
1 |
/*
|
---|---|
2 |
* MIPS emulation helpers for qemu.
|
3 |
*
|
4 |
* Copyright (c) 2004-2005 Jocelyn Mayer
|
5 |
*
|
6 |
* This library is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU Lesser General Public
|
8 |
* License as published by the Free Software Foundation; either
|
9 |
* version 2 of the License, or (at your option) any later version.
|
10 |
*
|
11 |
* This library is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
14 |
* Lesser General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU Lesser General Public
|
17 |
* License along with this library; if not, write to the Free Software
|
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
19 |
*/
|
20 |
#include <stdlib.h> |
21 |
#include "exec.h" |
22 |
|
23 |
#define GETPC() (__builtin_return_address(0)) |
24 |
|
25 |
/*****************************************************************************/
|
26 |
/* Exceptions processing helpers */
|
27 |
|
28 |
void do_raise_exception_err (uint32_t exception, int error_code) |
29 |
{ |
30 |
#if 1 |
31 |
if (logfile && exception < 0x100) |
32 |
fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
|
33 |
#endif
|
34 |
env->exception_index = exception; |
35 |
env->error_code = error_code; |
36 |
T0 = 0;
|
37 |
cpu_loop_exit(); |
38 |
} |
39 |
|
40 |
void do_raise_exception (uint32_t exception)
|
41 |
{ |
42 |
do_raise_exception_err(exception, 0);
|
43 |
} |
44 |
|
45 |
void do_restore_state (void *pc_ptr) |
46 |
{ |
47 |
TranslationBlock *tb; |
48 |
unsigned long pc = (unsigned long) pc_ptr; |
49 |
|
50 |
tb = tb_find_pc (pc); |
51 |
cpu_restore_state (tb, env, pc, NULL);
|
52 |
} |
53 |
|
54 |
void do_raise_exception_direct_err (uint32_t exception, int error_code) |
55 |
{ |
56 |
do_restore_state (GETPC ()); |
57 |
do_raise_exception_err (exception, error_code); |
58 |
} |
59 |
|
60 |
void do_raise_exception_direct (uint32_t exception)
|
61 |
{ |
62 |
do_raise_exception_direct_err (exception, 0);
|
63 |
} |
64 |
|
65 |
#define MEMSUFFIX _raw
|
66 |
#include "op_helper_mem.c" |
67 |
#undef MEMSUFFIX
|
68 |
#if !defined(CONFIG_USER_ONLY)
|
69 |
#define MEMSUFFIX _user
|
70 |
#include "op_helper_mem.c" |
71 |
#undef MEMSUFFIX
|
72 |
#define MEMSUFFIX _kernel
|
73 |
#include "op_helper_mem.c" |
74 |
#undef MEMSUFFIX
|
75 |
#endif
|
76 |
|
77 |
#ifdef TARGET_MIPS64
|
78 |
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
79 |
/* Those might call libgcc functions. */
|
80 |
void do_dsll (void) |
81 |
{ |
82 |
T0 = T0 << T1; |
83 |
} |
84 |
|
85 |
void do_dsll32 (void) |
86 |
{ |
87 |
T0 = T0 << (T1 + 32);
|
88 |
} |
89 |
|
90 |
void do_dsra (void) |
91 |
{ |
92 |
T0 = (int64_t)T0 >> T1; |
93 |
} |
94 |
|
95 |
void do_dsra32 (void) |
96 |
{ |
97 |
T0 = (int64_t)T0 >> (T1 + 32);
|
98 |
} |
99 |
|
100 |
void do_dsrl (void) |
101 |
{ |
102 |
T0 = T0 >> T1; |
103 |
} |
104 |
|
105 |
void do_dsrl32 (void) |
106 |
{ |
107 |
T0 = T0 >> (T1 + 32);
|
108 |
} |
109 |
|
110 |
void do_drotr (void) |
111 |
{ |
112 |
target_ulong tmp; |
113 |
|
114 |
if (T1) {
|
115 |
tmp = T0 << (0x40 - T1);
|
116 |
T0 = (T0 >> T1) | tmp; |
117 |
} |
118 |
} |
119 |
|
120 |
void do_drotr32 (void) |
121 |
{ |
122 |
target_ulong tmp; |
123 |
|
124 |
if (T1) {
|
125 |
tmp = T0 << (0x40 - (32 + T1)); |
126 |
T0 = (T0 >> (32 + T1)) | tmp;
|
127 |
} |
128 |
} |
129 |
|
130 |
void do_dsllv (void) |
131 |
{ |
132 |
T0 = T1 << (T0 & 0x3F);
|
133 |
} |
134 |
|
135 |
void do_dsrav (void) |
136 |
{ |
137 |
T0 = (int64_t)T1 >> (T0 & 0x3F);
|
138 |
} |
139 |
|
140 |
void do_dsrlv (void) |
141 |
{ |
142 |
T0 = T1 >> (T0 & 0x3F);
|
143 |
} |
144 |
|
145 |
void do_drotrv (void) |
146 |
{ |
147 |
target_ulong tmp; |
148 |
|
149 |
T0 &= 0x3F;
|
150 |
if (T0) {
|
151 |
tmp = T1 << (0x40 - T0);
|
152 |
T0 = (T1 >> T0) | tmp; |
153 |
} else
|
154 |
T0 = T1; |
155 |
} |
156 |
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */ |
157 |
#endif /* TARGET_MIPS64 */ |
158 |
|
159 |
/* 64 bits arithmetic for 32 bits hosts */
|
160 |
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
161 |
static inline uint64_t get_HILO (void) |
162 |
{ |
163 |
return (env->HI << 32) | (uint32_t)env->LO; |
164 |
} |
165 |
|
166 |
static inline void set_HILO (uint64_t HILO) |
167 |
{ |
168 |
env->LO = (int32_t)HILO; |
169 |
env->HI = (int32_t)(HILO >> 32);
|
170 |
} |
171 |
|
172 |
void do_mult (void) |
173 |
{ |
174 |
set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
175 |
} |
176 |
|
177 |
void do_multu (void) |
178 |
{ |
179 |
set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
180 |
} |
181 |
|
182 |
void do_madd (void) |
183 |
{ |
184 |
int64_t tmp; |
185 |
|
186 |
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
187 |
set_HILO((int64_t)get_HILO() + tmp); |
188 |
} |
189 |
|
190 |
void do_maddu (void) |
191 |
{ |
192 |
uint64_t tmp; |
193 |
|
194 |
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
195 |
set_HILO(get_HILO() + tmp); |
196 |
} |
197 |
|
198 |
void do_msub (void) |
199 |
{ |
200 |
int64_t tmp; |
201 |
|
202 |
tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1); |
203 |
set_HILO((int64_t)get_HILO() - tmp); |
204 |
} |
205 |
|
206 |
void do_msubu (void) |
207 |
{ |
208 |
uint64_t tmp; |
209 |
|
210 |
tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1); |
211 |
set_HILO(get_HILO() - tmp); |
212 |
} |
213 |
#endif
|
214 |
|
215 |
#if HOST_LONG_BITS < 64 |
216 |
void do_div (void) |
217 |
{ |
218 |
/* 64bit datatypes because we may see overflow/underflow. */
|
219 |
if (T1 != 0) { |
220 |
env->LO = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1); |
221 |
env->HI = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1); |
222 |
} |
223 |
} |
224 |
#endif
|
225 |
|
226 |
#ifdef TARGET_MIPS64
|
227 |
void do_ddiv (void) |
228 |
{ |
229 |
if (T1 != 0) { |
230 |
lldiv_t res = lldiv((int64_t)T0, (int64_t)T1); |
231 |
env->LO = res.quot; |
232 |
env->HI = res.rem; |
233 |
} |
234 |
} |
235 |
|
236 |
#if TARGET_LONG_BITS > HOST_LONG_BITS
|
237 |
void do_ddivu (void) |
238 |
{ |
239 |
if (T1 != 0) { |
240 |
env->LO = T0 / T1; |
241 |
env->HI = T0 % T1; |
242 |
} |
243 |
} |
244 |
#endif
|
245 |
#endif /* TARGET_MIPS64 */ |
246 |
|
247 |
#if defined(CONFIG_USER_ONLY)
|
248 |
void do_mfc0_random (void) |
249 |
{ |
250 |
cpu_abort(env, "mfc0 random\n");
|
251 |
} |
252 |
|
253 |
void do_mfc0_count (void) |
254 |
{ |
255 |
cpu_abort(env, "mfc0 count\n");
|
256 |
} |
257 |
|
258 |
void cpu_mips_store_count(CPUState *env, uint32_t value)
|
259 |
{ |
260 |
cpu_abort(env, "mtc0 count\n");
|
261 |
} |
262 |
|
263 |
void cpu_mips_store_compare(CPUState *env, uint32_t value)
|
264 |
{ |
265 |
cpu_abort(env, "mtc0 compare\n");
|
266 |
} |
267 |
|
268 |
void cpu_mips_update_irq(CPUState *env)
|
269 |
{ |
270 |
cpu_abort(env, "mtc0 status / mtc0 cause\n");
|
271 |
} |
272 |
|
273 |
void do_mtc0_status_debug(uint32_t old, uint32_t val)
|
274 |
{ |
275 |
cpu_abort(env, "mtc0 status debug\n");
|
276 |
} |
277 |
|
278 |
void do_mtc0_status_irqraise_debug (void) |
279 |
{ |
280 |
cpu_abort(env, "mtc0 status irqraise debug\n");
|
281 |
} |
282 |
|
283 |
void cpu_mips_tlb_flush (CPUState *env, int flush_global) |
284 |
{ |
285 |
cpu_abort(env, "mips_tlb_flush\n");
|
286 |
} |
287 |
|
288 |
#else
|
289 |
|
290 |
/* CP0 helpers */
|
291 |
void do_mfc0_random (void) |
292 |
{ |
293 |
T0 = (int32_t)cpu_mips_get_random(env); |
294 |
} |
295 |
|
296 |
void do_mfc0_count (void) |
297 |
{ |
298 |
T0 = (int32_t)cpu_mips_get_count(env); |
299 |
} |
300 |
|
301 |
void do_mtc0_status_debug(uint32_t old, uint32_t val)
|
302 |
{ |
303 |
fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
|
304 |
old, old & env->CP0_Cause & CP0Ca_IP_mask, |
305 |
val, val & env->CP0_Cause & CP0Ca_IP_mask, |
306 |
env->CP0_Cause); |
307 |
(env->hflags & MIPS_HFLAG_UM) ? fputs(", UM\n", logfile)
|
308 |
: fputs("\n", logfile);
|
309 |
} |
310 |
|
311 |
void do_mtc0_status_irqraise_debug(void) |
312 |
{ |
313 |
fprintf(logfile, "Raise pending IRQs\n");
|
314 |
} |
315 |
|
316 |
void fpu_handle_exception(void) |
317 |
{ |
318 |
#ifdef CONFIG_SOFTFLOAT
|
319 |
int flags = get_float_exception_flags(&env->fp_status);
|
320 |
unsigned int cpuflags = 0, enable, cause = 0; |
321 |
|
322 |
enable = GET_FP_ENABLE(env->fcr31); |
323 |
|
324 |
/* determine current flags */
|
325 |
if (flags & float_flag_invalid) {
|
326 |
cpuflags |= FP_INVALID; |
327 |
cause |= FP_INVALID & enable; |
328 |
} |
329 |
if (flags & float_flag_divbyzero) {
|
330 |
cpuflags |= FP_DIV0; |
331 |
cause |= FP_DIV0 & enable; |
332 |
} |
333 |
if (flags & float_flag_overflow) {
|
334 |
cpuflags |= FP_OVERFLOW; |
335 |
cause |= FP_OVERFLOW & enable; |
336 |
} |
337 |
if (flags & float_flag_underflow) {
|
338 |
cpuflags |= FP_UNDERFLOW; |
339 |
cause |= FP_UNDERFLOW & enable; |
340 |
} |
341 |
if (flags & float_flag_inexact) {
|
342 |
cpuflags |= FP_INEXACT; |
343 |
cause |= FP_INEXACT & enable; |
344 |
} |
345 |
SET_FP_FLAGS(env->fcr31, cpuflags); |
346 |
SET_FP_CAUSE(env->fcr31, cause); |
347 |
#else
|
348 |
SET_FP_FLAGS(env->fcr31, 0);
|
349 |
SET_FP_CAUSE(env->fcr31, 0);
|
350 |
#endif
|
351 |
} |
352 |
|
353 |
/* TLB management */
|
354 |
void cpu_mips_tlb_flush (CPUState *env, int flush_global) |
355 |
{ |
356 |
/* Flush qemu's TLB and discard all shadowed entries. */
|
357 |
tlb_flush (env, flush_global); |
358 |
env->tlb_in_use = env->nb_tlb; |
359 |
} |
360 |
|
361 |
static void r4k_mips_tlb_flush_extra (CPUState *env, int first) |
362 |
{ |
363 |
/* Discard entries from env->tlb[first] onwards. */
|
364 |
while (env->tlb_in_use > first) {
|
365 |
r4k_invalidate_tlb(env, --env->tlb_in_use, 0);
|
366 |
} |
367 |
} |
368 |
|
369 |
static void r4k_fill_tlb (int idx) |
370 |
{ |
371 |
r4k_tlb_t *tlb; |
372 |
|
373 |
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
|
374 |
tlb = &env->mmu.r4k.tlb[idx]; |
375 |
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
|
376 |
#ifdef TARGET_MIPS64
|
377 |
tlb->VPN &= env->SEGMask; |
378 |
#endif
|
379 |
tlb->ASID = env->CP0_EntryHi & 0xFF;
|
380 |
tlb->PageMask = env->CP0_PageMask; |
381 |
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
|
382 |
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0; |
383 |
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0; |
384 |
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7; |
385 |
tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12; |
386 |
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0; |
387 |
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0; |
388 |
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7; |
389 |
tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12; |
390 |
} |
391 |
|
392 |
void r4k_do_tlbwi (void) |
393 |
{ |
394 |
/* Discard cached TLB entries. We could avoid doing this if the
|
395 |
tlbwi is just upgrading access permissions on the current entry;
|
396 |
that might be a further win. */
|
397 |
r4k_mips_tlb_flush_extra (env, env->nb_tlb); |
398 |
|
399 |
r4k_invalidate_tlb(env, env->CP0_Index % env->nb_tlb, 0);
|
400 |
r4k_fill_tlb(env->CP0_Index % env->nb_tlb); |
401 |
} |
402 |
|
403 |
void r4k_do_tlbwr (void) |
404 |
{ |
405 |
int r = cpu_mips_get_random(env);
|
406 |
|
407 |
r4k_invalidate_tlb(env, r, 1);
|
408 |
r4k_fill_tlb(r); |
409 |
} |
410 |
|
411 |
void r4k_do_tlbp (void) |
412 |
{ |
413 |
r4k_tlb_t *tlb; |
414 |
target_ulong mask; |
415 |
target_ulong tag; |
416 |
target_ulong VPN; |
417 |
uint8_t ASID; |
418 |
int i;
|
419 |
|
420 |
ASID = env->CP0_EntryHi & 0xFF;
|
421 |
for (i = 0; i < env->nb_tlb; i++) { |
422 |
tlb = &env->mmu.r4k.tlb[i]; |
423 |
/* 1k pages are not supported. */
|
424 |
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
425 |
tag = env->CP0_EntryHi & ~mask; |
426 |
VPN = tlb->VPN & ~mask; |
427 |
/* Check ASID, virtual page number & size */
|
428 |
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
429 |
/* TLB match */
|
430 |
env->CP0_Index = i; |
431 |
break;
|
432 |
} |
433 |
} |
434 |
if (i == env->nb_tlb) {
|
435 |
/* No match. Discard any shadow entries, if any of them match. */
|
436 |
for (i = env->nb_tlb; i < env->tlb_in_use; i++) {
|
437 |
tlb = &env->mmu.r4k.tlb[i]; |
438 |
/* 1k pages are not supported. */
|
439 |
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
|
440 |
tag = env->CP0_EntryHi & ~mask; |
441 |
VPN = tlb->VPN & ~mask; |
442 |
/* Check ASID, virtual page number & size */
|
443 |
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) { |
444 |
r4k_mips_tlb_flush_extra (env, i); |
445 |
break;
|
446 |
} |
447 |
} |
448 |
|
449 |
env->CP0_Index |= 0x80000000;
|
450 |
} |
451 |
} |
452 |
|
453 |
void r4k_do_tlbr (void) |
454 |
{ |
455 |
r4k_tlb_t *tlb; |
456 |
uint8_t ASID; |
457 |
|
458 |
ASID = env->CP0_EntryHi & 0xFF;
|
459 |
tlb = &env->mmu.r4k.tlb[env->CP0_Index % env->nb_tlb]; |
460 |
|
461 |
/* If this will change the current ASID, flush qemu's TLB. */
|
462 |
if (ASID != tlb->ASID)
|
463 |
cpu_mips_tlb_flush (env, 1);
|
464 |
|
465 |
r4k_mips_tlb_flush_extra(env, env->nb_tlb); |
466 |
|
467 |
env->CP0_EntryHi = tlb->VPN | tlb->ASID; |
468 |
env->CP0_PageMask = tlb->PageMask; |
469 |
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) | |
470 |
(tlb->C0 << 3) | (tlb->PFN[0] >> 6); |
471 |
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) | |
472 |
(tlb->C1 << 3) | (tlb->PFN[1] >> 6); |
473 |
} |
474 |
|
475 |
#endif /* !CONFIG_USER_ONLY */ |
476 |
|
477 |
void dump_ldst (const unsigned char *func) |
478 |
{ |
479 |
if (loglevel)
|
480 |
fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1); |
481 |
} |
482 |
|
483 |
void dump_sc (void) |
484 |
{ |
485 |
if (loglevel) {
|
486 |
fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__, |
487 |
T1, T0, env->CP0_LLAddr); |
488 |
} |
489 |
} |
490 |
|
491 |
void debug_pre_eret (void) |
492 |
{ |
493 |
fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
494 |
env->PC, env->CP0_EPC); |
495 |
if (env->CP0_Status & (1 << CP0St_ERL)) |
496 |
fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
497 |
if (env->hflags & MIPS_HFLAG_DM)
|
498 |
fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
499 |
fputs("\n", logfile);
|
500 |
} |
501 |
|
502 |
void debug_post_eret (void) |
503 |
{ |
504 |
fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx, |
505 |
env->PC, env->CP0_EPC); |
506 |
if (env->CP0_Status & (1 << CP0St_ERL)) |
507 |
fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
|
508 |
if (env->hflags & MIPS_HFLAG_DM)
|
509 |
fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
|
510 |
if (env->hflags & MIPS_HFLAG_UM)
|
511 |
fputs(", UM\n", logfile);
|
512 |
else
|
513 |
fputs("\n", logfile);
|
514 |
} |
515 |
|
516 |
void do_pmon (int function) |
517 |
{ |
518 |
function /= 2;
|
519 |
switch (function) {
|
520 |
case 2: /* TODO: char inbyte(int waitflag); */ |
521 |
if (env->gpr[4] == 0) |
522 |
env->gpr[2] = -1; |
523 |
/* Fall through */
|
524 |
case 11: /* TODO: char inbyte (void); */ |
525 |
env->gpr[2] = -1; |
526 |
break;
|
527 |
case 3: |
528 |
case 12: |
529 |
printf("%c", (char)(env->gpr[4] & 0xFF)); |
530 |
break;
|
531 |
case 17: |
532 |
break;
|
533 |
case 158: |
534 |
{ |
535 |
unsigned char *fmt = (void *)(unsigned long)env->gpr[4]; |
536 |
printf("%s", fmt);
|
537 |
} |
538 |
break;
|
539 |
} |
540 |
} |
541 |
|
542 |
#if !defined(CONFIG_USER_ONLY)
|
543 |
|
544 |
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); |
545 |
|
546 |
#define MMUSUFFIX _mmu
|
547 |
#define ALIGNED_ONLY
|
548 |
|
549 |
#define SHIFT 0 |
550 |
#include "softmmu_template.h" |
551 |
|
552 |
#define SHIFT 1 |
553 |
#include "softmmu_template.h" |
554 |
|
555 |
#define SHIFT 2 |
556 |
#include "softmmu_template.h" |
557 |
|
558 |
#define SHIFT 3 |
559 |
#include "softmmu_template.h" |
560 |
|
561 |
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr) |
562 |
{ |
563 |
env->CP0_BadVAddr = addr; |
564 |
do_restore_state (retaddr); |
565 |
do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
|
566 |
} |
567 |
|
568 |
void tlb_fill (target_ulong addr, int is_write, int is_user, void *retaddr) |
569 |
{ |
570 |
TranslationBlock *tb; |
571 |
CPUState *saved_env; |
572 |
unsigned long pc; |
573 |
int ret;
|
574 |
|
575 |
/* XXX: hack to restore env in all cases, even if not called from
|
576 |
generated code */
|
577 |
saved_env = env; |
578 |
env = cpu_single_env; |
579 |
ret = cpu_mips_handle_mmu_fault(env, addr, is_write, is_user, 1);
|
580 |
if (ret) {
|
581 |
if (retaddr) {
|
582 |
/* now we have a real cpu fault */
|
583 |
pc = (unsigned long)retaddr; |
584 |
tb = tb_find_pc(pc); |
585 |
if (tb) {
|
586 |
/* the PC is inside the translated code. It means that we have
|
587 |
a virtual CPU fault */
|
588 |
cpu_restore_state(tb, env, pc, NULL);
|
589 |
} |
590 |
} |
591 |
do_raise_exception_err(env->exception_index, env->error_code); |
592 |
} |
593 |
env = saved_env; |
594 |
} |
595 |
|
596 |
#endif
|
597 |
|
598 |
/* Complex FPU operations which may need stack space. */
|
599 |
|
600 |
/* convert MIPS rounding mode in FCR31 to IEEE library */
|
601 |
unsigned int ieee_rm[] = { |
602 |
float_round_nearest_even, |
603 |
float_round_to_zero, |
604 |
float_round_up, |
605 |
float_round_down |
606 |
}; |
607 |
|
608 |
#define RESTORE_ROUNDING_MODE \
|
609 |
set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
|
610 |
|
611 |
void do_ctc1 (void) |
612 |
{ |
613 |
switch(T1) {
|
614 |
case 25: |
615 |
if (T0 & 0xffffff00) |
616 |
return;
|
617 |
env->fcr31 = (env->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) | |
618 |
((T0 & 0x1) << 23); |
619 |
break;
|
620 |
case 26: |
621 |
if (T0 & 0x007c0000) |
622 |
return;
|
623 |
env->fcr31 = (env->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c); |
624 |
break;
|
625 |
case 28: |
626 |
if (T0 & 0x007c0000) |
627 |
return;
|
628 |
env->fcr31 = (env->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) | |
629 |
((T0 & 0x4) << 22); |
630 |
break;
|
631 |
case 31: |
632 |
if (T0 & 0x007c0000) |
633 |
return;
|
634 |
env->fcr31 = T0; |
635 |
break;
|
636 |
default:
|
637 |
return;
|
638 |
} |
639 |
/* set rounding mode */
|
640 |
RESTORE_ROUNDING_MODE; |
641 |
set_float_exception_flags(0, &env->fp_status);
|
642 |
if ((GET_FP_ENABLE(env->fcr31) | 0x20) & GET_FP_CAUSE(env->fcr31)) |
643 |
do_raise_exception(EXCP_FPE); |
644 |
} |
645 |
|
646 |
inline char ieee_ex_to_mips(char xcpt) |
647 |
{ |
648 |
return (xcpt & float_flag_inexact) >> 5 | |
649 |
(xcpt & float_flag_underflow) >> 3 |
|
650 |
(xcpt & float_flag_overflow) >> 1 |
|
651 |
(xcpt & float_flag_divbyzero) << 1 |
|
652 |
(xcpt & float_flag_invalid) << 4;
|
653 |
} |
654 |
|
655 |
inline char mips_ex_to_ieee(char xcpt) |
656 |
{ |
657 |
return (xcpt & FP_INEXACT) << 5 | |
658 |
(xcpt & FP_UNDERFLOW) << 3 |
|
659 |
(xcpt & FP_OVERFLOW) << 1 |
|
660 |
(xcpt & FP_DIV0) >> 1 |
|
661 |
(xcpt & FP_INVALID) >> 4;
|
662 |
} |
663 |
|
664 |
inline void update_fcr31(void) |
665 |
{ |
666 |
int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fp_status));
|
667 |
|
668 |
SET_FP_CAUSE(env->fcr31, tmp); |
669 |
if (GET_FP_ENABLE(env->fcr31) & tmp)
|
670 |
do_raise_exception(EXCP_FPE); |
671 |
else
|
672 |
UPDATE_FP_FLAGS(env->fcr31, tmp); |
673 |
} |
674 |
|
675 |
#define FLOAT_OP(name, p) void do_float_##name##_##p(void) |
676 |
|
677 |
FLOAT_OP(cvtd, s) |
678 |
{ |
679 |
set_float_exception_flags(0, &env->fp_status);
|
680 |
FDT2 = float32_to_float64(FST0, &env->fp_status); |
681 |
update_fcr31(); |
682 |
} |
683 |
FLOAT_OP(cvtd, w) |
684 |
{ |
685 |
set_float_exception_flags(0, &env->fp_status);
|
686 |
FDT2 = int32_to_float64(WT0, &env->fp_status); |
687 |
update_fcr31(); |
688 |
} |
689 |
FLOAT_OP(cvtd, l) |
690 |
{ |
691 |
set_float_exception_flags(0, &env->fp_status);
|
692 |
FDT2 = int64_to_float64(DT0, &env->fp_status); |
693 |
update_fcr31(); |
694 |
} |
695 |
FLOAT_OP(cvtl, d) |
696 |
{ |
697 |
set_float_exception_flags(0, &env->fp_status);
|
698 |
DT2 = float64_to_int64(FDT0, &env->fp_status); |
699 |
update_fcr31(); |
700 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
701 |
DT2 = 0x7fffffffffffffffULL;
|
702 |
} |
703 |
FLOAT_OP(cvtl, s) |
704 |
{ |
705 |
set_float_exception_flags(0, &env->fp_status);
|
706 |
DT2 = float32_to_int64(FST0, &env->fp_status); |
707 |
update_fcr31(); |
708 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
709 |
DT2 = 0x7fffffffffffffffULL;
|
710 |
} |
711 |
|
712 |
FLOAT_OP(cvtps, pw) |
713 |
{ |
714 |
set_float_exception_flags(0, &env->fp_status);
|
715 |
FST2 = int32_to_float32(WT0, &env->fp_status); |
716 |
FSTH2 = int32_to_float32(WTH0, &env->fp_status); |
717 |
update_fcr31(); |
718 |
} |
719 |
FLOAT_OP(cvtpw, ps) |
720 |
{ |
721 |
set_float_exception_flags(0, &env->fp_status);
|
722 |
WT2 = float32_to_int32(FST0, &env->fp_status); |
723 |
WTH2 = float32_to_int32(FSTH0, &env->fp_status); |
724 |
update_fcr31(); |
725 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
726 |
WT2 = 0x7fffffff;
|
727 |
} |
728 |
FLOAT_OP(cvts, d) |
729 |
{ |
730 |
set_float_exception_flags(0, &env->fp_status);
|
731 |
FST2 = float64_to_float32(FDT0, &env->fp_status); |
732 |
update_fcr31(); |
733 |
} |
734 |
FLOAT_OP(cvts, w) |
735 |
{ |
736 |
set_float_exception_flags(0, &env->fp_status);
|
737 |
FST2 = int32_to_float32(WT0, &env->fp_status); |
738 |
update_fcr31(); |
739 |
} |
740 |
FLOAT_OP(cvts, l) |
741 |
{ |
742 |
set_float_exception_flags(0, &env->fp_status);
|
743 |
FST2 = int64_to_float32(DT0, &env->fp_status); |
744 |
update_fcr31(); |
745 |
} |
746 |
FLOAT_OP(cvts, pl) |
747 |
{ |
748 |
set_float_exception_flags(0, &env->fp_status);
|
749 |
WT2 = WT0; |
750 |
update_fcr31(); |
751 |
} |
752 |
FLOAT_OP(cvts, pu) |
753 |
{ |
754 |
set_float_exception_flags(0, &env->fp_status);
|
755 |
WT2 = WTH0; |
756 |
update_fcr31(); |
757 |
} |
758 |
FLOAT_OP(cvtw, s) |
759 |
{ |
760 |
set_float_exception_flags(0, &env->fp_status);
|
761 |
WT2 = float32_to_int32(FST0, &env->fp_status); |
762 |
update_fcr31(); |
763 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
764 |
WT2 = 0x7fffffff;
|
765 |
} |
766 |
FLOAT_OP(cvtw, d) |
767 |
{ |
768 |
set_float_exception_flags(0, &env->fp_status);
|
769 |
WT2 = float64_to_int32(FDT0, &env->fp_status); |
770 |
update_fcr31(); |
771 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
772 |
WT2 = 0x7fffffff;
|
773 |
} |
774 |
|
775 |
FLOAT_OP(roundl, d) |
776 |
{ |
777 |
set_float_rounding_mode(float_round_nearest_even, &env->fp_status); |
778 |
DT2 = float64_round_to_int(FDT0, &env->fp_status); |
779 |
RESTORE_ROUNDING_MODE; |
780 |
update_fcr31(); |
781 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
782 |
DT2 = 0x7fffffffffffffffULL;
|
783 |
} |
784 |
FLOAT_OP(roundl, s) |
785 |
{ |
786 |
set_float_rounding_mode(float_round_nearest_even, &env->fp_status); |
787 |
DT2 = float32_round_to_int(FST0, &env->fp_status); |
788 |
RESTORE_ROUNDING_MODE; |
789 |
update_fcr31(); |
790 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
791 |
DT2 = 0x7fffffffffffffffULL;
|
792 |
} |
793 |
FLOAT_OP(roundw, d) |
794 |
{ |
795 |
set_float_rounding_mode(float_round_nearest_even, &env->fp_status); |
796 |
WT2 = float64_round_to_int(FDT0, &env->fp_status); |
797 |
RESTORE_ROUNDING_MODE; |
798 |
update_fcr31(); |
799 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
800 |
WT2 = 0x7fffffff;
|
801 |
} |
802 |
FLOAT_OP(roundw, s) |
803 |
{ |
804 |
set_float_rounding_mode(float_round_nearest_even, &env->fp_status); |
805 |
WT2 = float32_round_to_int(FST0, &env->fp_status); |
806 |
RESTORE_ROUNDING_MODE; |
807 |
update_fcr31(); |
808 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
809 |
WT2 = 0x7fffffff;
|
810 |
} |
811 |
|
812 |
FLOAT_OP(truncl, d) |
813 |
{ |
814 |
DT2 = float64_to_int64_round_to_zero(FDT0, &env->fp_status); |
815 |
update_fcr31(); |
816 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
817 |
DT2 = 0x7fffffffffffffffULL;
|
818 |
} |
819 |
FLOAT_OP(truncl, s) |
820 |
{ |
821 |
DT2 = float32_to_int64_round_to_zero(FST0, &env->fp_status); |
822 |
update_fcr31(); |
823 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
824 |
DT2 = 0x7fffffffffffffffULL;
|
825 |
} |
826 |
FLOAT_OP(truncw, d) |
827 |
{ |
828 |
WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status); |
829 |
update_fcr31(); |
830 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
831 |
WT2 = 0x7fffffff;
|
832 |
} |
833 |
FLOAT_OP(truncw, s) |
834 |
{ |
835 |
WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status); |
836 |
update_fcr31(); |
837 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
838 |
WT2 = 0x7fffffff;
|
839 |
} |
840 |
|
841 |
FLOAT_OP(ceill, d) |
842 |
{ |
843 |
set_float_rounding_mode(float_round_up, &env->fp_status); |
844 |
DT2 = float64_round_to_int(FDT0, &env->fp_status); |
845 |
RESTORE_ROUNDING_MODE; |
846 |
update_fcr31(); |
847 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
848 |
DT2 = 0x7fffffffffffffffULL;
|
849 |
} |
850 |
FLOAT_OP(ceill, s) |
851 |
{ |
852 |
set_float_rounding_mode(float_round_up, &env->fp_status); |
853 |
DT2 = float32_round_to_int(FST0, &env->fp_status); |
854 |
RESTORE_ROUNDING_MODE; |
855 |
update_fcr31(); |
856 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
857 |
DT2 = 0x7fffffffffffffffULL;
|
858 |
} |
859 |
FLOAT_OP(ceilw, d) |
860 |
{ |
861 |
set_float_rounding_mode(float_round_up, &env->fp_status); |
862 |
WT2 = float64_round_to_int(FDT0, &env->fp_status); |
863 |
RESTORE_ROUNDING_MODE; |
864 |
update_fcr31(); |
865 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
866 |
WT2 = 0x7fffffff;
|
867 |
} |
868 |
FLOAT_OP(ceilw, s) |
869 |
{ |
870 |
set_float_rounding_mode(float_round_up, &env->fp_status); |
871 |
WT2 = float32_round_to_int(FST0, &env->fp_status); |
872 |
RESTORE_ROUNDING_MODE; |
873 |
update_fcr31(); |
874 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
875 |
WT2 = 0x7fffffff;
|
876 |
} |
877 |
|
878 |
FLOAT_OP(floorl, d) |
879 |
{ |
880 |
set_float_rounding_mode(float_round_down, &env->fp_status); |
881 |
DT2 = float64_round_to_int(FDT0, &env->fp_status); |
882 |
RESTORE_ROUNDING_MODE; |
883 |
update_fcr31(); |
884 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
885 |
DT2 = 0x7fffffffffffffffULL;
|
886 |
} |
887 |
FLOAT_OP(floorl, s) |
888 |
{ |
889 |
set_float_rounding_mode(float_round_down, &env->fp_status); |
890 |
DT2 = float32_round_to_int(FST0, &env->fp_status); |
891 |
RESTORE_ROUNDING_MODE; |
892 |
update_fcr31(); |
893 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
894 |
DT2 = 0x7fffffffffffffffULL;
|
895 |
} |
896 |
FLOAT_OP(floorw, d) |
897 |
{ |
898 |
set_float_rounding_mode(float_round_down, &env->fp_status); |
899 |
WT2 = float64_round_to_int(FDT0, &env->fp_status); |
900 |
RESTORE_ROUNDING_MODE; |
901 |
update_fcr31(); |
902 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
903 |
WT2 = 0x7fffffff;
|
904 |
} |
905 |
FLOAT_OP(floorw, s) |
906 |
{ |
907 |
set_float_rounding_mode(float_round_down, &env->fp_status); |
908 |
WT2 = float32_round_to_int(FST0, &env->fp_status); |
909 |
RESTORE_ROUNDING_MODE; |
910 |
update_fcr31(); |
911 |
if (GET_FP_CAUSE(env->fcr31) & (FP_OVERFLOW | FP_INVALID))
|
912 |
WT2 = 0x7fffffff;
|
913 |
} |
914 |
|
915 |
/* unary operations, MIPS specific, s and d */
|
916 |
#define FLOAT_UNOP(name) \
|
917 |
FLOAT_OP(name, d) \ |
918 |
{ \ |
919 |
set_float_exception_flags(0, &env->fp_status); \
|
920 |
/* XXX: not implemented */ \
|
921 |
/* FDT2 = float64_ ## name (FDT0, &env->fp_status);*/ \
|
922 |
do_raise_exception(EXCP_RI); \ |
923 |
update_fcr31(); \ |
924 |
} \ |
925 |
FLOAT_OP(name, s) \ |
926 |
{ \ |
927 |
set_float_exception_flags(0, &env->fp_status); \
|
928 |
/* XXX: not implemented */ \
|
929 |
/* FST2 = float32_ ## name (FST0, &env->fp_status);*/ \
|
930 |
do_raise_exception(EXCP_RI); \ |
931 |
update_fcr31(); \ |
932 |
} |
933 |
FLOAT_UNOP(rsqrt) |
934 |
FLOAT_UNOP(recip) |
935 |
#undef FLOAT_UNOP
|
936 |
|
937 |
/* unary operations, MIPS specific, s, d and ps */
|
938 |
#define FLOAT_UNOP(name) \
|
939 |
FLOAT_OP(name, d) \ |
940 |
{ \ |
941 |
set_float_exception_flags(0, &env->fp_status); \
|
942 |
/* XXX: not implemented */ \
|
943 |
/* FDT2 = float64_ ## name (FDT0, &env->fp_status);*/ \
|
944 |
do_raise_exception(EXCP_RI); \ |
945 |
update_fcr31(); \ |
946 |
} \ |
947 |
FLOAT_OP(name, s) \ |
948 |
{ \ |
949 |
set_float_exception_flags(0, &env->fp_status); \
|
950 |
/* XXX: not implemented */ \
|
951 |
/* FST2 = float32_ ## name (FST0, &env->fp_status);*/ \
|
952 |
do_raise_exception(EXCP_RI); \ |
953 |
update_fcr31(); \ |
954 |
} \ |
955 |
FLOAT_OP(name, ps) \ |
956 |
{ \ |
957 |
set_float_exception_flags(0, &env->fp_status); \
|
958 |
/* XXX: not implemented */ \
|
959 |
/* FST2 = float32_ ## name (FST0, &env->fp_status);*/ \
|
960 |
/* FSTH2 = float32_ ## name (FSTH0, &env->fp_status);*/ \
|
961 |
do_raise_exception(EXCP_RI); \ |
962 |
update_fcr31(); \ |
963 |
} |
964 |
FLOAT_UNOP(rsqrt1) |
965 |
FLOAT_UNOP(recip1) |
966 |
#undef FLOAT_UNOP
|
967 |
|
968 |
/* binary operations */
|
969 |
#define FLOAT_BINOP(name) \
|
970 |
FLOAT_OP(name, d) \ |
971 |
{ \ |
972 |
set_float_exception_flags(0, &env->fp_status); \
|
973 |
FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status); \ |
974 |
update_fcr31(); \ |
975 |
if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) \
|
976 |
FDT2 = 0x7ff7ffffffffffffULL; \
|
977 |
else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ |
978 |
if ((env->fcr31 & 0x3) == 0) \ |
979 |
FDT2 &= 0x8000000000000000ULL; \
|
980 |
} \ |
981 |
} \ |
982 |
FLOAT_OP(name, s) \ |
983 |
{ \ |
984 |
set_float_exception_flags(0, &env->fp_status); \
|
985 |
FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \ |
986 |
update_fcr31(); \ |
987 |
if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) \
|
988 |
FST2 = 0x7fbfffff; \
|
989 |
else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ |
990 |
if ((env->fcr31 & 0x3) == 0) \ |
991 |
FST2 &= 0x80000000ULL; \
|
992 |
} \ |
993 |
} \ |
994 |
FLOAT_OP(name, ps) \ |
995 |
{ \ |
996 |
set_float_exception_flags(0, &env->fp_status); \
|
997 |
FST2 = float32_ ## name (FST0, FST1, &env->fp_status); \ |
998 |
FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status); \ |
999 |
update_fcr31(); \ |
1000 |
if (GET_FP_CAUSE(env->fcr31) & FP_INVALID) { \
|
1001 |
FST2 = 0x7fbfffff; \
|
1002 |
FSTH2 = 0x7fbfffff; \
|
1003 |
} else if (GET_FP_CAUSE(env->fcr31) & FP_UNDERFLOW) { \ |
1004 |
if ((env->fcr31 & 0x3) == 0) { \ |
1005 |
FST2 &= 0x80000000ULL; \
|
1006 |
FSTH2 &= 0x80000000ULL; \
|
1007 |
} \ |
1008 |
} \ |
1009 |
} |
1010 |
FLOAT_BINOP(add) |
1011 |
FLOAT_BINOP(sub) |
1012 |
FLOAT_BINOP(mul) |
1013 |
FLOAT_BINOP(div) |
1014 |
#undef FLOAT_BINOP
|
1015 |
|
1016 |
/* binary operations, MIPS specific */
|
1017 |
#define FLOAT_BINOP(name) \
|
1018 |
FLOAT_OP(name, d) \ |
1019 |
{ \ |
1020 |
set_float_exception_flags(0, &env->fp_status); \
|
1021 |
/* XXX: not implemented */ \
|
1022 |
/* FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);*/ \
|
1023 |
do_raise_exception(EXCP_RI); \ |
1024 |
update_fcr31(); \ |
1025 |
} \ |
1026 |
FLOAT_OP(name, s) \ |
1027 |
{ \ |
1028 |
set_float_exception_flags(0, &env->fp_status); \
|
1029 |
/* XXX: not implemented */ \
|
1030 |
/* FST2 = float32_ ## name (FST0, FST1, &env->fp_status);*/ \
|
1031 |
do_raise_exception(EXCP_RI); \ |
1032 |
update_fcr31(); \ |
1033 |
} \ |
1034 |
FLOAT_OP(name, ps) \ |
1035 |
{ \ |
1036 |
set_float_exception_flags(0, &env->fp_status); \
|
1037 |
/* XXX: not implemented */ \
|
1038 |
/* FST2 = float32_ ## name (FST0, FST1, &env->fp_status);*/ \
|
1039 |
/* FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fp_status);*/ \
|
1040 |
do_raise_exception(EXCP_RI); \ |
1041 |
update_fcr31(); \ |
1042 |
} |
1043 |
FLOAT_BINOP(rsqrt2) |
1044 |
FLOAT_BINOP(recip2) |
1045 |
#undef FLOAT_BINOP
|
1046 |
|
1047 |
FLOAT_OP(addr, ps) |
1048 |
{ |
1049 |
set_float_exception_flags(0, &env->fp_status);
|
1050 |
FST2 = float32_add (FST0, FSTH0, &env->fp_status); |
1051 |
FSTH2 = float32_add (FST1, FSTH1, &env->fp_status); |
1052 |
update_fcr31(); |
1053 |
} |
1054 |
|
1055 |
FLOAT_OP(mulr, ps) |
1056 |
{ |
1057 |
set_float_exception_flags(0, &env->fp_status);
|
1058 |
FST2 = float32_mul (FST0, FSTH0, &env->fp_status); |
1059 |
FSTH2 = float32_mul (FST1, FSTH1, &env->fp_status); |
1060 |
update_fcr31(); |
1061 |
} |
1062 |
|
1063 |
#define FOP_COND_D(op, cond) \
|
1064 |
void do_cmp_d_ ## op (long cc) \ |
1065 |
{ \ |
1066 |
int c = cond; \
|
1067 |
update_fcr31(); \ |
1068 |
if (c) \
|
1069 |
SET_FP_COND(cc, env); \ |
1070 |
else \
|
1071 |
CLEAR_FP_COND(cc, env); \ |
1072 |
} \ |
1073 |
void do_cmpabs_d_ ## op (long cc) \ |
1074 |
{ \ |
1075 |
int c; \
|
1076 |
FDT0 &= ~(1ULL << 63); \ |
1077 |
FDT1 &= ~(1ULL << 63); \ |
1078 |
c = cond; \ |
1079 |
update_fcr31(); \ |
1080 |
if (c) \
|
1081 |
SET_FP_COND(cc, env); \ |
1082 |
else \
|
1083 |
CLEAR_FP_COND(cc, env); \ |
1084 |
} |
1085 |
|
1086 |
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM) |
1087 |
{ |
1088 |
if (float64_is_signaling_nan(a) ||
|
1089 |
float64_is_signaling_nan(b) || |
1090 |
(sig && (float64_is_nan(a) || float64_is_nan(b)))) { |
1091 |
float_raise(float_flag_invalid, status); |
1092 |
return 1; |
1093 |
} else if (float64_is_nan(a) || float64_is_nan(b)) { |
1094 |
return 1; |
1095 |
} else {
|
1096 |
return 0; |
1097 |
} |
1098 |
} |
1099 |
|
1100 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1101 |
* but float*_is_unordered() is still called. */
|
1102 |
FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fp_status), 0)) |
1103 |
FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fp_status))
|
1104 |
FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
|
1105 |
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
|
1106 |
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
|
1107 |
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
|
1108 |
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
|
1109 |
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
|
1110 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1111 |
* but float*_is_unordered() is still called. */
|
1112 |
FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fp_status), 0)) |
1113 |
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fp_status))
|
1114 |
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_eq(FDT0, FDT1, &env->fp_status))
|
1115 |
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
|
1116 |
FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_lt(FDT0, FDT1, &env->fp_status))
|
1117 |
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
|
1118 |
FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fp_status) && float64_le(FDT0, FDT1, &env->fp_status))
|
1119 |
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
|
1120 |
|
1121 |
#define FOP_COND_S(op, cond) \
|
1122 |
void do_cmp_s_ ## op (long cc) \ |
1123 |
{ \ |
1124 |
int c = cond; \
|
1125 |
update_fcr31(); \ |
1126 |
if (c) \
|
1127 |
SET_FP_COND(cc, env); \ |
1128 |
else \
|
1129 |
CLEAR_FP_COND(cc, env); \ |
1130 |
} \ |
1131 |
void do_cmpabs_s_ ## op (long cc) \ |
1132 |
{ \ |
1133 |
int c; \
|
1134 |
FST0 &= ~(1 << 31); \ |
1135 |
FST1 &= ~(1 << 31); \ |
1136 |
c = cond; \ |
1137 |
update_fcr31(); \ |
1138 |
if (c) \
|
1139 |
SET_FP_COND(cc, env); \ |
1140 |
else \
|
1141 |
CLEAR_FP_COND(cc, env); \ |
1142 |
} |
1143 |
|
1144 |
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
|
1145 |
{ |
1146 |
if (float32_is_signaling_nan(a) ||
|
1147 |
float32_is_signaling_nan(b) || |
1148 |
(sig && (float32_is_nan(a) || float32_is_nan(b)))) { |
1149 |
float_raise(float_flag_invalid, status); |
1150 |
return 1; |
1151 |
} else if (float32_is_nan(a) || float32_is_nan(b)) { |
1152 |
return 1; |
1153 |
} else {
|
1154 |
return 0; |
1155 |
} |
1156 |
} |
1157 |
|
1158 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1159 |
* but float*_is_unordered() is still called. */
|
1160 |
FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0)) |
1161 |
FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fp_status))
|
1162 |
FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
|
1163 |
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
|
1164 |
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
|
1165 |
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
|
1166 |
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
|
1167 |
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
|
1168 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1169 |
* but float*_is_unordered() is still called. */
|
1170 |
FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0)) |
1171 |
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status))
|
1172 |
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status))
|
1173 |
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
|
1174 |
FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status))
|
1175 |
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
|
1176 |
FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status))
|
1177 |
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
|
1178 |
|
1179 |
#define FOP_COND_PS(op, condl, condh) \
|
1180 |
void do_cmp_ps_ ## op (long cc) \ |
1181 |
{ \ |
1182 |
int cl = condl; \
|
1183 |
int ch = condh; \
|
1184 |
update_fcr31(); \ |
1185 |
if (cl) \
|
1186 |
SET_FP_COND(cc, env); \ |
1187 |
else \
|
1188 |
CLEAR_FP_COND(cc, env); \ |
1189 |
if (ch) \
|
1190 |
SET_FP_COND(cc + 1, env); \
|
1191 |
else \
|
1192 |
CLEAR_FP_COND(cc + 1, env); \
|
1193 |
} \ |
1194 |
void do_cmpabs_ps_ ## op (long cc) \ |
1195 |
{ \ |
1196 |
int cl, ch; \
|
1197 |
FST0 &= ~(1 << 31); \ |
1198 |
FSTH0 &= ~(1 << 31); \ |
1199 |
FST1 &= ~(1 << 31); \ |
1200 |
FSTH1 &= ~(1 << 31); \ |
1201 |
cl = condl; \ |
1202 |
ch = condh; \ |
1203 |
update_fcr31(); \ |
1204 |
if (cl) \
|
1205 |
SET_FP_COND(cc, env); \ |
1206 |
else \
|
1207 |
CLEAR_FP_COND(cc, env); \ |
1208 |
if (ch) \
|
1209 |
SET_FP_COND(cc + 1, env); \
|
1210 |
else \
|
1211 |
CLEAR_FP_COND(cc + 1, env); \
|
1212 |
} |
1213 |
|
1214 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1215 |
* but float*_is_unordered() is still called. */
|
1216 |
FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fp_status), 0), |
1217 |
(float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status), 0)) |
1218 |
FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fp_status),
|
1219 |
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status))
|
1220 |
FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status),
|
1221 |
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
|
1222 |
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status),
|
1223 |
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status))
|
1224 |
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status),
|
1225 |
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
|
1226 |
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status),
|
1227 |
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status))
|
1228 |
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status),
|
1229 |
!float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
|
1230 |
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status),
|
1231 |
float32_is_unordered(0, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status))
|
1232 |
/* NOTE: the comma operator will make "cond" to eval to false,
|
1233 |
* but float*_is_unordered() is still called. */
|
1234 |
FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fp_status), 0), |
1235 |
(float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status), 0)) |
1236 |
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fp_status),
|
1237 |
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status))
|
1238 |
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_eq(FST0, FST1, &env->fp_status),
|
1239 |
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_eq(FSTH0, FSTH1, &env->fp_status))
|
1240 |
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status),
|
1241 |
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_eq(FSTH0, FSTH1, &env->fp_status))
|
1242 |
FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_lt(FST0, FST1, &env->fp_status),
|
1243 |
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_lt(FSTH0, FSTH1, &env->fp_status))
|
1244 |
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status),
|
1245 |
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_lt(FSTH0, FSTH1, &env->fp_status))
|
1246 |
FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fp_status) && float32_le(FST0, FST1, &env->fp_status),
|
1247 |
!float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) && float32_le(FSTH0, FSTH1, &env->fp_status))
|
1248 |
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status),
|
1249 |
float32_is_unordered(1, FSTH1, FSTH0, &env->fp_status) || float32_le(FSTH0, FSTH1, &env->fp_status))
|