Statistics
| Branch: | Revision:

root / hw / m48t59.c @ e23a1b33

History | View | Annotate | Download (19 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "nvram.h"
26
#include "qemu-timer.h"
27
#include "sysemu.h"
28
#include "sysbus.h"
29
#include "isa.h"
30

    
31
//#define DEBUG_NVRAM
32

    
33
#if defined(DEBUG_NVRAM)
34
#define NVRAM_PRINTF(fmt, ...) do { printf(fmt , ## __VA_ARGS__); } while (0)
35
#else
36
#define NVRAM_PRINTF(fmt, ...) do { } while (0)
37
#endif
38

    
39
/*
40
 * The M48T02, M48T08 and M48T59 chips are very similar. The newer '59 has
41
 * alarm and a watchdog timer and related control registers. In the
42
 * PPC platform there is also a nvram lock function.
43
 */
44
struct m48t59_t {
45
    /* Model parameters */
46
    uint32_t type; // 2 = m48t02, 8 = m48t08, 59 = m48t59
47
    /* Hardware parameters */
48
    qemu_irq IRQ;
49
    uint32_t io_base;
50
    uint32_t size;
51
    /* RTC management */
52
    time_t   time_offset;
53
    time_t   stop_time;
54
    /* Alarm & watchdog */
55
    struct tm alarm;
56
    struct QEMUTimer *alrm_timer;
57
    struct QEMUTimer *wd_timer;
58
    /* NVRAM storage */
59
    uint8_t  lock;
60
    uint16_t addr;
61
    uint8_t *buffer;
62
};
63

    
64
typedef struct M48t59ISAState {
65
    ISADevice busdev;
66
    m48t59_t state;
67
} M48t59ISAState;
68

    
69
typedef struct M48t59SysBusState {
70
    SysBusDevice busdev;
71
    m48t59_t state;
72
} M48t59SysBusState;
73

    
74
/* Fake timer functions */
75
/* Generic helpers for BCD */
76
static inline uint8_t toBCD (uint8_t value)
77
{
78
    return (((value / 10) % 10) << 4) | (value % 10);
79
}
80

    
81
static inline uint8_t fromBCD (uint8_t BCD)
82
{
83
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
84
}
85

    
86
/* Alarm management */
87
static void alarm_cb (void *opaque)
88
{
89
    struct tm tm;
90
    uint64_t next_time;
91
    m48t59_t *NVRAM = opaque;
92

    
93
    qemu_set_irq(NVRAM->IRQ, 1);
94
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
95
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
96
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
97
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
98
        /* Repeat once a month */
99
        qemu_get_timedate(&tm, NVRAM->time_offset);
100
        tm.tm_mon++;
101
        if (tm.tm_mon == 13) {
102
            tm.tm_mon = 1;
103
            tm.tm_year++;
104
        }
105
        next_time = qemu_timedate_diff(&tm) - NVRAM->time_offset;
106
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
107
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
108
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
109
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
110
        /* Repeat once a day */
111
        next_time = 24 * 60 * 60;
112
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
113
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
114
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
115
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
116
        /* Repeat once an hour */
117
        next_time = 60 * 60;
118
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
119
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
120
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
121
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
122
        /* Repeat once a minute */
123
        next_time = 60;
124
    } else {
125
        /* Repeat once a second */
126
        next_time = 1;
127
    }
128
    qemu_mod_timer(NVRAM->alrm_timer, qemu_get_clock(vm_clock) +
129
                    next_time * 1000);
130
    qemu_set_irq(NVRAM->IRQ, 0);
131
}
132

    
133
static void set_alarm (m48t59_t *NVRAM)
134
{
135
    int diff;
136
    if (NVRAM->alrm_timer != NULL) {
137
        qemu_del_timer(NVRAM->alrm_timer);
138
        diff = qemu_timedate_diff(&NVRAM->alarm) - NVRAM->time_offset;
139
        if (diff > 0)
140
            qemu_mod_timer(NVRAM->alrm_timer, diff * 1000);
141
    }
142
}
143

    
144
/* RTC management helpers */
145
static inline void get_time (m48t59_t *NVRAM, struct tm *tm)
146
{
147
    qemu_get_timedate(tm, NVRAM->time_offset);
148
}
149

    
150
static void set_time (m48t59_t *NVRAM, struct tm *tm)
151
{
152
    NVRAM->time_offset = qemu_timedate_diff(tm);
153
    set_alarm(NVRAM);
154
}
155

    
156
/* Watchdog management */
157
static void watchdog_cb (void *opaque)
158
{
159
    m48t59_t *NVRAM = opaque;
160

    
161
    NVRAM->buffer[0x1FF0] |= 0x80;
162
    if (NVRAM->buffer[0x1FF7] & 0x80) {
163
        NVRAM->buffer[0x1FF7] = 0x00;
164
        NVRAM->buffer[0x1FFC] &= ~0x40;
165
        /* May it be a hw CPU Reset instead ? */
166
        qemu_system_reset_request();
167
    } else {
168
        qemu_set_irq(NVRAM->IRQ, 1);
169
        qemu_set_irq(NVRAM->IRQ, 0);
170
    }
171
}
172

    
173
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
174
{
175
    uint64_t interval; /* in 1/16 seconds */
176

    
177
    NVRAM->buffer[0x1FF0] &= ~0x80;
178
    if (NVRAM->wd_timer != NULL) {
179
        qemu_del_timer(NVRAM->wd_timer);
180
        if (value != 0) {
181
            interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
182
            qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
183
                           ((interval * 1000) >> 4));
184
        }
185
    }
186
}
187

    
188
/* Direct access to NVRAM */
189
void m48t59_write (void *opaque, uint32_t addr, uint32_t val)
190
{
191
    m48t59_t *NVRAM = opaque;
192
    struct tm tm;
193
    int tmp;
194

    
195
    if (addr > 0x1FF8 && addr < 0x2000)
196
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
197

    
198
    /* check for NVRAM access */
199
    if ((NVRAM->type == 2 && addr < 0x7f8) ||
200
        (NVRAM->type == 8 && addr < 0x1ff8) ||
201
        (NVRAM->type == 59 && addr < 0x1ff0))
202
        goto do_write;
203

    
204
    /* TOD access */
205
    switch (addr) {
206
    case 0x1FF0:
207
        /* flags register : read-only */
208
        break;
209
    case 0x1FF1:
210
        /* unused */
211
        break;
212
    case 0x1FF2:
213
        /* alarm seconds */
214
        tmp = fromBCD(val & 0x7F);
215
        if (tmp >= 0 && tmp <= 59) {
216
            NVRAM->alarm.tm_sec = tmp;
217
            NVRAM->buffer[0x1FF2] = val;
218
            set_alarm(NVRAM);
219
        }
220
        break;
221
    case 0x1FF3:
222
        /* alarm minutes */
223
        tmp = fromBCD(val & 0x7F);
224
        if (tmp >= 0 && tmp <= 59) {
225
            NVRAM->alarm.tm_min = tmp;
226
            NVRAM->buffer[0x1FF3] = val;
227
            set_alarm(NVRAM);
228
        }
229
        break;
230
    case 0x1FF4:
231
        /* alarm hours */
232
        tmp = fromBCD(val & 0x3F);
233
        if (tmp >= 0 && tmp <= 23) {
234
            NVRAM->alarm.tm_hour = tmp;
235
            NVRAM->buffer[0x1FF4] = val;
236
            set_alarm(NVRAM);
237
        }
238
        break;
239
    case 0x1FF5:
240
        /* alarm date */
241
        tmp = fromBCD(val & 0x1F);
242
        if (tmp != 0) {
243
            NVRAM->alarm.tm_mday = tmp;
244
            NVRAM->buffer[0x1FF5] = val;
245
            set_alarm(NVRAM);
246
        }
247
        break;
248
    case 0x1FF6:
249
        /* interrupts */
250
        NVRAM->buffer[0x1FF6] = val;
251
        break;
252
    case 0x1FF7:
253
        /* watchdog */
254
        NVRAM->buffer[0x1FF7] = val;
255
        set_up_watchdog(NVRAM, val);
256
        break;
257
    case 0x1FF8:
258
    case 0x07F8:
259
        /* control */
260
       NVRAM->buffer[addr] = (val & ~0xA0) | 0x90;
261
        break;
262
    case 0x1FF9:
263
    case 0x07F9:
264
        /* seconds (BCD) */
265
        tmp = fromBCD(val & 0x7F);
266
        if (tmp >= 0 && tmp <= 59) {
267
            get_time(NVRAM, &tm);
268
            tm.tm_sec = tmp;
269
            set_time(NVRAM, &tm);
270
        }
271
        if ((val & 0x80) ^ (NVRAM->buffer[addr] & 0x80)) {
272
            if (val & 0x80) {
273
                NVRAM->stop_time = time(NULL);
274
            } else {
275
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
276
                NVRAM->stop_time = 0;
277
            }
278
        }
279
        NVRAM->buffer[addr] = val & 0x80;
280
        break;
281
    case 0x1FFA:
282
    case 0x07FA:
283
        /* minutes (BCD) */
284
        tmp = fromBCD(val & 0x7F);
285
        if (tmp >= 0 && tmp <= 59) {
286
            get_time(NVRAM, &tm);
287
            tm.tm_min = tmp;
288
            set_time(NVRAM, &tm);
289
        }
290
        break;
291
    case 0x1FFB:
292
    case 0x07FB:
293
        /* hours (BCD) */
294
        tmp = fromBCD(val & 0x3F);
295
        if (tmp >= 0 && tmp <= 23) {
296
            get_time(NVRAM, &tm);
297
            tm.tm_hour = tmp;
298
            set_time(NVRAM, &tm);
299
        }
300
        break;
301
    case 0x1FFC:
302
    case 0x07FC:
303
        /* day of the week / century */
304
        tmp = fromBCD(val & 0x07);
305
        get_time(NVRAM, &tm);
306
        tm.tm_wday = tmp;
307
        set_time(NVRAM, &tm);
308
        NVRAM->buffer[addr] = val & 0x40;
309
        break;
310
    case 0x1FFD:
311
    case 0x07FD:
312
        /* date */
313
        tmp = fromBCD(val & 0x1F);
314
        if (tmp != 0) {
315
            get_time(NVRAM, &tm);
316
            tm.tm_mday = tmp;
317
            set_time(NVRAM, &tm);
318
        }
319
        break;
320
    case 0x1FFE:
321
    case 0x07FE:
322
        /* month */
323
        tmp = fromBCD(val & 0x1F);
324
        if (tmp >= 1 && tmp <= 12) {
325
            get_time(NVRAM, &tm);
326
            tm.tm_mon = tmp - 1;
327
            set_time(NVRAM, &tm);
328
        }
329
        break;
330
    case 0x1FFF:
331
    case 0x07FF:
332
        /* year */
333
        tmp = fromBCD(val);
334
        if (tmp >= 0 && tmp <= 99) {
335
            get_time(NVRAM, &tm);
336
            if (NVRAM->type == 8)
337
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
338
            else
339
                tm.tm_year = fromBCD(val);
340
            set_time(NVRAM, &tm);
341
        }
342
        break;
343
    default:
344
        /* Check lock registers state */
345
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
346
            break;
347
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
348
            break;
349
    do_write:
350
        if (addr < NVRAM->size) {
351
            NVRAM->buffer[addr] = val & 0xFF;
352
        }
353
        break;
354
    }
355
}
356

    
357
uint32_t m48t59_read (void *opaque, uint32_t addr)
358
{
359
    m48t59_t *NVRAM = opaque;
360
    struct tm tm;
361
    uint32_t retval = 0xFF;
362

    
363
    /* check for NVRAM access */
364
    if ((NVRAM->type == 2 && addr < 0x078f) ||
365
        (NVRAM->type == 8 && addr < 0x1ff8) ||
366
        (NVRAM->type == 59 && addr < 0x1ff0))
367
        goto do_read;
368

    
369
    /* TOD access */
370
    switch (addr) {
371
    case 0x1FF0:
372
        /* flags register */
373
        goto do_read;
374
    case 0x1FF1:
375
        /* unused */
376
        retval = 0;
377
        break;
378
    case 0x1FF2:
379
        /* alarm seconds */
380
        goto do_read;
381
    case 0x1FF3:
382
        /* alarm minutes */
383
        goto do_read;
384
    case 0x1FF4:
385
        /* alarm hours */
386
        goto do_read;
387
    case 0x1FF5:
388
        /* alarm date */
389
        goto do_read;
390
    case 0x1FF6:
391
        /* interrupts */
392
        goto do_read;
393
    case 0x1FF7:
394
        /* A read resets the watchdog */
395
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
396
        goto do_read;
397
    case 0x1FF8:
398
    case 0x07F8:
399
        /* control */
400
        goto do_read;
401
    case 0x1FF9:
402
    case 0x07F9:
403
        /* seconds (BCD) */
404
        get_time(NVRAM, &tm);
405
        retval = (NVRAM->buffer[addr] & 0x80) | toBCD(tm.tm_sec);
406
        break;
407
    case 0x1FFA:
408
    case 0x07FA:
409
        /* minutes (BCD) */
410
        get_time(NVRAM, &tm);
411
        retval = toBCD(tm.tm_min);
412
        break;
413
    case 0x1FFB:
414
    case 0x07FB:
415
        /* hours (BCD) */
416
        get_time(NVRAM, &tm);
417
        retval = toBCD(tm.tm_hour);
418
        break;
419
    case 0x1FFC:
420
    case 0x07FC:
421
        /* day of the week / century */
422
        get_time(NVRAM, &tm);
423
        retval = NVRAM->buffer[addr] | tm.tm_wday;
424
        break;
425
    case 0x1FFD:
426
    case 0x07FD:
427
        /* date */
428
        get_time(NVRAM, &tm);
429
        retval = toBCD(tm.tm_mday);
430
        break;
431
    case 0x1FFE:
432
    case 0x07FE:
433
        /* month */
434
        get_time(NVRAM, &tm);
435
        retval = toBCD(tm.tm_mon + 1);
436
        break;
437
    case 0x1FFF:
438
    case 0x07FF:
439
        /* year */
440
        get_time(NVRAM, &tm);
441
        if (NVRAM->type == 8)
442
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
443
        else
444
            retval = toBCD(tm.tm_year);
445
        break;
446
    default:
447
        /* Check lock registers state */
448
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
449
            break;
450
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
451
            break;
452
    do_read:
453
        if (addr < NVRAM->size) {
454
            retval = NVRAM->buffer[addr];
455
        }
456
        break;
457
    }
458
    if (addr > 0x1FF9 && addr < 0x2000)
459
       NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
460

    
461
    return retval;
462
}
463

    
464
void m48t59_set_addr (void *opaque, uint32_t addr)
465
{
466
    m48t59_t *NVRAM = opaque;
467

    
468
    NVRAM->addr = addr;
469
}
470

    
471
void m48t59_toggle_lock (void *opaque, int lock)
472
{
473
    m48t59_t *NVRAM = opaque;
474

    
475
    NVRAM->lock ^= 1 << lock;
476
}
477

    
478
/* IO access to NVRAM */
479
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
480
{
481
    m48t59_t *NVRAM = opaque;
482

    
483
    addr -= NVRAM->io_base;
484
    NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
485
    switch (addr) {
486
    case 0:
487
        NVRAM->addr &= ~0x00FF;
488
        NVRAM->addr |= val;
489
        break;
490
    case 1:
491
        NVRAM->addr &= ~0xFF00;
492
        NVRAM->addr |= val << 8;
493
        break;
494
    case 3:
495
        m48t59_write(NVRAM, val, NVRAM->addr);
496
        NVRAM->addr = 0x0000;
497
        break;
498
    default:
499
        break;
500
    }
501
}
502

    
503
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
504
{
505
    m48t59_t *NVRAM = opaque;
506
    uint32_t retval;
507

    
508
    addr -= NVRAM->io_base;
509
    switch (addr) {
510
    case 3:
511
        retval = m48t59_read(NVRAM, NVRAM->addr);
512
        break;
513
    default:
514
        retval = -1;
515
        break;
516
    }
517
    NVRAM_PRINTF("%s: 0x%08x <= 0x%08x\n", __func__, addr, retval);
518

    
519
    return retval;
520
}
521

    
522
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
523
{
524
    m48t59_t *NVRAM = opaque;
525

    
526
    m48t59_write(NVRAM, addr, value & 0xff);
527
}
528

    
529
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
530
{
531
    m48t59_t *NVRAM = opaque;
532

    
533
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
534
    m48t59_write(NVRAM, addr + 1, value & 0xff);
535
}
536

    
537
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
538
{
539
    m48t59_t *NVRAM = opaque;
540

    
541
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
542
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
543
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
544
    m48t59_write(NVRAM, addr + 3, value & 0xff);
545
}
546

    
547
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
548
{
549
    m48t59_t *NVRAM = opaque;
550
    uint32_t retval;
551

    
552
    retval = m48t59_read(NVRAM, addr);
553
    return retval;
554
}
555

    
556
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
557
{
558
    m48t59_t *NVRAM = opaque;
559
    uint32_t retval;
560

    
561
    retval = m48t59_read(NVRAM, addr) << 8;
562
    retval |= m48t59_read(NVRAM, addr + 1);
563
    return retval;
564
}
565

    
566
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
567
{
568
    m48t59_t *NVRAM = opaque;
569
    uint32_t retval;
570

    
571
    retval = m48t59_read(NVRAM, addr) << 24;
572
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
573
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
574
    retval |= m48t59_read(NVRAM, addr + 3);
575
    return retval;
576
}
577

    
578
static CPUWriteMemoryFunc * const nvram_write[] = {
579
    &nvram_writeb,
580
    &nvram_writew,
581
    &nvram_writel,
582
};
583

    
584
static CPUReadMemoryFunc * const nvram_read[] = {
585
    &nvram_readb,
586
    &nvram_readw,
587
    &nvram_readl,
588
};
589

    
590
static void m48t59_save(QEMUFile *f, void *opaque)
591
{
592
    m48t59_t *s = opaque;
593

    
594
    qemu_put_8s(f, &s->lock);
595
    qemu_put_be16s(f, &s->addr);
596
    qemu_put_buffer(f, s->buffer, s->size);
597
}
598

    
599
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
600
{
601
    m48t59_t *s = opaque;
602

    
603
    if (version_id != 1)
604
        return -EINVAL;
605

    
606
    qemu_get_8s(f, &s->lock);
607
    qemu_get_be16s(f, &s->addr);
608
    qemu_get_buffer(f, s->buffer, s->size);
609

    
610
    return 0;
611
}
612

    
613
static void m48t59_reset(void *opaque)
614
{
615
    m48t59_t *NVRAM = opaque;
616

    
617
    NVRAM->addr = 0;
618
    NVRAM->lock = 0;
619
    if (NVRAM->alrm_timer != NULL)
620
        qemu_del_timer(NVRAM->alrm_timer);
621

    
622
    if (NVRAM->wd_timer != NULL)
623
        qemu_del_timer(NVRAM->wd_timer);
624
}
625

    
626
/* Initialisation routine */
627
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
628
                       uint32_t io_base, uint16_t size,
629
                       int type)
630
{
631
    DeviceState *dev;
632
    SysBusDevice *s;
633
    M48t59SysBusState *d;
634

    
635
    dev = qdev_create(NULL, "m48t59");
636
    qdev_prop_set_uint32(dev, "type", type);
637
    qdev_prop_set_uint32(dev, "size", size);
638
    qdev_prop_set_uint32(dev, "io_base", io_base);
639
    qdev_init_nofail(dev);
640
    s = sysbus_from_qdev(dev);
641
    sysbus_connect_irq(s, 0, IRQ);
642
    if (io_base != 0) {
643
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
644
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
645
    }
646
    if (mem_base != 0) {
647
        sysbus_mmio_map(s, 0, mem_base);
648
    }
649

    
650
    d = FROM_SYSBUS(M48t59SysBusState, s);
651

    
652
    return &d->state;
653
}
654

    
655
m48t59_t *m48t59_init_isa(uint32_t io_base, uint16_t size, int type)
656
{
657
    M48t59ISAState *d;
658
    ISADevice *dev;
659
    m48t59_t *s;
660

    
661
    dev = isa_create("m48t59_isa");
662
    qdev_prop_set_uint32(&dev->qdev, "type", type);
663
    qdev_prop_set_uint32(&dev->qdev, "size", size);
664
    qdev_prop_set_uint32(&dev->qdev, "io_base", io_base);
665
    qdev_init_nofail(&dev->qdev);
666
    d = DO_UPCAST(M48t59ISAState, busdev, dev);
667
    s = &d->state;
668

    
669
    if (io_base != 0) {
670
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
671
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
672
    }
673

    
674
    return s;
675
}
676

    
677
static void m48t59_init_common(m48t59_t *s)
678
{
679
    s->buffer = qemu_mallocz(s->size);
680
    if (s->type == 59) {
681
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
682
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
683
    }
684
    qemu_get_timedate(&s->alarm, 0);
685

    
686
    qemu_register_reset(m48t59_reset, s);
687
    register_savevm("m48t59", -1, 1, m48t59_save, m48t59_load, s);
688
}
689

    
690
static int m48t59_init_isa1(ISADevice *dev)
691
{
692
    M48t59ISAState *d = DO_UPCAST(M48t59ISAState, busdev, dev);
693
    m48t59_t *s = &d->state;
694

    
695
    isa_init_irq(dev, &s->IRQ, 8);
696
    m48t59_init_common(s);
697

    
698
    return 0;
699
}
700

    
701
static int m48t59_init1(SysBusDevice *dev)
702
{
703
    M48t59SysBusState *d = FROM_SYSBUS(M48t59SysBusState, dev);
704
    m48t59_t *s = &d->state;
705
    int mem_index;
706

    
707
    sysbus_init_irq(dev, &s->IRQ);
708

    
709
    mem_index = cpu_register_io_memory(nvram_read, nvram_write, s);
710
    sysbus_init_mmio(dev, s->size, mem_index);
711
    m48t59_init_common(s);
712

    
713
    return 0;
714
}
715

    
716
static ISADeviceInfo m48t59_isa_info = {
717
    .init = m48t59_init_isa1,
718
    .qdev.name = "m48t59_isa",
719
    .qdev.size = sizeof(M48t59ISAState),
720
    .qdev.no_user = 1,
721
    .qdev.props = (Property[]) {
722
        DEFINE_PROP_UINT32("size",    M48t59ISAState, state.size,    -1),
723
        DEFINE_PROP_UINT32("type",    M48t59ISAState, state.type,    -1),
724
        DEFINE_PROP_HEX32( "io_base", M48t59ISAState, state.io_base,  0),
725
        DEFINE_PROP_END_OF_LIST(),
726
    }
727
};
728

    
729
static SysBusDeviceInfo m48t59_info = {
730
    .init = m48t59_init1,
731
    .qdev.name  = "m48t59",
732
    .qdev.size = sizeof(M48t59SysBusState),
733
    .qdev.props = (Property[]) {
734
        DEFINE_PROP_UINT32("size",    M48t59SysBusState, state.size,    -1),
735
        DEFINE_PROP_UINT32("type",    M48t59SysBusState, state.type,    -1),
736
        DEFINE_PROP_HEX32( "io_base", M48t59SysBusState, state.io_base,  0),
737
        DEFINE_PROP_END_OF_LIST(),
738
    }
739
};
740

    
741
static void m48t59_register_devices(void)
742
{
743
    sysbus_register_withprop(&m48t59_info);
744
    isa_qdev_register(&m48t59_isa_info);
745
}
746

    
747
device_init(m48t59_register_devices)