Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ e32664fb

History | View | Annotate | Download (40.8 kB)

1
#include "exec.h"
2

    
3
//#define DEBUG_PCALL
4
//#define DEBUG_MMU
5
//#define DEBUG_UNALIGNED
6
//#define DEBUG_UNASSIGNED
7

    
8
void raise_exception(int tt)
9
{
10
    env->exception_index = tt;
11
    cpu_loop_exit();
12
}
13

    
14
void check_ieee_exceptions()
15
{
16
     T0 = get_float_exception_flags(&env->fp_status);
17
     if (T0)
18
     {
19
        /* Copy IEEE 754 flags into FSR */
20
        if (T0 & float_flag_invalid)
21
            env->fsr |= FSR_NVC;
22
        if (T0 & float_flag_overflow)
23
            env->fsr |= FSR_OFC;
24
        if (T0 & float_flag_underflow)
25
            env->fsr |= FSR_UFC;
26
        if (T0 & float_flag_divbyzero)
27
            env->fsr |= FSR_DZC;
28
        if (T0 & float_flag_inexact)
29
            env->fsr |= FSR_NXC;
30

    
31
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
32
        {
33
            /* Unmasked exception, generate a trap */
34
            env->fsr |= FSR_FTT_IEEE_EXCP;
35
            raise_exception(TT_FP_EXCP);
36
        }
37
        else
38
        {
39
            /* Accumulate exceptions */
40
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
41
        }
42
     }
43
}
44

    
45
#ifdef USE_INT_TO_FLOAT_HELPERS
46
void do_fitos(void)
47
{
48
    set_float_exception_flags(0, &env->fp_status);
49
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
50
    check_ieee_exceptions();
51
}
52

    
53
void do_fitod(void)
54
{
55
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
56
}
57
#endif
58

    
59
void do_fabss(void)
60
{
61
    FT0 = float32_abs(FT1);
62
}
63

    
64
#ifdef TARGET_SPARC64
65
void do_fabsd(void)
66
{
67
    DT0 = float64_abs(DT1);
68
}
69
#endif
70

    
71
void do_fsqrts(void)
72
{
73
    set_float_exception_flags(0, &env->fp_status);
74
    FT0 = float32_sqrt(FT1, &env->fp_status);
75
    check_ieee_exceptions();
76
}
77

    
78
void do_fsqrtd(void)
79
{
80
    set_float_exception_flags(0, &env->fp_status);
81
    DT0 = float64_sqrt(DT1, &env->fp_status);
82
    check_ieee_exceptions();
83
}
84

    
85
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
86
    void glue(do_, name) (void)                                         \
87
    {                                                                   \
88
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
89
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
90
        case float_relation_unordered:                                  \
91
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
92
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
93
                env->fsr |= T0;                                         \
94
                env->fsr |= FSR_NVC;                                    \
95
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
96
                raise_exception(TT_FP_EXCP);                            \
97
            } else {                                                    \
98
                env->fsr |= FSR_NVA;                                    \
99
            }                                                           \
100
            break;                                                      \
101
        case float_relation_less:                                       \
102
            T0 = FSR_FCC0 << FS;                                        \
103
            break;                                                      \
104
        case float_relation_greater:                                    \
105
            T0 = FSR_FCC1 << FS;                                        \
106
            break;                                                      \
107
        default:                                                        \
108
            T0 = 0;                                                     \
109
            break;                                                      \
110
        }                                                               \
111
        env->fsr |= T0;                                                 \
112
    }
113

    
114
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
115
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
116

    
117
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
118
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
119

    
120
#ifdef TARGET_SPARC64
121
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
122
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
123

    
124
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
125
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
126

    
127
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
128
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
129

    
130
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
131
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
132

    
133
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
134
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
135

    
136
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
137
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
138
#endif
139

    
140
#ifndef TARGET_SPARC64
141
#ifndef CONFIG_USER_ONLY
142
void helper_ld_asi(int asi, int size, int sign)
143
{
144
    uint32_t ret = 0;
145

    
146
    switch (asi) {
147
    case 2: /* SuperSparc MXCC registers */
148
        break;
149
    case 3: /* MMU probe */
150
        {
151
            int mmulev;
152

    
153
            mmulev = (T0 >> 8) & 15;
154
            if (mmulev > 4)
155
                ret = 0;
156
            else {
157
                ret = mmu_probe(env, T0, mmulev);
158
                //bswap32s(&ret);
159
            }
160
#ifdef DEBUG_MMU
161
            printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
162
#endif
163
        }
164
        break;
165
    case 4: /* read MMU regs */
166
        {
167
            int reg = (T0 >> 8) & 0xf;
168

    
169
            ret = env->mmuregs[reg];
170
            if (reg == 3) /* Fault status cleared on read */
171
                env->mmuregs[reg] = 0;
172
#ifdef DEBUG_MMU
173
            printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
174
#endif
175
        }
176
        break;
177
    case 9: /* Supervisor code access */
178
        switch(size) {
179
        case 1:
180
            ret = ldub_code(T0);
181
            break;
182
        case 2:
183
            ret = lduw_code(T0 & ~1);
184
            break;
185
        default:
186
        case 4:
187
            ret = ldl_code(T0 & ~3);
188
            break;
189
        case 8:
190
            ret = ldl_code(T0 & ~3);
191
            T0 = ldl_code((T0 + 4) & ~3);
192
            break;
193
        }
194
        break;
195
    case 0xa: /* User data access */
196
        switch(size) {
197
        case 1:
198
            ret = ldub_user(T0);
199
            break;
200
        case 2:
201
            ret = lduw_user(T0 & ~1);
202
            break;
203
        default:
204
        case 4:
205
            ret = ldl_user(T0 & ~3);
206
            break;
207
        case 8:
208
            ret = ldl_user(T0 & ~3);
209
            T0 = ldl_user((T0 + 4) & ~3);
210
            break;
211
        }
212
        break;
213
    case 0xb: /* Supervisor data access */
214
        switch(size) {
215
        case 1:
216
            ret = ldub_kernel(T0);
217
            break;
218
        case 2:
219
            ret = lduw_kernel(T0 & ~1);
220
            break;
221
        default:
222
        case 4:
223
            ret = ldl_kernel(T0 & ~3);
224
            break;
225
        case 8:
226
            ret = ldl_kernel(T0 & ~3);
227
            T0 = ldl_kernel((T0 + 4) & ~3);
228
            break;
229
        }
230
        break;
231
    case 0xc: /* I-cache tag */
232
    case 0xd: /* I-cache data */
233
    case 0xe: /* D-cache tag */
234
    case 0xf: /* D-cache data */
235
        break;
236
    case 0x20: /* MMU passthrough */
237
        switch(size) {
238
        case 1:
239
            ret = ldub_phys(T0);
240
            break;
241
        case 2:
242
            ret = lduw_phys(T0 & ~1);
243
            break;
244
        default:
245
        case 4:
246
            ret = ldl_phys(T0 & ~3);
247
            break;
248
        case 8:
249
            ret = ldl_phys(T0 & ~3);
250
            T0 = ldl_phys((T0 + 4) & ~3);
251
            break;
252
        }
253
        break;
254
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
255
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
256
        switch(size) {
257
        case 1:
258
            ret = ldub_phys((target_phys_addr_t)T0
259
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
260
            break;
261
        case 2:
262
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
263
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
264
            break;
265
        default:
266
        case 4:
267
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
268
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
269
            break;
270
        case 8:
271
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
272
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
273
            T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
274
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
275
            break;
276
        }
277
        break;
278
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
279
    default:
280
        do_unassigned_access(T0, 0, 0, 1);
281
        ret = 0;
282
        break;
283
    }
284
    if (sign) {
285
        switch(size) {
286
        case 1:
287
            T1 = (int8_t) ret;
288
            break;
289
        case 2:
290
            T1 = (int16_t) ret;
291
            break;
292
        default:
293
            T1 = ret;
294
            break;
295
        }
296
    }
297
    else
298
        T1 = ret;
299
}
300

    
301
void helper_st_asi(int asi, int size)
302
{
303
    switch(asi) {
304
    case 2: /* SuperSparc MXCC registers */
305
        break;
306
    case 3: /* MMU flush */
307
        {
308
            int mmulev;
309

    
310
            mmulev = (T0 >> 8) & 15;
311
#ifdef DEBUG_MMU
312
            printf("mmu flush level %d\n", mmulev);
313
#endif
314
            switch (mmulev) {
315
            case 0: // flush page
316
                tlb_flush_page(env, T0 & 0xfffff000);
317
                break;
318
            case 1: // flush segment (256k)
319
            case 2: // flush region (16M)
320
            case 3: // flush context (4G)
321
            case 4: // flush entire
322
                tlb_flush(env, 1);
323
                break;
324
            default:
325
                break;
326
            }
327
#ifdef DEBUG_MMU
328
            dump_mmu(env);
329
#endif
330
            return;
331
        }
332
    case 4: /* write MMU regs */
333
        {
334
            int reg = (T0 >> 8) & 0xf;
335
            uint32_t oldreg;
336

    
337
            oldreg = env->mmuregs[reg];
338
            switch(reg) {
339
            case 0:
340
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
341
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
342
                // Mappings generated during no-fault mode or MMU
343
                // disabled mode are invalid in normal mode
344
                if (oldreg != env->mmuregs[reg])
345
                    tlb_flush(env, 1);
346
                break;
347
            case 2:
348
                env->mmuregs[reg] = T1;
349
                if (oldreg != env->mmuregs[reg]) {
350
                    /* we flush when the MMU context changes because
351
                       QEMU has no MMU context support */
352
                    tlb_flush(env, 1);
353
                }
354
                break;
355
            case 3:
356
            case 4:
357
                break;
358
            default:
359
                env->mmuregs[reg] = T1;
360
                break;
361
            }
362
#ifdef DEBUG_MMU
363
            if (oldreg != env->mmuregs[reg]) {
364
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
365
            }
366
            dump_mmu(env);
367
#endif
368
            return;
369
        }
370
    case 0xa: /* User data access */
371
        switch(size) {
372
        case 1:
373
            stb_user(T0, T1);
374
            break;
375
        case 2:
376
            stw_user(T0 & ~1, T1);
377
            break;
378
        default:
379
        case 4:
380
            stl_user(T0 & ~3, T1);
381
            break;
382
        case 8:
383
            stl_user(T0 & ~3, T1);
384
            stl_user((T0 + 4) & ~3, T2);
385
            break;
386
        }
387
        break;
388
    case 0xb: /* Supervisor data access */
389
        switch(size) {
390
        case 1:
391
            stb_kernel(T0, T1);
392
            break;
393
        case 2:
394
            stw_kernel(T0 & ~1, T1);
395
            break;
396
        default:
397
        case 4:
398
            stl_kernel(T0 & ~3, T1);
399
            break;
400
        case 8:
401
            stl_kernel(T0 & ~3, T1);
402
            stl_kernel((T0 + 4) & ~3, T2);
403
            break;
404
        }
405
        break;
406
    case 0xc: /* I-cache tag */
407
    case 0xd: /* I-cache data */
408
    case 0xe: /* D-cache tag */
409
    case 0xf: /* D-cache data */
410
    case 0x10: /* I/D-cache flush page */
411
    case 0x11: /* I/D-cache flush segment */
412
    case 0x12: /* I/D-cache flush region */
413
    case 0x13: /* I/D-cache flush context */
414
    case 0x14: /* I/D-cache flush user */
415
        break;
416
    case 0x17: /* Block copy, sta access */
417
        {
418
            // value (T1) = src
419
            // address (T0) = dst
420
            // copy 32 bytes
421
            unsigned int i;
422
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
423

    
424
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
425
                temp = ldl_kernel(src);
426
                stl_kernel(dst, temp);
427
            }
428
        }
429
        return;
430
    case 0x1f: /* Block fill, stda access */
431
        {
432
            // value (T1, T2)
433
            // address (T0) = dst
434
            // fill 32 bytes
435
            unsigned int i;
436
            uint32_t dst = T0 & 7;
437
            uint64_t val;
438

    
439
            val = (((uint64_t)T1) << 32) | T2;
440

    
441
            for (i = 0; i < 32; i += 8, dst += 8)
442
                stq_kernel(dst, val);
443
        }
444
        return;
445
    case 0x20: /* MMU passthrough */
446
        {
447
            switch(size) {
448
            case 1:
449
                stb_phys(T0, T1);
450
                break;
451
            case 2:
452
                stw_phys(T0 & ~1, T1);
453
                break;
454
            case 4:
455
            default:
456
                stl_phys(T0 & ~3, T1);
457
                break;
458
            case 8:
459
                stl_phys(T0 & ~3, T1);
460
                stl_phys((T0 + 4) & ~3, T2);
461
                break;
462
            }
463
        }
464
        return;
465
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
466
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
467
        {
468
            switch(size) {
469
            case 1:
470
                stb_phys((target_phys_addr_t)T0
471
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
472
                break;
473
            case 2:
474
                stw_phys((target_phys_addr_t)(T0 & ~1)
475
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
476
                break;
477
            case 4:
478
            default:
479
                stl_phys((target_phys_addr_t)(T0 & ~3)
480
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
481
                break;
482
            case 8:
483
                stl_phys((target_phys_addr_t)(T0 & ~3)
484
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
485
                stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
486
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
487
                break;
488
            }
489
        }
490
        return;
491
    case 0x31: /* Ross RT620 I-cache flush */
492
    case 0x36: /* I-cache flash clear */
493
    case 0x37: /* D-cache flash clear */
494
        break;
495
    case 9: /* Supervisor code access, XXX */
496
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
497
    default:
498
        do_unassigned_access(T0, 1, 0, 1);
499
        return;
500
    }
501
}
502

    
503
#endif /* CONFIG_USER_ONLY */
504
#else /* TARGET_SPARC64 */
505

    
506
#ifdef CONFIG_USER_ONLY
507
void helper_ld_asi(int asi, int size, int sign)
508
{
509
    uint64_t ret = 0;
510

    
511
    if (asi < 0x80)
512
        raise_exception(TT_PRIV_ACT);
513

    
514
    switch (asi) {
515
    case 0x80: // Primary
516
    case 0x82: // Primary no-fault
517
    case 0x88: // Primary LE
518
    case 0x8a: // Primary no-fault LE
519
        {
520
            switch(size) {
521
            case 1:
522
                ret = ldub_raw(T0);
523
                break;
524
            case 2:
525
                ret = lduw_raw(T0 & ~1);
526
                break;
527
            case 4:
528
                ret = ldl_raw(T0 & ~3);
529
                break;
530
            default:
531
            case 8:
532
                ret = ldq_raw(T0 & ~7);
533
                break;
534
            }
535
        }
536
        break;
537
    case 0x81: // Secondary
538
    case 0x83: // Secondary no-fault
539
    case 0x89: // Secondary LE
540
    case 0x8b: // Secondary no-fault LE
541
        // XXX
542
        break;
543
    default:
544
        break;
545
    }
546

    
547
    /* Convert from little endian */
548
    switch (asi) {
549
    case 0x88: // Primary LE
550
    case 0x89: // Secondary LE
551
    case 0x8a: // Primary no-fault LE
552
    case 0x8b: // Secondary no-fault LE
553
        switch(size) {
554
        case 2:
555
            ret = bswap16(ret);
556
            break;
557
        case 4:
558
            ret = bswap32(ret);
559
            break;
560
        case 8:
561
            ret = bswap64(ret);
562
            break;
563
        default:
564
            break;
565
        }
566
    default:
567
        break;
568
    }
569

    
570
    /* Convert to signed number */
571
    if (sign) {
572
        switch(size) {
573
        case 1:
574
            ret = (int8_t) ret;
575
            break;
576
        case 2:
577
            ret = (int16_t) ret;
578
            break;
579
        case 4:
580
            ret = (int32_t) ret;
581
            break;
582
        default:
583
            break;
584
        }
585
    }
586
    T1 = ret;
587
}
588

    
589
void helper_st_asi(int asi, int size)
590
{
591
    if (asi < 0x80)
592
        raise_exception(TT_PRIV_ACT);
593

    
594
    /* Convert to little endian */
595
    switch (asi) {
596
    case 0x88: // Primary LE
597
    case 0x89: // Secondary LE
598
        switch(size) {
599
        case 2:
600
            T0 = bswap16(T0);
601
            break;
602
        case 4:
603
            T0 = bswap32(T0);
604
            break;
605
        case 8:
606
            T0 = bswap64(T0);
607
            break;
608
        default:
609
            break;
610
        }
611
    default:
612
        break;
613
    }
614

    
615
    switch(asi) {
616
    case 0x80: // Primary
617
    case 0x88: // Primary LE
618
        {
619
            switch(size) {
620
            case 1:
621
                stb_raw(T0, T1);
622
                break;
623
            case 2:
624
                stw_raw(T0 & ~1, T1);
625
                break;
626
            case 4:
627
                stl_raw(T0 & ~3, T1);
628
                break;
629
            case 8:
630
            default:
631
                stq_raw(T0 & ~7, T1);
632
                break;
633
            }
634
        }
635
        break;
636
    case 0x81: // Secondary
637
    case 0x89: // Secondary LE
638
        // XXX
639
        return;
640

    
641
    case 0x82: // Primary no-fault, RO
642
    case 0x83: // Secondary no-fault, RO
643
    case 0x8a: // Primary no-fault LE, RO
644
    case 0x8b: // Secondary no-fault LE, RO
645
    default:
646
        do_unassigned_access(T0, 1, 0, 1);
647
        return;
648
    }
649
}
650

    
651
#else /* CONFIG_USER_ONLY */
652

    
653
void helper_ld_asi(int asi, int size, int sign)
654
{
655
    uint64_t ret = 0;
656

    
657
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
658
        raise_exception(TT_PRIV_ACT);
659

    
660
    switch (asi) {
661
    case 0x10: // As if user primary
662
    case 0x18: // As if user primary LE
663
    case 0x80: // Primary
664
    case 0x82: // Primary no-fault
665
    case 0x88: // Primary LE
666
    case 0x8a: // Primary no-fault LE
667
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
668
            switch(size) {
669
            case 1:
670
                ret = ldub_kernel(T0);
671
                break;
672
            case 2:
673
                ret = lduw_kernel(T0 & ~1);
674
                break;
675
            case 4:
676
                ret = ldl_kernel(T0 & ~3);
677
                break;
678
            default:
679
            case 8:
680
                ret = ldq_kernel(T0 & ~7);
681
                break;
682
            }
683
        } else {
684
            switch(size) {
685
            case 1:
686
                ret = ldub_user(T0);
687
                break;
688
            case 2:
689
                ret = lduw_user(T0 & ~1);
690
                break;
691
            case 4:
692
                ret = ldl_user(T0 & ~3);
693
                break;
694
            default:
695
            case 8:
696
                ret = ldq_user(T0 & ~7);
697
                break;
698
            }
699
        }
700
        break;
701
    case 0x14: // Bypass
702
    case 0x15: // Bypass, non-cacheable
703
    case 0x1c: // Bypass LE
704
    case 0x1d: // Bypass, non-cacheable LE
705
        {
706
            switch(size) {
707
            case 1:
708
                ret = ldub_phys(T0);
709
                break;
710
            case 2:
711
                ret = lduw_phys(T0 & ~1);
712
                break;
713
            case 4:
714
                ret = ldl_phys(T0 & ~3);
715
                break;
716
            default:
717
            case 8:
718
                ret = ldq_phys(T0 & ~7);
719
                break;
720
            }
721
            break;
722
        }
723
    case 0x04: // Nucleus
724
    case 0x0c: // Nucleus Little Endian (LE)
725
    case 0x11: // As if user secondary
726
    case 0x19: // As if user secondary LE
727
    case 0x24: // Nucleus quad LDD 128 bit atomic
728
    case 0x2c: // Nucleus quad LDD 128 bit atomic
729
    case 0x4a: // UPA config
730
    case 0x81: // Secondary
731
    case 0x83: // Secondary no-fault
732
    case 0x89: // Secondary LE
733
    case 0x8b: // Secondary no-fault LE
734
        // XXX
735
        break;
736
    case 0x45: // LSU
737
        ret = env->lsu;
738
        break;
739
    case 0x50: // I-MMU regs
740
        {
741
            int reg = (T0 >> 3) & 0xf;
742

    
743
            ret = env->immuregs[reg];
744
            break;
745
        }
746
    case 0x51: // I-MMU 8k TSB pointer
747
    case 0x52: // I-MMU 64k TSB pointer
748
    case 0x55: // I-MMU data access
749
        // XXX
750
        break;
751
    case 0x56: // I-MMU tag read
752
        {
753
            unsigned int i;
754

    
755
            for (i = 0; i < 64; i++) {
756
                // Valid, ctx match, vaddr match
757
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
758
                    env->itlb_tag[i] == T0) {
759
                    ret = env->itlb_tag[i];
760
                    break;
761
                }
762
            }
763
            break;
764
        }
765
    case 0x58: // D-MMU regs
766
        {
767
            int reg = (T0 >> 3) & 0xf;
768

    
769
            ret = env->dmmuregs[reg];
770
            break;
771
        }
772
    case 0x5e: // D-MMU tag read
773
        {
774
            unsigned int i;
775

    
776
            for (i = 0; i < 64; i++) {
777
                // Valid, ctx match, vaddr match
778
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
779
                    env->dtlb_tag[i] == T0) {
780
                    ret = env->dtlb_tag[i];
781
                    break;
782
                }
783
            }
784
            break;
785
        }
786
    case 0x59: // D-MMU 8k TSB pointer
787
    case 0x5a: // D-MMU 64k TSB pointer
788
    case 0x5b: // D-MMU data pointer
789
    case 0x5d: // D-MMU data access
790
    case 0x48: // Interrupt dispatch, RO
791
    case 0x49: // Interrupt data receive
792
    case 0x7f: // Incoming interrupt vector, RO
793
        // XXX
794
        break;
795
    case 0x54: // I-MMU data in, WO
796
    case 0x57: // I-MMU demap, WO
797
    case 0x5c: // D-MMU data in, WO
798
    case 0x5f: // D-MMU demap, WO
799
    case 0x77: // Interrupt vector, WO
800
    default:
801
        do_unassigned_access(T0, 0, 0, 1);
802
        ret = 0;
803
        break;
804
    }
805

    
806
    /* Convert from little endian */
807
    switch (asi) {
808
    case 0x0c: // Nucleus Little Endian (LE)
809
    case 0x18: // As if user primary LE
810
    case 0x19: // As if user secondary LE
811
    case 0x1c: // Bypass LE
812
    case 0x1d: // Bypass, non-cacheable LE
813
    case 0x88: // Primary LE
814
    case 0x89: // Secondary LE
815
    case 0x8a: // Primary no-fault LE
816
    case 0x8b: // Secondary no-fault LE
817
        switch(size) {
818
        case 2:
819
            ret = bswap16(ret);
820
            break;
821
        case 4:
822
            ret = bswap32(ret);
823
            break;
824
        case 8:
825
            ret = bswap64(ret);
826
            break;
827
        default:
828
            break;
829
        }
830
    default:
831
        break;
832
    }
833

    
834
    /* Convert to signed number */
835
    if (sign) {
836
        switch(size) {
837
        case 1:
838
            ret = (int8_t) ret;
839
            break;
840
        case 2:
841
            ret = (int16_t) ret;
842
            break;
843
        case 4:
844
            ret = (int32_t) ret;
845
            break;
846
        default:
847
            break;
848
        }
849
    }
850
    T1 = ret;
851
}
852

    
853
void helper_st_asi(int asi, int size)
854
{
855
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
856
        raise_exception(TT_PRIV_ACT);
857

    
858
    /* Convert to little endian */
859
    switch (asi) {
860
    case 0x0c: // Nucleus Little Endian (LE)
861
    case 0x18: // As if user primary LE
862
    case 0x19: // As if user secondary LE
863
    case 0x1c: // Bypass LE
864
    case 0x1d: // Bypass, non-cacheable LE
865
    case 0x81: // Secondary
866
    case 0x88: // Primary LE
867
    case 0x89: // Secondary LE
868
        switch(size) {
869
        case 2:
870
            T0 = bswap16(T0);
871
            break;
872
        case 4:
873
            T0 = bswap32(T0);
874
            break;
875
        case 8:
876
            T0 = bswap64(T0);
877
            break;
878
        default:
879
            break;
880
        }
881
    default:
882
        break;
883
    }
884

    
885
    switch(asi) {
886
    case 0x10: // As if user primary
887
    case 0x18: // As if user primary LE
888
    case 0x80: // Primary
889
    case 0x88: // Primary LE
890
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
891
            switch(size) {
892
            case 1:
893
                stb_kernel(T0, T1);
894
                break;
895
            case 2:
896
                stw_kernel(T0 & ~1, T1);
897
                break;
898
            case 4:
899
                stl_kernel(T0 & ~3, T1);
900
                break;
901
            case 8:
902
            default:
903
                stq_kernel(T0 & ~7, T1);
904
                break;
905
            }
906
        } else {
907
            switch(size) {
908
            case 1:
909
                stb_user(T0, T1);
910
                break;
911
            case 2:
912
                stw_user(T0 & ~1, T1);
913
                break;
914
            case 4:
915
                stl_user(T0 & ~3, T1);
916
                break;
917
            case 8:
918
            default:
919
                stq_user(T0 & ~7, T1);
920
                break;
921
            }
922
        }
923
        break;
924
    case 0x14: // Bypass
925
    case 0x15: // Bypass, non-cacheable
926
    case 0x1c: // Bypass LE
927
    case 0x1d: // Bypass, non-cacheable LE
928
        {
929
            switch(size) {
930
            case 1:
931
                stb_phys(T0, T1);
932
                break;
933
            case 2:
934
                stw_phys(T0 & ~1, T1);
935
                break;
936
            case 4:
937
                stl_phys(T0 & ~3, T1);
938
                break;
939
            case 8:
940
            default:
941
                stq_phys(T0 & ~7, T1);
942
                break;
943
            }
944
        }
945
        return;
946
    case 0x04: // Nucleus
947
    case 0x0c: // Nucleus Little Endian (LE)
948
    case 0x11: // As if user secondary
949
    case 0x19: // As if user secondary LE
950
    case 0x24: // Nucleus quad LDD 128 bit atomic
951
    case 0x2c: // Nucleus quad LDD 128 bit atomic
952
    case 0x4a: // UPA config
953
    case 0x89: // Secondary LE
954
        // XXX
955
        return;
956
    case 0x45: // LSU
957
        {
958
            uint64_t oldreg;
959

    
960
            oldreg = env->lsu;
961
            env->lsu = T1 & (DMMU_E | IMMU_E);
962
            // Mappings generated during D/I MMU disabled mode are
963
            // invalid in normal mode
964
            if (oldreg != env->lsu) {
965
#ifdef DEBUG_MMU
966
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
967
                dump_mmu(env);
968
#endif
969
                tlb_flush(env, 1);
970
            }
971
            return;
972
        }
973
    case 0x50: // I-MMU regs
974
        {
975
            int reg = (T0 >> 3) & 0xf;
976
            uint64_t oldreg;
977

    
978
            oldreg = env->immuregs[reg];
979
            switch(reg) {
980
            case 0: // RO
981
            case 4:
982
                return;
983
            case 1: // Not in I-MMU
984
            case 2:
985
            case 7:
986
            case 8:
987
                return;
988
            case 3: // SFSR
989
                if ((T1 & 1) == 0)
990
                    T1 = 0; // Clear SFSR
991
                break;
992
            case 5: // TSB access
993
            case 6: // Tag access
994
            default:
995
                break;
996
            }
997
            env->immuregs[reg] = T1;
998
#ifdef DEBUG_MMU
999
            if (oldreg != env->immuregs[reg]) {
1000
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1001
            }
1002
            dump_mmu(env);
1003
#endif
1004
            return;
1005
        }
1006
    case 0x54: // I-MMU data in
1007
        {
1008
            unsigned int i;
1009

    
1010
            // Try finding an invalid entry
1011
            for (i = 0; i < 64; i++) {
1012
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1013
                    env->itlb_tag[i] = env->immuregs[6];
1014
                    env->itlb_tte[i] = T1;
1015
                    return;
1016
                }
1017
            }
1018
            // Try finding an unlocked entry
1019
            for (i = 0; i < 64; i++) {
1020
                if ((env->itlb_tte[i] & 0x40) == 0) {
1021
                    env->itlb_tag[i] = env->immuregs[6];
1022
                    env->itlb_tte[i] = T1;
1023
                    return;
1024
                }
1025
            }
1026
            // error state?
1027
            return;
1028
        }
1029
    case 0x55: // I-MMU data access
1030
        {
1031
            unsigned int i = (T0 >> 3) & 0x3f;
1032

    
1033
            env->itlb_tag[i] = env->immuregs[6];
1034
            env->itlb_tte[i] = T1;
1035
            return;
1036
        }
1037
    case 0x57: // I-MMU demap
1038
        // XXX
1039
        return;
1040
    case 0x58: // D-MMU regs
1041
        {
1042
            int reg = (T0 >> 3) & 0xf;
1043
            uint64_t oldreg;
1044

    
1045
            oldreg = env->dmmuregs[reg];
1046
            switch(reg) {
1047
            case 0: // RO
1048
            case 4:
1049
                return;
1050
            case 3: // SFSR
1051
                if ((T1 & 1) == 0) {
1052
                    T1 = 0; // Clear SFSR, Fault address
1053
                    env->dmmuregs[4] = 0;
1054
                }
1055
                env->dmmuregs[reg] = T1;
1056
                break;
1057
            case 1: // Primary context
1058
            case 2: // Secondary context
1059
            case 5: // TSB access
1060
            case 6: // Tag access
1061
            case 7: // Virtual Watchpoint
1062
            case 8: // Physical Watchpoint
1063
            default:
1064
                break;
1065
            }
1066
            env->dmmuregs[reg] = T1;
1067
#ifdef DEBUG_MMU
1068
            if (oldreg != env->dmmuregs[reg]) {
1069
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1070
            }
1071
            dump_mmu(env);
1072
#endif
1073
            return;
1074
        }
1075
    case 0x5c: // D-MMU data in
1076
        {
1077
            unsigned int i;
1078

    
1079
            // Try finding an invalid entry
1080
            for (i = 0; i < 64; i++) {
1081
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1082
                    env->dtlb_tag[i] = env->dmmuregs[6];
1083
                    env->dtlb_tte[i] = T1;
1084
                    return;
1085
                }
1086
            }
1087
            // Try finding an unlocked entry
1088
            for (i = 0; i < 64; i++) {
1089
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1090
                    env->dtlb_tag[i] = env->dmmuregs[6];
1091
                    env->dtlb_tte[i] = T1;
1092
                    return;
1093
                }
1094
            }
1095
            // error state?
1096
            return;
1097
        }
1098
    case 0x5d: // D-MMU data access
1099
        {
1100
            unsigned int i = (T0 >> 3) & 0x3f;
1101

    
1102
            env->dtlb_tag[i] = env->dmmuregs[6];
1103
            env->dtlb_tte[i] = T1;
1104
            return;
1105
        }
1106
    case 0x5f: // D-MMU demap
1107
    case 0x49: // Interrupt data receive
1108
        // XXX
1109
        return;
1110
    case 0x51: // I-MMU 8k TSB pointer, RO
1111
    case 0x52: // I-MMU 64k TSB pointer, RO
1112
    case 0x56: // I-MMU tag read, RO
1113
    case 0x59: // D-MMU 8k TSB pointer, RO
1114
    case 0x5a: // D-MMU 64k TSB pointer, RO
1115
    case 0x5b: // D-MMU data pointer, RO
1116
    case 0x5e: // D-MMU tag read, RO
1117
    case 0x48: // Interrupt dispatch, RO
1118
    case 0x7f: // Incoming interrupt vector, RO
1119
    case 0x82: // Primary no-fault, RO
1120
    case 0x83: // Secondary no-fault, RO
1121
    case 0x8a: // Primary no-fault LE, RO
1122
    case 0x8b: // Secondary no-fault LE, RO
1123
    default:
1124
        do_unassigned_access(T0, 1, 0, 1);
1125
        return;
1126
    }
1127
}
1128
#endif /* CONFIG_USER_ONLY */
1129
#endif /* TARGET_SPARC64 */
1130

    
1131
#ifndef TARGET_SPARC64
1132
void helper_rett()
1133
{
1134
    unsigned int cwp;
1135

    
1136
    if (env->psret == 1)
1137
        raise_exception(TT_ILL_INSN);
1138

    
1139
    env->psret = 1;
1140
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1141
    if (env->wim & (1 << cwp)) {
1142
        raise_exception(TT_WIN_UNF);
1143
    }
1144
    set_cwp(cwp);
1145
    env->psrs = env->psrps;
1146
}
1147
#endif
1148

    
1149
void helper_ldfsr(void)
1150
{
1151
    int rnd_mode;
1152
    switch (env->fsr & FSR_RD_MASK) {
1153
    case FSR_RD_NEAREST:
1154
        rnd_mode = float_round_nearest_even;
1155
        break;
1156
    default:
1157
    case FSR_RD_ZERO:
1158
        rnd_mode = float_round_to_zero;
1159
        break;
1160
    case FSR_RD_POS:
1161
        rnd_mode = float_round_up;
1162
        break;
1163
    case FSR_RD_NEG:
1164
        rnd_mode = float_round_down;
1165
        break;
1166
    }
1167
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1168
}
1169

    
1170
void helper_debug()
1171
{
1172
    env->exception_index = EXCP_DEBUG;
1173
    cpu_loop_exit();
1174
}
1175

    
1176
#ifndef TARGET_SPARC64
1177
void do_wrpsr()
1178
{
1179
    if ((T0 & PSR_CWP) >= NWINDOWS)
1180
        raise_exception(TT_ILL_INSN);
1181
    else
1182
        PUT_PSR(env, T0);
1183
}
1184

    
1185
void do_rdpsr()
1186
{
1187
    T0 = GET_PSR(env);
1188
}
1189

    
1190
#else
1191

    
1192
void do_popc()
1193
{
1194
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
1195
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
1196
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
1197
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
1198
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
1199
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
1200
}
1201

    
1202
static inline uint64_t *get_gregset(uint64_t pstate)
1203
{
1204
    switch (pstate) {
1205
    default:
1206
    case 0:
1207
        return env->bgregs;
1208
    case PS_AG:
1209
        return env->agregs;
1210
    case PS_MG:
1211
        return env->mgregs;
1212
    case PS_IG:
1213
        return env->igregs;
1214
    }
1215
}
1216

    
1217
static inline void change_pstate(uint64_t new_pstate)
1218
{
1219
    uint64_t pstate_regs, new_pstate_regs;
1220
    uint64_t *src, *dst;
1221

    
1222
    pstate_regs = env->pstate & 0xc01;
1223
    new_pstate_regs = new_pstate & 0xc01;
1224
    if (new_pstate_regs != pstate_regs) {
1225
        // Switch global register bank
1226
        src = get_gregset(new_pstate_regs);
1227
        dst = get_gregset(pstate_regs);
1228
        memcpy32(dst, env->gregs);
1229
        memcpy32(env->gregs, src);
1230
    }
1231
    env->pstate = new_pstate;
1232
}
1233

    
1234
void do_wrpstate(void)
1235
{
1236
    change_pstate(T0 & 0xf3f);
1237
}
1238

    
1239
void do_done(void)
1240
{
1241
    env->tl--;
1242
    env->pc = env->tnpc[env->tl];
1243
    env->npc = env->tnpc[env->tl] + 4;
1244
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1245
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1246
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1247
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1248
}
1249

    
1250
void do_retry(void)
1251
{
1252
    env->tl--;
1253
    env->pc = env->tpc[env->tl];
1254
    env->npc = env->tnpc[env->tl];
1255
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1256
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1257
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1258
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1259
}
1260
#endif
1261

    
1262
void set_cwp(int new_cwp)
1263
{
1264
    /* put the modified wrap registers at their proper location */
1265
    if (env->cwp == (NWINDOWS - 1))
1266
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1267
    env->cwp = new_cwp;
1268
    /* put the wrap registers at their temporary location */
1269
    if (new_cwp == (NWINDOWS - 1))
1270
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1271
    env->regwptr = env->regbase + (new_cwp * 16);
1272
    REGWPTR = env->regwptr;
1273
}
1274

    
1275
void cpu_set_cwp(CPUState *env1, int new_cwp)
1276
{
1277
    CPUState *saved_env;
1278
#ifdef reg_REGWPTR
1279
    target_ulong *saved_regwptr;
1280
#endif
1281

    
1282
    saved_env = env;
1283
#ifdef reg_REGWPTR
1284
    saved_regwptr = REGWPTR;
1285
#endif
1286
    env = env1;
1287
    set_cwp(new_cwp);
1288
    env = saved_env;
1289
#ifdef reg_REGWPTR
1290
    REGWPTR = saved_regwptr;
1291
#endif
1292
}
1293

    
1294
#ifdef TARGET_SPARC64
1295
void do_interrupt(int intno)
1296
{
1297
#ifdef DEBUG_PCALL
1298
    if (loglevel & CPU_LOG_INT) {
1299
        static int count;
1300
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1301
                count, intno,
1302
                env->pc,
1303
                env->npc, env->regwptr[6]);
1304
        cpu_dump_state(env, logfile, fprintf, 0);
1305
#if 0
1306
        {
1307
            int i;
1308
            uint8_t *ptr;
1309

1310
            fprintf(logfile, "       code=");
1311
            ptr = (uint8_t *)env->pc;
1312
            for(i = 0; i < 16; i++) {
1313
                fprintf(logfile, " %02x", ldub(ptr + i));
1314
            }
1315
            fprintf(logfile, "\n");
1316
        }
1317
#endif
1318
        count++;
1319
    }
1320
#endif
1321
#if !defined(CONFIG_USER_ONLY)
1322
    if (env->tl == MAXTL) {
1323
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1324
        return;
1325
    }
1326
#endif
1327
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1328
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1329
    env->tpc[env->tl] = env->pc;
1330
    env->tnpc[env->tl] = env->npc;
1331
    env->tt[env->tl] = intno;
1332
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1333

    
1334
    if (intno == TT_CLRWIN)
1335
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1336
    else if ((intno & 0x1c0) == TT_SPILL)
1337
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1338
    else if ((intno & 0x1c0) == TT_FILL)
1339
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1340
    env->tbr &= ~0x7fffULL;
1341
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1342
    if (env->tl < MAXTL - 1) {
1343
        env->tl++;
1344
    } else {
1345
        env->pstate |= PS_RED;
1346
        if (env->tl != MAXTL)
1347
            env->tl++;
1348
    }
1349
    env->pc = env->tbr;
1350
    env->npc = env->pc + 4;
1351
    env->exception_index = 0;
1352
}
1353
#else
1354
void do_interrupt(int intno)
1355
{
1356
    int cwp;
1357

    
1358
#ifdef DEBUG_PCALL
1359
    if (loglevel & CPU_LOG_INT) {
1360
        static int count;
1361
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1362
                count, intno,
1363
                env->pc,
1364
                env->npc, env->regwptr[6]);
1365
        cpu_dump_state(env, logfile, fprintf, 0);
1366
#if 0
1367
        {
1368
            int i;
1369
            uint8_t *ptr;
1370

1371
            fprintf(logfile, "       code=");
1372
            ptr = (uint8_t *)env->pc;
1373
            for(i = 0; i < 16; i++) {
1374
                fprintf(logfile, " %02x", ldub(ptr + i));
1375
            }
1376
            fprintf(logfile, "\n");
1377
        }
1378
#endif
1379
        count++;
1380
    }
1381
#endif
1382
#if !defined(CONFIG_USER_ONLY)
1383
    if (env->psret == 0) {
1384
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1385
        return;
1386
    }
1387
#endif
1388
    env->psret = 0;
1389
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1390
    set_cwp(cwp);
1391
    env->regwptr[9] = env->pc;
1392
    env->regwptr[10] = env->npc;
1393
    env->psrps = env->psrs;
1394
    env->psrs = 1;
1395
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1396
    env->pc = env->tbr;
1397
    env->npc = env->pc + 4;
1398
    env->exception_index = 0;
1399
}
1400
#endif
1401

    
1402
#if !defined(CONFIG_USER_ONLY)
1403

    
1404
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1405
                                void *retaddr);
1406

    
1407
#define MMUSUFFIX _mmu
1408
#define ALIGNED_ONLY
1409
#define GETPC() (__builtin_return_address(0))
1410

    
1411
#define SHIFT 0
1412
#include "softmmu_template.h"
1413

    
1414
#define SHIFT 1
1415
#include "softmmu_template.h"
1416

    
1417
#define SHIFT 2
1418
#include "softmmu_template.h"
1419

    
1420
#define SHIFT 3
1421
#include "softmmu_template.h"
1422

    
1423
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1424
                                void *retaddr)
1425
{
1426
#ifdef DEBUG_UNALIGNED
1427
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1428
#endif
1429
    raise_exception(TT_UNALIGNED);
1430
}
1431

    
1432
/* try to fill the TLB and return an exception if error. If retaddr is
1433
   NULL, it means that the function was called in C code (i.e. not
1434
   from generated code or from helper.c) */
1435
/* XXX: fix it to restore all registers */
1436
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
1437
{
1438
    TranslationBlock *tb;
1439
    int ret;
1440
    unsigned long pc;
1441
    CPUState *saved_env;
1442

    
1443
    /* XXX: hack to restore env in all cases, even if not called from
1444
       generated code */
1445
    saved_env = env;
1446
    env = cpu_single_env;
1447

    
1448
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
1449
    if (ret) {
1450
        if (retaddr) {
1451
            /* now we have a real cpu fault */
1452
            pc = (unsigned long)retaddr;
1453
            tb = tb_find_pc(pc);
1454
            if (tb) {
1455
                /* the PC is inside the translated code. It means that we have
1456
                   a virtual CPU fault */
1457
                cpu_restore_state(tb, env, pc, (void *)T2);
1458
            }
1459
        }
1460
        cpu_loop_exit();
1461
    }
1462
    env = saved_env;
1463
}
1464

    
1465
#endif
1466

    
1467
#ifndef TARGET_SPARC64
1468
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1469
                          int is_asi)
1470
{
1471
    CPUState *saved_env;
1472

    
1473
    /* XXX: hack to restore env in all cases, even if not called from
1474
       generated code */
1475
    saved_env = env;
1476
    env = cpu_single_env;
1477
    if (env->mmuregs[3]) /* Fault status register */
1478
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1479
    if (is_asi)
1480
        env->mmuregs[3] |= 1 << 16;
1481
    if (env->psrs)
1482
        env->mmuregs[3] |= 1 << 5;
1483
    if (is_exec)
1484
        env->mmuregs[3] |= 1 << 6;
1485
    if (is_write)
1486
        env->mmuregs[3] |= 1 << 7;
1487
    env->mmuregs[3] |= (5 << 2) | 2;
1488
    env->mmuregs[4] = addr; /* Fault address register */
1489
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1490
#ifdef DEBUG_UNASSIGNED
1491
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1492
               "\n", addr, env->pc);
1493
#endif
1494
        if (is_exec)
1495
            raise_exception(TT_CODE_ACCESS);
1496
        else
1497
            raise_exception(TT_DATA_ACCESS);
1498
    }
1499
    env = saved_env;
1500
}
1501
#else
1502
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1503
                          int is_asi)
1504
{
1505
#ifdef DEBUG_UNASSIGNED
1506
    CPUState *saved_env;
1507

    
1508
    /* XXX: hack to restore env in all cases, even if not called from
1509
       generated code */
1510
    saved_env = env;
1511
    env = cpu_single_env;
1512
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1513
           addr, env->pc);
1514
    env = saved_env;
1515
#endif
1516
    if (is_exec)
1517
        raise_exception(TT_CODE_ACCESS);
1518
    else
1519
        raise_exception(TT_DATA_ACCESS);
1520
}
1521
#endif
1522

    
1523
#ifdef TARGET_SPARC64
1524
void do_tick_set_count(void *opaque, uint64_t count)
1525
{
1526
#if !defined(CONFIG_USER_ONLY)
1527
    ptimer_set_count(opaque, -count);
1528
#endif
1529
}
1530

    
1531
uint64_t do_tick_get_count(void *opaque)
1532
{
1533
#if !defined(CONFIG_USER_ONLY)
1534
    return -ptimer_get_count(opaque);
1535
#else
1536
    return 0;
1537
#endif
1538
}
1539

    
1540
void do_tick_set_limit(void *opaque, uint64_t limit)
1541
{
1542
#if !defined(CONFIG_USER_ONLY)
1543
    ptimer_set_limit(opaque, -limit, 0);
1544
#endif
1545
}
1546
#endif