Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ e387c338

History | View | Annotate | Download (49.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static int lm_capable_kernel;
58

    
59
#ifdef KVM_CAP_EXT_CPUID
60

    
61
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int r, size;
65

    
66
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68
    cpuid->nent = max;
69
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70
    if (r == 0 && cpuid->nent >= max) {
71
        r = -E2BIG;
72
    }
73
    if (r < 0) {
74
        if (r == -E2BIG) {
75
            qemu_free(cpuid);
76
            return NULL;
77
        } else {
78
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79
                    strerror(-r));
80
            exit(1);
81
        }
82
    }
83
    return cpuid;
84
}
85

    
86
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87
                                      uint32_t index, int reg)
88
{
89
    struct kvm_cpuid2 *cpuid;
90
    int i, max;
91
    uint32_t ret = 0;
92
    uint32_t cpuid_1_edx;
93

    
94
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95
        return -1U;
96
    }
97

    
98
    max = 1;
99
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100
        max *= 2;
101
    }
102

    
103
    for (i = 0; i < cpuid->nent; ++i) {
104
        if (cpuid->entries[i].function == function &&
105
            cpuid->entries[i].index == index) {
106
            switch (reg) {
107
            case R_EAX:
108
                ret = cpuid->entries[i].eax;
109
                break;
110
            case R_EBX:
111
                ret = cpuid->entries[i].ebx;
112
                break;
113
            case R_ECX:
114
                ret = cpuid->entries[i].ecx;
115
                break;
116
            case R_EDX:
117
                ret = cpuid->entries[i].edx;
118
                switch (function) {
119
                case 1:
120
                    /* KVM before 2.6.30 misreports the following features */
121
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122
                    break;
123
                case 0x80000001:
124
                    /* On Intel, kvm returns cpuid according to the Intel spec,
125
                     * so add missing bits according to the AMD spec:
126
                     */
127
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128
                    ret |= cpuid_1_edx & 0x183f7ff;
129
                    break;
130
                }
131
                break;
132
            }
133
        }
134
    }
135

    
136
    qemu_free(cpuid);
137

    
138
    return ret;
139
}
140

    
141
#else
142

    
143
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144
                                      uint32_t index, int reg)
145
{
146
    return -1U;
147
}
148

    
149
#endif
150

    
151
#ifdef CONFIG_KVM_PARA
152
struct kvm_para_features {
153
        int cap;
154
        int feature;
155
} para_features[] = {
156
#ifdef KVM_CAP_CLOCKSOURCE
157
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158
#endif
159
#ifdef KVM_CAP_NOP_IO_DELAY
160
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161
#endif
162
#ifdef KVM_CAP_PV_MMU
163
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164
#endif
165
#ifdef KVM_CAP_ASYNC_PF
166
        { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167
#endif
168
        { -1, -1 }
169
};
170

    
171
static int get_para_features(CPUState *env)
172
{
173
        int i, features = 0;
174

    
175
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177
                        features |= (1 << para_features[i].feature);
178
        }
179

    
180
        return features;
181
}
182
#endif
183

    
184
#ifdef KVM_CAP_MCE
185
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186
                                     int *max_banks)
187
{
188
    int r;
189

    
190
    r = kvm_check_extension(s, KVM_CAP_MCE);
191
    if (r > 0) {
192
        *max_banks = r;
193
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194
    }
195
    return -ENOSYS;
196
}
197

    
198
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199
{
200
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201
}
202

    
203
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204
{
205
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206
}
207

    
208
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209
{
210
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211
    int r;
212

    
213
    kmsrs->nmsrs = n;
214
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217
    free(kmsrs);
218
    return r;
219
}
220

    
221
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222
static int kvm_mce_in_progress(CPUState *env)
223
{
224
    struct kvm_msr_entry msr_mcg_status = {
225
        .index = MSR_MCG_STATUS,
226
    };
227
    int r;
228

    
229
    r = kvm_get_msr(env, &msr_mcg_status, 1);
230
    if (r == -1 || r == 0) {
231
        fprintf(stderr, "Failed to get MCE status\n");
232
        return 0;
233
    }
234
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235
}
236

    
237
struct kvm_x86_mce_data
238
{
239
    CPUState *env;
240
    struct kvm_x86_mce *mce;
241
    int abort_on_error;
242
};
243

    
244
static void kvm_do_inject_x86_mce(void *_data)
245
{
246
    struct kvm_x86_mce_data *data = _data;
247
    int r;
248

    
249
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
250
    if ((data->env->mcg_cap & MCG_SER_P) &&
251
        !(data->mce->status & MCI_STATUS_AR)) {
252
        if (kvm_mce_in_progress(data->env)) {
253
            return;
254
        }
255
    }
256

    
257
    r = kvm_set_mce(data->env, data->mce);
258
    if (r < 0) {
259
        perror("kvm_set_mce FAILED");
260
        if (data->abort_on_error) {
261
            abort();
262
        }
263
    }
264
}
265

    
266
static void kvm_mce_broadcast_rest(CPUState *env);
267
#endif
268

    
269
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
270
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
271
                        int flag)
272
{
273
#ifdef KVM_CAP_MCE
274
    struct kvm_x86_mce mce = {
275
        .bank = bank,
276
        .status = status,
277
        .mcg_status = mcg_status,
278
        .addr = addr,
279
        .misc = misc,
280
    };
281
    struct kvm_x86_mce_data data = {
282
            .env = cenv,
283
            .mce = &mce,
284
    };
285

    
286
    if (!cenv->mcg_cap) {
287
        fprintf(stderr, "MCE support is not enabled!\n");
288
        return;
289
    }
290

    
291
    if (flag & MCE_BROADCAST) {
292
        kvm_mce_broadcast_rest(cenv);
293
    }
294

    
295
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
296
#else
297
    if (flag & ABORT_ON_ERROR) {
298
        abort();
299
    }
300
#endif
301
}
302

    
303
int kvm_arch_init_vcpu(CPUState *env)
304
{
305
    struct {
306
        struct kvm_cpuid2 cpuid;
307
        struct kvm_cpuid_entry2 entries[100];
308
    } __attribute__((packed)) cpuid_data;
309
    uint32_t limit, i, j, cpuid_i;
310
    uint32_t unused;
311
    struct kvm_cpuid_entry2 *c;
312
#ifdef KVM_CPUID_SIGNATURE
313
    uint32_t signature[3];
314
#endif
315

    
316
    env->mp_state = KVM_MP_STATE_RUNNABLE;
317

    
318
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
319

    
320
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
321
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
322
    env->cpuid_ext_features |= i;
323

    
324
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
325
                                                             0, R_EDX);
326
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
327
                                                             0, R_ECX);
328
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
329
                                                             0, R_EDX);
330

    
331

    
332
    cpuid_i = 0;
333

    
334
#ifdef CONFIG_KVM_PARA
335
    /* Paravirtualization CPUIDs */
336
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
337
    c = &cpuid_data.entries[cpuid_i++];
338
    memset(c, 0, sizeof(*c));
339
    c->function = KVM_CPUID_SIGNATURE;
340
    c->eax = 0;
341
    c->ebx = signature[0];
342
    c->ecx = signature[1];
343
    c->edx = signature[2];
344

    
345
    c = &cpuid_data.entries[cpuid_i++];
346
    memset(c, 0, sizeof(*c));
347
    c->function = KVM_CPUID_FEATURES;
348
    c->eax = env->cpuid_kvm_features & get_para_features(env);
349
#endif
350

    
351
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
352

    
353
    for (i = 0; i <= limit; i++) {
354
        c = &cpuid_data.entries[cpuid_i++];
355

    
356
        switch (i) {
357
        case 2: {
358
            /* Keep reading function 2 till all the input is received */
359
            int times;
360

    
361
            c->function = i;
362
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
363
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
364
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
365
            times = c->eax & 0xff;
366

    
367
            for (j = 1; j < times; ++j) {
368
                c = &cpuid_data.entries[cpuid_i++];
369
                c->function = i;
370
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
371
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
372
            }
373
            break;
374
        }
375
        case 4:
376
        case 0xb:
377
        case 0xd:
378
            for (j = 0; ; j++) {
379
                c->function = i;
380
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
381
                c->index = j;
382
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
383

    
384
                if (i == 4 && c->eax == 0)
385
                    break;
386
                if (i == 0xb && !(c->ecx & 0xff00))
387
                    break;
388
                if (i == 0xd && c->eax == 0)
389
                    break;
390

    
391
                c = &cpuid_data.entries[cpuid_i++];
392
            }
393
            break;
394
        default:
395
            c->function = i;
396
            c->flags = 0;
397
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
398
            break;
399
        }
400
    }
401
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
402

    
403
    for (i = 0x80000000; i <= limit; i++) {
404
        c = &cpuid_data.entries[cpuid_i++];
405

    
406
        c->function = i;
407
        c->flags = 0;
408
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
409
    }
410

    
411
    cpuid_data.cpuid.nent = cpuid_i;
412

    
413
#ifdef KVM_CAP_MCE
414
    if (((env->cpuid_version >> 8)&0xF) >= 6
415
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
416
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
417
        uint64_t mcg_cap;
418
        int banks;
419

    
420
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
421
            perror("kvm_get_mce_cap_supported FAILED");
422
        else {
423
            if (banks > MCE_BANKS_DEF)
424
                banks = MCE_BANKS_DEF;
425
            mcg_cap &= MCE_CAP_DEF;
426
            mcg_cap |= banks;
427
            if (kvm_setup_mce(env, &mcg_cap))
428
                perror("kvm_setup_mce FAILED");
429
            else
430
                env->mcg_cap = mcg_cap;
431
        }
432
    }
433
#endif
434

    
435
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
436
}
437

    
438
void kvm_arch_reset_vcpu(CPUState *env)
439
{
440
    env->exception_injected = -1;
441
    env->interrupt_injected = -1;
442
    env->nmi_injected = 0;
443
    env->nmi_pending = 0;
444
    if (kvm_irqchip_in_kernel()) {
445
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
446
                                          KVM_MP_STATE_UNINITIALIZED;
447
    } else {
448
        env->mp_state = KVM_MP_STATE_RUNNABLE;
449
    }
450
}
451

    
452
int has_msr_star;
453
int has_msr_hsave_pa;
454

    
455
static void kvm_supported_msrs(CPUState *env)
456
{
457
    static int kvm_supported_msrs;
458
    int ret;
459

    
460
    /* first time */
461
    if (kvm_supported_msrs == 0) {
462
        struct kvm_msr_list msr_list, *kvm_msr_list;
463

    
464
        kvm_supported_msrs = -1;
465

    
466
        /* Obtain MSR list from KVM.  These are the MSRs that we must
467
         * save/restore */
468
        msr_list.nmsrs = 0;
469
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
470
        if (ret < 0 && ret != -E2BIG) {
471
            return;
472
        }
473
        /* Old kernel modules had a bug and could write beyond the provided
474
           memory. Allocate at least a safe amount of 1K. */
475
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
476
                                              msr_list.nmsrs *
477
                                              sizeof(msr_list.indices[0])));
478

    
479
        kvm_msr_list->nmsrs = msr_list.nmsrs;
480
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
481
        if (ret >= 0) {
482
            int i;
483

    
484
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
485
                if (kvm_msr_list->indices[i] == MSR_STAR) {
486
                    has_msr_star = 1;
487
                    continue;
488
                }
489
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
490
                    has_msr_hsave_pa = 1;
491
                    continue;
492
                }
493
            }
494
        }
495

    
496
        free(kvm_msr_list);
497
    }
498

    
499
    return;
500
}
501

    
502
static int kvm_has_msr_hsave_pa(CPUState *env)
503
{
504
    kvm_supported_msrs(env);
505
    return has_msr_hsave_pa;
506
}
507

    
508
static int kvm_has_msr_star(CPUState *env)
509
{
510
    kvm_supported_msrs(env);
511
    return has_msr_star;
512
}
513

    
514
static int kvm_init_identity_map_page(KVMState *s)
515
{
516
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
517
    int ret;
518
    uint64_t addr = 0xfffbc000;
519

    
520
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
521
        return 0;
522
    }
523

    
524
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
525
    if (ret < 0) {
526
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
527
        return ret;
528
    }
529
#endif
530
    return 0;
531
}
532

    
533
int kvm_arch_init(KVMState *s, int smp_cpus)
534
{
535
    int ret;
536

    
537
    struct utsname utsname;
538

    
539
    uname(&utsname);
540
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
541

    
542
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
543
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
544
     * must be part of guest physical memory, we need to allocate it.  Older
545
     * versions of KVM just assumed that it would be at the end of physical
546
     * memory but that doesn't work with more than 4GB of memory.  We simply
547
     * refuse to work with those older versions of KVM. */
548
    ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
549
    if (ret <= 0) {
550
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
551
        return ret;
552
    }
553

    
554
    /* this address is 3 pages before the bios, and the bios should present
555
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
556
     * this?
557
     */
558
    /*
559
     * Tell fw_cfg to notify the BIOS to reserve the range.
560
     */
561
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
562
        perror("e820_add_entry() table is full");
563
        exit(1);
564
    }
565
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
566
    if (ret < 0) {
567
        return ret;
568
    }
569

    
570
    return kvm_init_identity_map_page(s);
571
}
572
                    
573
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
574
{
575
    lhs->selector = rhs->selector;
576
    lhs->base = rhs->base;
577
    lhs->limit = rhs->limit;
578
    lhs->type = 3;
579
    lhs->present = 1;
580
    lhs->dpl = 3;
581
    lhs->db = 0;
582
    lhs->s = 1;
583
    lhs->l = 0;
584
    lhs->g = 0;
585
    lhs->avl = 0;
586
    lhs->unusable = 0;
587
}
588

    
589
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
590
{
591
    unsigned flags = rhs->flags;
592
    lhs->selector = rhs->selector;
593
    lhs->base = rhs->base;
594
    lhs->limit = rhs->limit;
595
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
596
    lhs->present = (flags & DESC_P_MASK) != 0;
597
    lhs->dpl = rhs->selector & 3;
598
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
599
    lhs->s = (flags & DESC_S_MASK) != 0;
600
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
601
    lhs->g = (flags & DESC_G_MASK) != 0;
602
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
603
    lhs->unusable = 0;
604
}
605

    
606
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
607
{
608
    lhs->selector = rhs->selector;
609
    lhs->base = rhs->base;
610
    lhs->limit = rhs->limit;
611
    lhs->flags =
612
        (rhs->type << DESC_TYPE_SHIFT)
613
        | (rhs->present * DESC_P_MASK)
614
        | (rhs->dpl << DESC_DPL_SHIFT)
615
        | (rhs->db << DESC_B_SHIFT)
616
        | (rhs->s * DESC_S_MASK)
617
        | (rhs->l << DESC_L_SHIFT)
618
        | (rhs->g * DESC_G_MASK)
619
        | (rhs->avl * DESC_AVL_MASK);
620
}
621

    
622
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
623
{
624
    if (set)
625
        *kvm_reg = *qemu_reg;
626
    else
627
        *qemu_reg = *kvm_reg;
628
}
629

    
630
static int kvm_getput_regs(CPUState *env, int set)
631
{
632
    struct kvm_regs regs;
633
    int ret = 0;
634

    
635
    if (!set) {
636
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
637
        if (ret < 0)
638
            return ret;
639
    }
640

    
641
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
642
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
643
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
644
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
645
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
646
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
647
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
648
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
649
#ifdef TARGET_X86_64
650
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
651
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
652
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
653
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
654
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
655
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
656
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
657
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
658
#endif
659

    
660
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
661
    kvm_getput_reg(&regs.rip, &env->eip, set);
662

    
663
    if (set)
664
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
665

    
666
    return ret;
667
}
668

    
669
static int kvm_put_fpu(CPUState *env)
670
{
671
    struct kvm_fpu fpu;
672
    int i;
673

    
674
    memset(&fpu, 0, sizeof fpu);
675
    fpu.fsw = env->fpus & ~(7 << 11);
676
    fpu.fsw |= (env->fpstt & 7) << 11;
677
    fpu.fcw = env->fpuc;
678
    for (i = 0; i < 8; ++i)
679
        fpu.ftwx |= (!env->fptags[i]) << i;
680
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
681
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
682
    fpu.mxcsr = env->mxcsr;
683

    
684
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
685
}
686

    
687
#ifdef KVM_CAP_XSAVE
688
#define XSAVE_CWD_RIP     2
689
#define XSAVE_CWD_RDP     4
690
#define XSAVE_MXCSR       6
691
#define XSAVE_ST_SPACE    8
692
#define XSAVE_XMM_SPACE   40
693
#define XSAVE_XSTATE_BV   128
694
#define XSAVE_YMMH_SPACE  144
695
#endif
696

    
697
static int kvm_put_xsave(CPUState *env)
698
{
699
#ifdef KVM_CAP_XSAVE
700
    int i, r;
701
    struct kvm_xsave* xsave;
702
    uint16_t cwd, swd, twd, fop;
703

    
704
    if (!kvm_has_xsave())
705
        return kvm_put_fpu(env);
706

    
707
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
708
    memset(xsave, 0, sizeof(struct kvm_xsave));
709
    cwd = swd = twd = fop = 0;
710
    swd = env->fpus & ~(7 << 11);
711
    swd |= (env->fpstt & 7) << 11;
712
    cwd = env->fpuc;
713
    for (i = 0; i < 8; ++i)
714
        twd |= (!env->fptags[i]) << i;
715
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
716
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
717
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
718
            sizeof env->fpregs);
719
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
720
            sizeof env->xmm_regs);
721
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
722
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
723
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
724
            sizeof env->ymmh_regs);
725
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
726
    qemu_free(xsave);
727
    return r;
728
#else
729
    return kvm_put_fpu(env);
730
#endif
731
}
732

    
733
static int kvm_put_xcrs(CPUState *env)
734
{
735
#ifdef KVM_CAP_XCRS
736
    struct kvm_xcrs xcrs;
737

    
738
    if (!kvm_has_xcrs())
739
        return 0;
740

    
741
    xcrs.nr_xcrs = 1;
742
    xcrs.flags = 0;
743
    xcrs.xcrs[0].xcr = 0;
744
    xcrs.xcrs[0].value = env->xcr0;
745
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
746
#else
747
    return 0;
748
#endif
749
}
750

    
751
static int kvm_put_sregs(CPUState *env)
752
{
753
    struct kvm_sregs sregs;
754

    
755
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
756
    if (env->interrupt_injected >= 0) {
757
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
758
                (uint64_t)1 << (env->interrupt_injected % 64);
759
    }
760

    
761
    if ((env->eflags & VM_MASK)) {
762
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
763
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
764
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
765
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
766
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
767
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
768
    } else {
769
            set_seg(&sregs.cs, &env->segs[R_CS]);
770
            set_seg(&sregs.ds, &env->segs[R_DS]);
771
            set_seg(&sregs.es, &env->segs[R_ES]);
772
            set_seg(&sregs.fs, &env->segs[R_FS]);
773
            set_seg(&sregs.gs, &env->segs[R_GS]);
774
            set_seg(&sregs.ss, &env->segs[R_SS]);
775

    
776
            if (env->cr[0] & CR0_PE_MASK) {
777
                /* force ss cpl to cs cpl */
778
                sregs.ss.selector = (sregs.ss.selector & ~3) |
779
                        (sregs.cs.selector & 3);
780
                sregs.ss.dpl = sregs.ss.selector & 3;
781
            }
782
    }
783

    
784
    set_seg(&sregs.tr, &env->tr);
785
    set_seg(&sregs.ldt, &env->ldt);
786

    
787
    sregs.idt.limit = env->idt.limit;
788
    sregs.idt.base = env->idt.base;
789
    sregs.gdt.limit = env->gdt.limit;
790
    sregs.gdt.base = env->gdt.base;
791

    
792
    sregs.cr0 = env->cr[0];
793
    sregs.cr2 = env->cr[2];
794
    sregs.cr3 = env->cr[3];
795
    sregs.cr4 = env->cr[4];
796

    
797
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
799

    
800
    sregs.efer = env->efer;
801

    
802
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
803
}
804

    
805
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806
                              uint32_t index, uint64_t value)
807
{
808
    entry->index = index;
809
    entry->data = value;
810
}
811

    
812
static int kvm_put_msrs(CPUState *env, int level)
813
{
814
    struct {
815
        struct kvm_msrs info;
816
        struct kvm_msr_entry entries[100];
817
    } msr_data;
818
    struct kvm_msr_entry *msrs = msr_data.entries;
819
    int n = 0;
820

    
821
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824
    if (kvm_has_msr_star(env))
825
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
826
    if (kvm_has_msr_hsave_pa(env))
827
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
828
#ifdef TARGET_X86_64
829
    if (lm_capable_kernel) {
830
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
831
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
832
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
833
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
834
    }
835
#endif
836
    if (level == KVM_PUT_FULL_STATE) {
837
        /*
838
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
839
         * writeback. Until this is fixed, we only write the offset to SMP
840
         * guests after migration, desynchronizing the VCPUs, but avoiding
841
         * huge jump-backs that would occur without any writeback at all.
842
         */
843
        if (smp_cpus == 1 || env->tsc != 0) {
844
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
845
        }
846
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
847
                          env->system_time_msr);
848
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
849
#ifdef KVM_CAP_ASYNC_PF
850
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
851
#endif
852
    }
853
#ifdef KVM_CAP_MCE
854
    if (env->mcg_cap) {
855
        int i;
856
        if (level == KVM_PUT_RESET_STATE)
857
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
858
        else if (level == KVM_PUT_FULL_STATE) {
859
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
860
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
861
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
862
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
863
        }
864
    }
865
#endif
866

    
867
    msr_data.info.nmsrs = n;
868

    
869
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
870

    
871
}
872

    
873

    
874
static int kvm_get_fpu(CPUState *env)
875
{
876
    struct kvm_fpu fpu;
877
    int i, ret;
878

    
879
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
880
    if (ret < 0)
881
        return ret;
882

    
883
    env->fpstt = (fpu.fsw >> 11) & 7;
884
    env->fpus = fpu.fsw;
885
    env->fpuc = fpu.fcw;
886
    for (i = 0; i < 8; ++i)
887
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
888
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
889
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
890
    env->mxcsr = fpu.mxcsr;
891

    
892
    return 0;
893
}
894

    
895
static int kvm_get_xsave(CPUState *env)
896
{
897
#ifdef KVM_CAP_XSAVE
898
    struct kvm_xsave* xsave;
899
    int ret, i;
900
    uint16_t cwd, swd, twd, fop;
901

    
902
    if (!kvm_has_xsave())
903
        return kvm_get_fpu(env);
904

    
905
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
906
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
907
    if (ret < 0) {
908
        qemu_free(xsave);
909
        return ret;
910
    }
911

    
912
    cwd = (uint16_t)xsave->region[0];
913
    swd = (uint16_t)(xsave->region[0] >> 16);
914
    twd = (uint16_t)xsave->region[1];
915
    fop = (uint16_t)(xsave->region[1] >> 16);
916
    env->fpstt = (swd >> 11) & 7;
917
    env->fpus = swd;
918
    env->fpuc = cwd;
919
    for (i = 0; i < 8; ++i)
920
        env->fptags[i] = !((twd >> i) & 1);
921
    env->mxcsr = xsave->region[XSAVE_MXCSR];
922
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
923
            sizeof env->fpregs);
924
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
925
            sizeof env->xmm_regs);
926
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
927
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
928
            sizeof env->ymmh_regs);
929
    qemu_free(xsave);
930
    return 0;
931
#else
932
    return kvm_get_fpu(env);
933
#endif
934
}
935

    
936
static int kvm_get_xcrs(CPUState *env)
937
{
938
#ifdef KVM_CAP_XCRS
939
    int i, ret;
940
    struct kvm_xcrs xcrs;
941

    
942
    if (!kvm_has_xcrs())
943
        return 0;
944

    
945
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
946
    if (ret < 0)
947
        return ret;
948

    
949
    for (i = 0; i < xcrs.nr_xcrs; i++)
950
        /* Only support xcr0 now */
951
        if (xcrs.xcrs[0].xcr == 0) {
952
            env->xcr0 = xcrs.xcrs[0].value;
953
            break;
954
        }
955
    return 0;
956
#else
957
    return 0;
958
#endif
959
}
960

    
961
static int kvm_get_sregs(CPUState *env)
962
{
963
    struct kvm_sregs sregs;
964
    uint32_t hflags;
965
    int bit, i, ret;
966

    
967
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
968
    if (ret < 0)
969
        return ret;
970

    
971
    /* There can only be one pending IRQ set in the bitmap at a time, so try
972
       to find it and save its number instead (-1 for none). */
973
    env->interrupt_injected = -1;
974
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
975
        if (sregs.interrupt_bitmap[i]) {
976
            bit = ctz64(sregs.interrupt_bitmap[i]);
977
            env->interrupt_injected = i * 64 + bit;
978
            break;
979
        }
980
    }
981

    
982
    get_seg(&env->segs[R_CS], &sregs.cs);
983
    get_seg(&env->segs[R_DS], &sregs.ds);
984
    get_seg(&env->segs[R_ES], &sregs.es);
985
    get_seg(&env->segs[R_FS], &sregs.fs);
986
    get_seg(&env->segs[R_GS], &sregs.gs);
987
    get_seg(&env->segs[R_SS], &sregs.ss);
988

    
989
    get_seg(&env->tr, &sregs.tr);
990
    get_seg(&env->ldt, &sregs.ldt);
991

    
992
    env->idt.limit = sregs.idt.limit;
993
    env->idt.base = sregs.idt.base;
994
    env->gdt.limit = sregs.gdt.limit;
995
    env->gdt.base = sregs.gdt.base;
996

    
997
    env->cr[0] = sregs.cr0;
998
    env->cr[2] = sregs.cr2;
999
    env->cr[3] = sregs.cr3;
1000
    env->cr[4] = sregs.cr4;
1001

    
1002
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1003

    
1004
    env->efer = sregs.efer;
1005
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1006

    
1007
#define HFLAG_COPY_MASK ~( \
1008
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1009
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1010
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1011
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1012

    
1013

    
1014

    
1015
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1016
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1017
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1018
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1019
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1020
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1021
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1022

    
1023
    if (env->efer & MSR_EFER_LMA) {
1024
        hflags |= HF_LMA_MASK;
1025
    }
1026

    
1027
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1028
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1029
    } else {
1030
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1031
                (DESC_B_SHIFT - HF_CS32_SHIFT);
1032
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1033
                (DESC_B_SHIFT - HF_SS32_SHIFT);
1034
        if (!(env->cr[0] & CR0_PE_MASK) ||
1035
                   (env->eflags & VM_MASK) ||
1036
                   !(hflags & HF_CS32_MASK)) {
1037
                hflags |= HF_ADDSEG_MASK;
1038
            } else {
1039
                hflags |= ((env->segs[R_DS].base |
1040
                                env->segs[R_ES].base |
1041
                                env->segs[R_SS].base) != 0) <<
1042
                    HF_ADDSEG_SHIFT;
1043
            }
1044
    }
1045
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1046

    
1047
    return 0;
1048
}
1049

    
1050
static int kvm_get_msrs(CPUState *env)
1051
{
1052
    struct {
1053
        struct kvm_msrs info;
1054
        struct kvm_msr_entry entries[100];
1055
    } msr_data;
1056
    struct kvm_msr_entry *msrs = msr_data.entries;
1057
    int ret, i, n;
1058

    
1059
    n = 0;
1060
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1061
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1062
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1063
    if (kvm_has_msr_star(env))
1064
        msrs[n++].index = MSR_STAR;
1065
    if (kvm_has_msr_hsave_pa(env))
1066
        msrs[n++].index = MSR_VM_HSAVE_PA;
1067
    msrs[n++].index = MSR_IA32_TSC;
1068
#ifdef TARGET_X86_64
1069
    if (lm_capable_kernel) {
1070
        msrs[n++].index = MSR_CSTAR;
1071
        msrs[n++].index = MSR_KERNELGSBASE;
1072
        msrs[n++].index = MSR_FMASK;
1073
        msrs[n++].index = MSR_LSTAR;
1074
    }
1075
#endif
1076
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1077
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1078
#ifdef KVM_CAP_ASYNC_PF
1079
    msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1080
#endif
1081

    
1082
#ifdef KVM_CAP_MCE
1083
    if (env->mcg_cap) {
1084
        msrs[n++].index = MSR_MCG_STATUS;
1085
        msrs[n++].index = MSR_MCG_CTL;
1086
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1087
            msrs[n++].index = MSR_MC0_CTL + i;
1088
    }
1089
#endif
1090

    
1091
    msr_data.info.nmsrs = n;
1092
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1093
    if (ret < 0)
1094
        return ret;
1095

    
1096
    for (i = 0; i < ret; i++) {
1097
        switch (msrs[i].index) {
1098
        case MSR_IA32_SYSENTER_CS:
1099
            env->sysenter_cs = msrs[i].data;
1100
            break;
1101
        case MSR_IA32_SYSENTER_ESP:
1102
            env->sysenter_esp = msrs[i].data;
1103
            break;
1104
        case MSR_IA32_SYSENTER_EIP:
1105
            env->sysenter_eip = msrs[i].data;
1106
            break;
1107
        case MSR_STAR:
1108
            env->star = msrs[i].data;
1109
            break;
1110
#ifdef TARGET_X86_64
1111
        case MSR_CSTAR:
1112
            env->cstar = msrs[i].data;
1113
            break;
1114
        case MSR_KERNELGSBASE:
1115
            env->kernelgsbase = msrs[i].data;
1116
            break;
1117
        case MSR_FMASK:
1118
            env->fmask = msrs[i].data;
1119
            break;
1120
        case MSR_LSTAR:
1121
            env->lstar = msrs[i].data;
1122
            break;
1123
#endif
1124
        case MSR_IA32_TSC:
1125
            env->tsc = msrs[i].data;
1126
            break;
1127
        case MSR_VM_HSAVE_PA:
1128
            env->vm_hsave = msrs[i].data;
1129
            break;
1130
        case MSR_KVM_SYSTEM_TIME:
1131
            env->system_time_msr = msrs[i].data;
1132
            break;
1133
        case MSR_KVM_WALL_CLOCK:
1134
            env->wall_clock_msr = msrs[i].data;
1135
            break;
1136
#ifdef KVM_CAP_MCE
1137
        case MSR_MCG_STATUS:
1138
            env->mcg_status = msrs[i].data;
1139
            break;
1140
        case MSR_MCG_CTL:
1141
            env->mcg_ctl = msrs[i].data;
1142
            break;
1143
#endif
1144
        default:
1145
#ifdef KVM_CAP_MCE
1146
            if (msrs[i].index >= MSR_MC0_CTL &&
1147
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1148
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1149
            }
1150
#endif
1151
            break;
1152
#ifdef KVM_CAP_ASYNC_PF
1153
        case MSR_KVM_ASYNC_PF_EN:
1154
            env->async_pf_en_msr = msrs[i].data;
1155
            break;
1156
#endif
1157
        }
1158
    }
1159

    
1160
    return 0;
1161
}
1162

    
1163
static int kvm_put_mp_state(CPUState *env)
1164
{
1165
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1166

    
1167
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1168
}
1169

    
1170
static int kvm_get_mp_state(CPUState *env)
1171
{
1172
    struct kvm_mp_state mp_state;
1173
    int ret;
1174

    
1175
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1176
    if (ret < 0) {
1177
        return ret;
1178
    }
1179
    env->mp_state = mp_state.mp_state;
1180
    return 0;
1181
}
1182

    
1183
static int kvm_put_vcpu_events(CPUState *env, int level)
1184
{
1185
#ifdef KVM_CAP_VCPU_EVENTS
1186
    struct kvm_vcpu_events events;
1187

    
1188
    if (!kvm_has_vcpu_events()) {
1189
        return 0;
1190
    }
1191

    
1192
    events.exception.injected = (env->exception_injected >= 0);
1193
    events.exception.nr = env->exception_injected;
1194
    events.exception.has_error_code = env->has_error_code;
1195
    events.exception.error_code = env->error_code;
1196

    
1197
    events.interrupt.injected = (env->interrupt_injected >= 0);
1198
    events.interrupt.nr = env->interrupt_injected;
1199
    events.interrupt.soft = env->soft_interrupt;
1200

    
1201
    events.nmi.injected = env->nmi_injected;
1202
    events.nmi.pending = env->nmi_pending;
1203
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1204

    
1205
    events.sipi_vector = env->sipi_vector;
1206

    
1207
    events.flags = 0;
1208
    if (level >= KVM_PUT_RESET_STATE) {
1209
        events.flags |=
1210
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1211
    }
1212

    
1213
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1214
#else
1215
    return 0;
1216
#endif
1217
}
1218

    
1219
static int kvm_get_vcpu_events(CPUState *env)
1220
{
1221
#ifdef KVM_CAP_VCPU_EVENTS
1222
    struct kvm_vcpu_events events;
1223
    int ret;
1224

    
1225
    if (!kvm_has_vcpu_events()) {
1226
        return 0;
1227
    }
1228

    
1229
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1230
    if (ret < 0) {
1231
       return ret;
1232
    }
1233
    env->exception_injected =
1234
       events.exception.injected ? events.exception.nr : -1;
1235
    env->has_error_code = events.exception.has_error_code;
1236
    env->error_code = events.exception.error_code;
1237

    
1238
    env->interrupt_injected =
1239
        events.interrupt.injected ? events.interrupt.nr : -1;
1240
    env->soft_interrupt = events.interrupt.soft;
1241

    
1242
    env->nmi_injected = events.nmi.injected;
1243
    env->nmi_pending = events.nmi.pending;
1244
    if (events.nmi.masked) {
1245
        env->hflags2 |= HF2_NMI_MASK;
1246
    } else {
1247
        env->hflags2 &= ~HF2_NMI_MASK;
1248
    }
1249

    
1250
    env->sipi_vector = events.sipi_vector;
1251
#endif
1252

    
1253
    return 0;
1254
}
1255

    
1256
static int kvm_guest_debug_workarounds(CPUState *env)
1257
{
1258
    int ret = 0;
1259
#ifdef KVM_CAP_SET_GUEST_DEBUG
1260
    unsigned long reinject_trap = 0;
1261

    
1262
    if (!kvm_has_vcpu_events()) {
1263
        if (env->exception_injected == 1) {
1264
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1265
        } else if (env->exception_injected == 3) {
1266
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1267
        }
1268
        env->exception_injected = -1;
1269
    }
1270

    
1271
    /*
1272
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1273
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1274
     * by updating the debug state once again if single-stepping is on.
1275
     * Another reason to call kvm_update_guest_debug here is a pending debug
1276
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1277
     * reinject them via SET_GUEST_DEBUG.
1278
     */
1279
    if (reinject_trap ||
1280
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1281
        ret = kvm_update_guest_debug(env, reinject_trap);
1282
    }
1283
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1284
    return ret;
1285
}
1286

    
1287
static int kvm_put_debugregs(CPUState *env)
1288
{
1289
#ifdef KVM_CAP_DEBUGREGS
1290
    struct kvm_debugregs dbgregs;
1291
    int i;
1292

    
1293
    if (!kvm_has_debugregs()) {
1294
        return 0;
1295
    }
1296

    
1297
    for (i = 0; i < 4; i++) {
1298
        dbgregs.db[i] = env->dr[i];
1299
    }
1300
    dbgregs.dr6 = env->dr[6];
1301
    dbgregs.dr7 = env->dr[7];
1302
    dbgregs.flags = 0;
1303

    
1304
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1305
#else
1306
    return 0;
1307
#endif
1308
}
1309

    
1310
static int kvm_get_debugregs(CPUState *env)
1311
{
1312
#ifdef KVM_CAP_DEBUGREGS
1313
    struct kvm_debugregs dbgregs;
1314
    int i, ret;
1315

    
1316
    if (!kvm_has_debugregs()) {
1317
        return 0;
1318
    }
1319

    
1320
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1321
    if (ret < 0) {
1322
       return ret;
1323
    }
1324
    for (i = 0; i < 4; i++) {
1325
        env->dr[i] = dbgregs.db[i];
1326
    }
1327
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1328
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1329
#endif
1330

    
1331
    return 0;
1332
}
1333

    
1334
int kvm_arch_put_registers(CPUState *env, int level)
1335
{
1336
    int ret;
1337

    
1338
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1339

    
1340
    ret = kvm_getput_regs(env, 1);
1341
    if (ret < 0)
1342
        return ret;
1343

    
1344
    ret = kvm_put_xsave(env);
1345
    if (ret < 0)
1346
        return ret;
1347

    
1348
    ret = kvm_put_xcrs(env);
1349
    if (ret < 0)
1350
        return ret;
1351

    
1352
    ret = kvm_put_sregs(env);
1353
    if (ret < 0)
1354
        return ret;
1355

    
1356
    ret = kvm_put_msrs(env, level);
1357
    if (ret < 0)
1358
        return ret;
1359

    
1360
    if (level >= KVM_PUT_RESET_STATE) {
1361
        ret = kvm_put_mp_state(env);
1362
        if (ret < 0)
1363
            return ret;
1364
    }
1365

    
1366
    ret = kvm_put_vcpu_events(env, level);
1367
    if (ret < 0)
1368
        return ret;
1369

    
1370
    /* must be last */
1371
    ret = kvm_guest_debug_workarounds(env);
1372
    if (ret < 0)
1373
        return ret;
1374

    
1375
    ret = kvm_put_debugregs(env);
1376
    if (ret < 0)
1377
        return ret;
1378

    
1379
    return 0;
1380
}
1381

    
1382
int kvm_arch_get_registers(CPUState *env)
1383
{
1384
    int ret;
1385

    
1386
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1387

    
1388
    ret = kvm_getput_regs(env, 0);
1389
    if (ret < 0)
1390
        return ret;
1391

    
1392
    ret = kvm_get_xsave(env);
1393
    if (ret < 0)
1394
        return ret;
1395

    
1396
    ret = kvm_get_xcrs(env);
1397
    if (ret < 0)
1398
        return ret;
1399

    
1400
    ret = kvm_get_sregs(env);
1401
    if (ret < 0)
1402
        return ret;
1403

    
1404
    ret = kvm_get_msrs(env);
1405
    if (ret < 0)
1406
        return ret;
1407

    
1408
    ret = kvm_get_mp_state(env);
1409
    if (ret < 0)
1410
        return ret;
1411

    
1412
    ret = kvm_get_vcpu_events(env);
1413
    if (ret < 0)
1414
        return ret;
1415

    
1416
    ret = kvm_get_debugregs(env);
1417
    if (ret < 0)
1418
        return ret;
1419

    
1420
    return 0;
1421
}
1422

    
1423
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1424
{
1425
    /* Inject NMI */
1426
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1427
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1428
        DPRINTF("injected NMI\n");
1429
        kvm_vcpu_ioctl(env, KVM_NMI);
1430
    }
1431

    
1432
    /* Try to inject an interrupt if the guest can accept it */
1433
    if (run->ready_for_interrupt_injection &&
1434
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1435
        (env->eflags & IF_MASK)) {
1436
        int irq;
1437

    
1438
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1439
        irq = cpu_get_pic_interrupt(env);
1440
        if (irq >= 0) {
1441
            struct kvm_interrupt intr;
1442
            intr.irq = irq;
1443
            /* FIXME: errors */
1444
            DPRINTF("injected interrupt %d\n", irq);
1445
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1446
        }
1447
    }
1448

    
1449
    /* If we have an interrupt but the guest is not ready to receive an
1450
     * interrupt, request an interrupt window exit.  This will
1451
     * cause a return to userspace as soon as the guest is ready to
1452
     * receive interrupts. */
1453
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1454
        run->request_interrupt_window = 1;
1455
    else
1456
        run->request_interrupt_window = 0;
1457

    
1458
    DPRINTF("setting tpr\n");
1459
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1460

    
1461
    return 0;
1462
}
1463

    
1464
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1465
{
1466
    if (run->if_flag)
1467
        env->eflags |= IF_MASK;
1468
    else
1469
        env->eflags &= ~IF_MASK;
1470
    
1471
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1472
    cpu_set_apic_base(env->apic_state, run->apic_base);
1473

    
1474
    return 0;
1475
}
1476

    
1477
int kvm_arch_process_irqchip_events(CPUState *env)
1478
{
1479
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1480
        kvm_cpu_synchronize_state(env);
1481
        do_cpu_init(env);
1482
        env->exception_index = EXCP_HALTED;
1483
    }
1484

    
1485
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1486
        kvm_cpu_synchronize_state(env);
1487
        do_cpu_sipi(env);
1488
    }
1489

    
1490
    return env->halted;
1491
}
1492

    
1493
static int kvm_handle_halt(CPUState *env)
1494
{
1495
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1496
          (env->eflags & IF_MASK)) &&
1497
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1498
        env->halted = 1;
1499
        env->exception_index = EXCP_HLT;
1500
        return 0;
1501
    }
1502

    
1503
    return 1;
1504
}
1505

    
1506
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1507
{
1508
    int ret = 0;
1509

    
1510
    switch (run->exit_reason) {
1511
    case KVM_EXIT_HLT:
1512
        DPRINTF("handle_hlt\n");
1513
        ret = kvm_handle_halt(env);
1514
        break;
1515
    }
1516

    
1517
    return ret;
1518
}
1519

    
1520
#ifdef KVM_CAP_SET_GUEST_DEBUG
1521
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1522
{
1523
    static const uint8_t int3 = 0xcc;
1524

    
1525
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1526
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1527
        return -EINVAL;
1528
    return 0;
1529
}
1530

    
1531
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1532
{
1533
    uint8_t int3;
1534

    
1535
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1536
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1537
        return -EINVAL;
1538
    return 0;
1539
}
1540

    
1541
static struct {
1542
    target_ulong addr;
1543
    int len;
1544
    int type;
1545
} hw_breakpoint[4];
1546

    
1547
static int nb_hw_breakpoint;
1548

    
1549
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1550
{
1551
    int n;
1552

    
1553
    for (n = 0; n < nb_hw_breakpoint; n++)
1554
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1555
            (hw_breakpoint[n].len == len || len == -1))
1556
            return n;
1557
    return -1;
1558
}
1559

    
1560
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1561
                                  target_ulong len, int type)
1562
{
1563
    switch (type) {
1564
    case GDB_BREAKPOINT_HW:
1565
        len = 1;
1566
        break;
1567
    case GDB_WATCHPOINT_WRITE:
1568
    case GDB_WATCHPOINT_ACCESS:
1569
        switch (len) {
1570
        case 1:
1571
            break;
1572
        case 2:
1573
        case 4:
1574
        case 8:
1575
            if (addr & (len - 1))
1576
                return -EINVAL;
1577
            break;
1578
        default:
1579
            return -EINVAL;
1580
        }
1581
        break;
1582
    default:
1583
        return -ENOSYS;
1584
    }
1585

    
1586
    if (nb_hw_breakpoint == 4)
1587
        return -ENOBUFS;
1588

    
1589
    if (find_hw_breakpoint(addr, len, type) >= 0)
1590
        return -EEXIST;
1591

    
1592
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1593
    hw_breakpoint[nb_hw_breakpoint].len = len;
1594
    hw_breakpoint[nb_hw_breakpoint].type = type;
1595
    nb_hw_breakpoint++;
1596

    
1597
    return 0;
1598
}
1599

    
1600
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1601
                                  target_ulong len, int type)
1602
{
1603
    int n;
1604

    
1605
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1606
    if (n < 0)
1607
        return -ENOENT;
1608

    
1609
    nb_hw_breakpoint--;
1610
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1611

    
1612
    return 0;
1613
}
1614

    
1615
void kvm_arch_remove_all_hw_breakpoints(void)
1616
{
1617
    nb_hw_breakpoint = 0;
1618
}
1619

    
1620
static CPUWatchpoint hw_watchpoint;
1621

    
1622
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1623
{
1624
    int handle = 0;
1625
    int n;
1626

    
1627
    if (arch_info->exception == 1) {
1628
        if (arch_info->dr6 & (1 << 14)) {
1629
            if (cpu_single_env->singlestep_enabled)
1630
                handle = 1;
1631
        } else {
1632
            for (n = 0; n < 4; n++)
1633
                if (arch_info->dr6 & (1 << n))
1634
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1635
                    case 0x0:
1636
                        handle = 1;
1637
                        break;
1638
                    case 0x1:
1639
                        handle = 1;
1640
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1641
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1642
                        hw_watchpoint.flags = BP_MEM_WRITE;
1643
                        break;
1644
                    case 0x3:
1645
                        handle = 1;
1646
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1647
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1648
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1649
                        break;
1650
                    }
1651
        }
1652
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1653
        handle = 1;
1654

    
1655
    if (!handle) {
1656
        cpu_synchronize_state(cpu_single_env);
1657
        assert(cpu_single_env->exception_injected == -1);
1658

    
1659
        cpu_single_env->exception_injected = arch_info->exception;
1660
        cpu_single_env->has_error_code = 0;
1661
    }
1662

    
1663
    return handle;
1664
}
1665

    
1666
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1667
{
1668
    const uint8_t type_code[] = {
1669
        [GDB_BREAKPOINT_HW] = 0x0,
1670
        [GDB_WATCHPOINT_WRITE] = 0x1,
1671
        [GDB_WATCHPOINT_ACCESS] = 0x3
1672
    };
1673
    const uint8_t len_code[] = {
1674
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1675
    };
1676
    int n;
1677

    
1678
    if (kvm_sw_breakpoints_active(env))
1679
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1680

    
1681
    if (nb_hw_breakpoint > 0) {
1682
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1683
        dbg->arch.debugreg[7] = 0x0600;
1684
        for (n = 0; n < nb_hw_breakpoint; n++) {
1685
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1686
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1687
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1688
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1689
        }
1690
    }
1691
    /* Legal xcr0 for loading */
1692
    env->xcr0 = 1;
1693
}
1694
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1695

    
1696
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1697
{
1698
      return !(env->cr[0] & CR0_PE_MASK) ||
1699
              ((env->segs[R_CS].selector  & 3) != 3);
1700
}
1701

    
1702
static void hardware_memory_error(void)
1703
{
1704
    fprintf(stderr, "Hardware memory error!\n");
1705
    exit(1);
1706
}
1707

    
1708
#ifdef KVM_CAP_MCE
1709
static void kvm_mce_broadcast_rest(CPUState *env)
1710
{
1711
    CPUState *cenv;
1712

    
1713
    /* Broadcast MCA signal for processor version 06H_EH and above */
1714
    if (cpu_x86_support_mca_broadcast(env)) {
1715
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1716
            if (cenv == env) {
1717
                continue;
1718
            }
1719
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1720
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0,
1721
                               ABORT_ON_ERROR);
1722
        }
1723
    }
1724
}
1725

    
1726
static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1727
{
1728
    struct kvm_x86_mce mce = {
1729
        .bank = 9,
1730
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1731
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1732
                  | MCI_STATUS_AR | 0x134,
1733
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1734
        .addr = paddr,
1735
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1736
    };
1737
    int r;
1738

    
1739
    r = kvm_set_mce(env, &mce);
1740
    if (r < 0) {
1741
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1742
        abort();
1743
    }
1744
    kvm_mce_broadcast_rest(env);
1745
}
1746

    
1747
static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1748
{
1749
    struct kvm_x86_mce mce = {
1750
        .bank = 9,
1751
        .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1752
                  | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1753
                  | 0xc0,
1754
        .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1755
        .addr = paddr,
1756
        .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1757
    };
1758
    int r;
1759

    
1760
    r = kvm_set_mce(env, &mce);
1761
    if (r < 0) {
1762
        fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1763
        abort();
1764
    }
1765
    kvm_mce_broadcast_rest(env);
1766
}
1767

    
1768
static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1769
{
1770
    uint64_t status;
1771

    
1772
    status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1773
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1774
            | 0xc0;
1775
    kvm_inject_x86_mce(env, 9, status,
1776
                       MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1777
                       (MCM_ADDR_PHYS << 6) | 0xc, ABORT_ON_ERROR);
1778

    
1779
    kvm_mce_broadcast_rest(env);
1780
}
1781

    
1782
#endif
1783

    
1784
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1785
{
1786
#if defined(KVM_CAP_MCE)
1787
    void *vaddr;
1788
    ram_addr_t ram_addr;
1789
    target_phys_addr_t paddr;
1790

    
1791
    if ((env->mcg_cap & MCG_SER_P) && addr
1792
        && (code == BUS_MCEERR_AR
1793
            || code == BUS_MCEERR_AO)) {
1794
        vaddr = (void *)addr;
1795
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1796
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1797
            fprintf(stderr, "Hardware memory error for memory used by "
1798
                    "QEMU itself instead of guest system!\n");
1799
            /* Hope we are lucky for AO MCE */
1800
            if (code == BUS_MCEERR_AO) {
1801
                return 0;
1802
            } else {
1803
                hardware_memory_error();
1804
            }
1805
        }
1806

    
1807
        if (code == BUS_MCEERR_AR) {
1808
            /* Fake an Intel architectural Data Load SRAR UCR */
1809
            kvm_mce_inj_srar_dataload(env, paddr);
1810
        } else {
1811
            /*
1812
             * If there is an MCE excpetion being processed, ignore
1813
             * this SRAO MCE
1814
             */
1815
            if (!kvm_mce_in_progress(env)) {
1816
                /* Fake an Intel architectural Memory scrubbing UCR */
1817
                kvm_mce_inj_srao_memscrub(env, paddr);
1818
            }
1819
        }
1820
    } else
1821
#endif
1822
    {
1823
        if (code == BUS_MCEERR_AO) {
1824
            return 0;
1825
        } else if (code == BUS_MCEERR_AR) {
1826
            hardware_memory_error();
1827
        } else {
1828
            return 1;
1829
        }
1830
    }
1831
    return 0;
1832
}
1833

    
1834
int kvm_on_sigbus(int code, void *addr)
1835
{
1836
#if defined(KVM_CAP_MCE)
1837
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1838
        void *vaddr;
1839
        ram_addr_t ram_addr;
1840
        target_phys_addr_t paddr;
1841

    
1842
        /* Hope we are lucky for AO MCE */
1843
        vaddr = addr;
1844
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1845
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1846
            fprintf(stderr, "Hardware memory error for memory used by "
1847
                    "QEMU itself instead of guest system!: %p\n", addr);
1848
            return 0;
1849
        }
1850
        kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1851
    } else
1852
#endif
1853
    {
1854
        if (code == BUS_MCEERR_AO) {
1855
            return 0;
1856
        } else if (code == BUS_MCEERR_AR) {
1857
            hardware_memory_error();
1858
        } else {
1859
            return 1;
1860
        }
1861
    }
1862
    return 0;
1863
}