Statistics
| Branch: | Revision:

root / target-mips / op.c @ e397ee33

History | View | Annotate | Download (40.6 kB)

1
/*
2
 *  MIPS emulation micro-operations for qemu.
3
 * 
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *  Copyright (c) 2006 Marius Groeger (FPU operations)
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21

    
22
#include "config.h"
23
#include "exec.h"
24

    
25
#ifndef CALL_FROM_TB0
26
#define CALL_FROM_TB0(func) func();
27
#endif
28
#ifndef CALL_FROM_TB1
29
#define CALL_FROM_TB1(func, arg0) func(arg0);
30
#endif
31
#ifndef CALL_FROM_TB1_CONST16
32
#define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0);
33
#endif
34
#ifndef CALL_FROM_TB2
35
#define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1);
36
#endif
37
#ifndef CALL_FROM_TB2_CONST16
38
#define CALL_FROM_TB2_CONST16(func, arg0, arg1)     \
39
CALL_FROM_TB2(func, arg0, arg1);
40
#endif
41
#ifndef CALL_FROM_TB3
42
#define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2);
43
#endif
44
#ifndef CALL_FROM_TB4
45
#define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \
46
        func(arg0, arg1, arg2, arg3);
47
#endif
48

    
49
#define REG 1
50
#include "op_template.c"
51
#undef REG
52
#define REG 2
53
#include "op_template.c"
54
#undef REG
55
#define REG 3
56
#include "op_template.c"
57
#undef REG
58
#define REG 4
59
#include "op_template.c"
60
#undef REG
61
#define REG 5
62
#include "op_template.c"
63
#undef REG
64
#define REG 6
65
#include "op_template.c"
66
#undef REG
67
#define REG 7
68
#include "op_template.c"
69
#undef REG
70
#define REG 8
71
#include "op_template.c"
72
#undef REG
73
#define REG 9
74
#include "op_template.c"
75
#undef REG
76
#define REG 10
77
#include "op_template.c"
78
#undef REG
79
#define REG 11
80
#include "op_template.c"
81
#undef REG
82
#define REG 12
83
#include "op_template.c"
84
#undef REG
85
#define REG 13
86
#include "op_template.c"
87
#undef REG
88
#define REG 14
89
#include "op_template.c"
90
#undef REG
91
#define REG 15
92
#include "op_template.c"
93
#undef REG
94
#define REG 16
95
#include "op_template.c"
96
#undef REG
97
#define REG 17
98
#include "op_template.c"
99
#undef REG
100
#define REG 18
101
#include "op_template.c"
102
#undef REG
103
#define REG 19
104
#include "op_template.c"
105
#undef REG
106
#define REG 20
107
#include "op_template.c"
108
#undef REG
109
#define REG 21
110
#include "op_template.c"
111
#undef REG
112
#define REG 22
113
#include "op_template.c"
114
#undef REG
115
#define REG 23
116
#include "op_template.c"
117
#undef REG
118
#define REG 24
119
#include "op_template.c"
120
#undef REG
121
#define REG 25
122
#include "op_template.c"
123
#undef REG
124
#define REG 26
125
#include "op_template.c"
126
#undef REG
127
#define REG 27
128
#include "op_template.c"
129
#undef REG
130
#define REG 28
131
#include "op_template.c"
132
#undef REG
133
#define REG 29
134
#include "op_template.c"
135
#undef REG
136
#define REG 30
137
#include "op_template.c"
138
#undef REG
139
#define REG 31
140
#include "op_template.c"
141
#undef REG
142

    
143
#define TN
144
#include "op_template.c"
145
#undef TN
146

    
147
#define SFREG 0
148
#define DFREG 0
149
#include "fop_template.c"
150
#undef SFREG
151
#undef DFREG
152
#define SFREG 1
153
#include "fop_template.c"
154
#undef SFREG
155
#define SFREG 2
156
#define DFREG 2
157
#include "fop_template.c"
158
#undef SFREG
159
#undef DFREG
160
#define SFREG 3
161
#include "fop_template.c"
162
#undef SFREG
163
#define SFREG 4
164
#define DFREG 4
165
#include "fop_template.c"
166
#undef SFREG
167
#undef DFREG
168
#define SFREG 5
169
#include "fop_template.c"
170
#undef SFREG
171
#define SFREG 6
172
#define DFREG 6
173
#include "fop_template.c"
174
#undef SFREG
175
#undef DFREG
176
#define SFREG 7
177
#include "fop_template.c"
178
#undef SFREG
179
#define SFREG 8
180
#define DFREG 8
181
#include "fop_template.c"
182
#undef SFREG
183
#undef DFREG
184
#define SFREG 9
185
#include "fop_template.c"
186
#undef SFREG
187
#define SFREG 10
188
#define DFREG 10
189
#include "fop_template.c"
190
#undef SFREG
191
#undef DFREG
192
#define SFREG 11
193
#include "fop_template.c"
194
#undef SFREG
195
#define SFREG 12
196
#define DFREG 12
197
#include "fop_template.c"
198
#undef SFREG
199
#undef DFREG
200
#define SFREG 13
201
#include "fop_template.c"
202
#undef SFREG
203
#define SFREG 14
204
#define DFREG 14
205
#include "fop_template.c"
206
#undef SFREG
207
#undef DFREG
208
#define SFREG 15
209
#include "fop_template.c"
210
#undef SFREG
211
#define SFREG 16
212
#define DFREG 16
213
#include "fop_template.c"
214
#undef SFREG
215
#undef DFREG
216
#define SFREG 17
217
#include "fop_template.c"
218
#undef SFREG
219
#define SFREG 18
220
#define DFREG 18
221
#include "fop_template.c"
222
#undef SFREG
223
#undef DFREG
224
#define SFREG 19
225
#include "fop_template.c"
226
#undef SFREG
227
#define SFREG 20
228
#define DFREG 20
229
#include "fop_template.c"
230
#undef SFREG
231
#undef DFREG
232
#define SFREG 21
233
#include "fop_template.c"
234
#undef SFREG
235
#define SFREG 22
236
#define DFREG 22
237
#include "fop_template.c"
238
#undef SFREG
239
#undef DFREG
240
#define SFREG 23
241
#include "fop_template.c"
242
#undef SFREG
243
#define SFREG 24
244
#define DFREG 24
245
#include "fop_template.c"
246
#undef SFREG
247
#undef DFREG
248
#define SFREG 25
249
#include "fop_template.c"
250
#undef SFREG
251
#define SFREG 26
252
#define DFREG 26
253
#include "fop_template.c"
254
#undef SFREG
255
#undef DFREG
256
#define SFREG 27
257
#include "fop_template.c"
258
#undef SFREG
259
#define SFREG 28
260
#define DFREG 28
261
#include "fop_template.c"
262
#undef SFREG
263
#undef DFREG
264
#define SFREG 29
265
#include "fop_template.c"
266
#undef SFREG
267
#define SFREG 30
268
#define DFREG 30
269
#include "fop_template.c"
270
#undef SFREG
271
#undef DFREG
272
#define SFREG 31
273
#include "fop_template.c"
274
#undef SFREG
275

    
276
#define FTN
277
#include "fop_template.c"
278
#undef FTN
279

    
280
void op_dup_T0 (void)
281
{
282
    T2 = T0;
283
    RETURN();
284
}
285

    
286
void op_load_HI (void)
287
{
288
    T0 = env->HI;
289
    RETURN();
290
}
291

    
292
void op_store_HI (void)
293
{
294
    env->HI = T0;
295
    RETURN();
296
}
297

    
298
void op_load_LO (void)
299
{
300
    T0 = env->LO;
301
    RETURN();
302
}
303

    
304
void op_store_LO (void)
305
{
306
    env->LO = T0;
307
    RETURN();
308
}
309

    
310
/* Load and store */
311
#define MEMSUFFIX _raw
312
#include "op_mem.c"
313
#undef MEMSUFFIX
314
#if !defined(CONFIG_USER_ONLY)
315
#define MEMSUFFIX _user
316
#include "op_mem.c"
317
#undef MEMSUFFIX
318

    
319
#define MEMSUFFIX _kernel
320
#include "op_mem.c"
321
#undef MEMSUFFIX
322
#endif
323

    
324
/* Arithmetic */
325
void op_add (void)
326
{
327
    T0 = (int32_t)((int32_t)T0 + (int32_t)T1);
328
    RETURN();
329
}
330

    
331
void op_addo (void)
332
{
333
    target_ulong tmp;
334

    
335
    tmp = (int32_t)T0;
336
    T0 = (int32_t)T0 + (int32_t)T1;
337
    if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) {
338
        /* operands of same sign, result different sign */
339
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
340
    }
341
    T0 = (int32_t)T0;
342
    RETURN();
343
}
344

    
345
void op_sub (void)
346
{
347
    T0 = (int32_t)((int32_t)T0 - (int32_t)T1);
348
    RETURN();
349
}
350

    
351
void op_subo (void)
352
{
353
    target_ulong tmp;
354

    
355
    tmp = (int32_t)T0;
356
    T0 = (int32_t)T0 - (int32_t)T1;
357
    if (((tmp ^ T1) & (tmp ^ T0)) >> 31) {
358
        /* operands of different sign, first operand and result different sign */
359
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
360
    }
361
    T0 = (int32_t)T0;
362
    RETURN();
363
}
364

    
365
void op_mul (void)
366
{
367
    T0 = (int32_t)((int32_t)T0 * (int32_t)T1);
368
    RETURN();
369
}
370

    
371
void op_div (void)
372
{
373
    if (T1 != 0) {
374
        env->LO = (int32_t)((int32_t)T0 / (int32_t)T1);
375
        env->HI = (int32_t)((int32_t)T0 % (int32_t)T1);
376
    }
377
    RETURN();
378
}
379

    
380
void op_divu (void)
381
{
382
    if (T1 != 0) {
383
        env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1);
384
        env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1);
385
    }
386
    RETURN();
387
}
388

    
389
#ifdef MIPS_HAS_MIPS64
390
/* Arithmetic */
391
void op_dadd (void)
392
{
393
    T0 += T1;
394
    RETURN();
395
}
396

    
397
void op_daddo (void)
398
{
399
    target_long tmp;
400

    
401
    tmp = T0;
402
    T0 += T1;
403
    if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) {
404
        /* operands of same sign, result different sign */
405
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
406
    }
407
    RETURN();
408
}
409

    
410
void op_dsub (void)
411
{
412
    T0 -= T1;
413
    RETURN();
414
}
415

    
416
void op_dsubo (void)
417
{
418
    target_long tmp;
419

    
420
    tmp = T0;
421
    T0 = (int64_t)T0 - (int64_t)T1;
422
    if (((tmp ^ T1) & (tmp ^ T0)) >> 63) {
423
        /* operands of different sign, first operand and result different sign */
424
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
425
    }
426
    RETURN();
427
}
428

    
429
void op_dmul (void)
430
{
431
    T0 = (int64_t)T0 * (int64_t)T1;
432
    RETURN();
433
}
434

    
435
#if TARGET_LONG_BITS > HOST_LONG_BITS
436
/* Those might call libgcc functions.  */
437
void op_ddiv (void)
438
{
439
    do_ddiv();
440
    RETURN();
441
}
442

    
443
void op_ddivu (void)
444
{
445
    do_ddivu();
446
    RETURN();
447
}
448
#else
449
void op_ddiv (void)
450
{
451
    if (T1 != 0) {
452
        env->LO = (int64_t)T0 / (int64_t)T1;
453
        env->HI = (int64_t)T0 % (int64_t)T1;
454
    }
455
    RETURN();
456
}
457

    
458
void op_ddivu (void)
459
{
460
    if (T1 != 0) {
461
        env->LO = T0 / T1;
462
        env->HI = T0 % T1;
463
    }
464
    RETURN();
465
}
466
#endif
467
#endif /* MIPS_HAS_MIPS64 */
468

    
469
/* Logical */
470
void op_and (void)
471
{
472
    T0 &= T1;
473
    RETURN();
474
}
475

    
476
void op_nor (void)
477
{
478
    T0 = ~(T0 | T1);
479
    RETURN();
480
}
481

    
482
void op_or (void)
483
{
484
    T0 |= T1;
485
    RETURN();
486
}
487

    
488
void op_xor (void)
489
{
490
    T0 ^= T1;
491
    RETURN();
492
}
493

    
494
void op_sll (void)
495
{
496
    T0 = (int32_t)((uint32_t)T0 << (uint32_t)T1);
497
    RETURN();
498
}
499

    
500
void op_sra (void)
501
{
502
    T0 = (int32_t)((int32_t)T0 >> (uint32_t)T1);
503
    RETURN();
504
}
505

    
506
void op_srl (void)
507
{
508
    T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1);
509
    RETURN();
510
}
511

    
512
void op_rotr (void)
513
{
514
    target_ulong tmp;
515

    
516
    if (T1) {
517
       tmp = (int32_t)((uint32_t)T0 << (0x20 - (uint32_t)T1));
518
       T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1) | tmp;
519
    } else
520
       T0 = T1;
521
    RETURN();
522
}
523

    
524
void op_sllv (void)
525
{
526
    T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F));
527
    RETURN();
528
}
529

    
530
void op_srav (void)
531
{
532
    T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F));
533
    RETURN();
534
}
535

    
536
void op_srlv (void)
537
{
538
    T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F));
539
    RETURN();
540
}
541

    
542
void op_rotrv (void)
543
{
544
    target_ulong tmp;
545

    
546
    T0 &= 0x1F;
547
    if (T0) {
548
       tmp = (int32_t)((uint32_t)T1 << (0x20 - T0));
549
       T0 = (int32_t)((uint32_t)T1 >> T0) | tmp;
550
    } else
551
       T0 = T1;
552
    RETURN();
553
}
554

    
555
void op_clo (void)
556
{
557
    int n;
558

    
559
    if (T0 == ~((target_ulong)0)) {
560
        T0 = 32;
561
    } else {
562
        for (n = 0; n < 32; n++) {
563
            if (!(T0 & (1 << 31)))
564
                break;
565
            T0 = T0 << 1;
566
        }
567
        T0 = n;
568
    }
569
    RETURN();
570
}
571

    
572
void op_clz (void)
573
{
574
    int n;
575

    
576
    if (T0 == 0) {
577
        T0 = 32;
578
    } else {
579
        for (n = 0; n < 32; n++) {
580
            if (T0 & (1 << 31))
581
                break;
582
            T0 = T0 << 1;
583
        }
584
        T0 = n;
585
    }
586
    RETURN();
587
}
588

    
589
#ifdef MIPS_HAS_MIPS64
590

    
591
#if TARGET_LONG_BITS > HOST_LONG_BITS
592
/* Those might call libgcc functions.  */
593
void op_dsll (void)
594
{
595
    CALL_FROM_TB0(do_dsll);
596
    RETURN();
597
}
598

    
599
void op_dsll32 (void)
600
{
601
    CALL_FROM_TB0(do_dsll32);
602
    RETURN();
603
}
604

    
605
void op_dsra (void)
606
{
607
    CALL_FROM_TB0(do_dsra);
608
    RETURN();
609
}
610

    
611
void op_dsra32 (void)
612
{
613
    CALL_FROM_TB0(do_dsra32);
614
    RETURN();
615
}
616

    
617
void op_dsrl (void)
618
{
619
    CALL_FROM_TB0(do_dsrl);
620
    RETURN();
621
}
622

    
623
void op_dsrl32 (void)
624
{
625
    CALL_FROM_TB0(do_dsrl32);
626
    RETURN();
627
}
628

    
629
void op_drotr (void)
630
{
631
    CALL_FROM_TB0(do_drotr);
632
    RETURN();
633
}
634

    
635
void op_drotr32 (void)
636
{
637
    CALL_FROM_TB0(do_drotr32);
638
    RETURN();
639
}
640

    
641
void op_dsllv (void)
642
{
643
    CALL_FROM_TB0(do_dsllv);
644
    RETURN();
645
}
646

    
647
void op_dsrav (void)
648
{
649
    CALL_FROM_TB0(do_dsrav);
650
    RETURN();
651
}
652

    
653
void op_dsrlv (void)
654
{
655
    CALL_FROM_TB0(do_dsrlv);
656
    RETURN();
657
}
658

    
659
void op_drotrv (void)
660
{
661
    CALL_FROM_TB0(do_drotrv);
662
    RETURN();
663
}
664

    
665
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
666

    
667
void op_dsll (void)
668
{
669
    T0 = T0 << T1;
670
    RETURN();
671
}
672

    
673
void op_dsll32 (void)
674
{
675
    T0 = T0 << (T1 + 32);
676
    RETURN();
677
}
678

    
679
void op_dsra (void)
680
{
681
    T0 = (int64_t)T0 >> T1;
682
    RETURN();
683
}
684

    
685
void op_dsra32 (void)
686
{
687
    T0 = (int64_t)T0 >> (T1 + 32);
688
    RETURN();
689
}
690

    
691
void op_dsrl (void)
692
{
693
    T0 = T0 >> T1;
694
    RETURN();
695
}
696

    
697
void op_dsrl32 (void)
698
{
699
    T0 = T0 >> (T1 + 32);
700
    RETURN();
701
}
702

    
703
void op_drotr (void)
704
{
705
    target_ulong tmp;
706

    
707
    if (T1) {
708
       tmp = T0 << (0x40 - T1);
709
       T0 = (T0 >> T1) | tmp;
710
    } else
711
       T0 = T1;
712
    RETURN();
713
}
714

    
715
void op_drotr32 (void)
716
{
717
    target_ulong tmp;
718

    
719
    if (T1) {
720
       tmp = T0 << (0x40 - (32 + T1));
721
       T0 = (T0 >> (32 + T1)) | tmp;
722
    } else
723
       T0 = T1;
724
    RETURN();
725
}
726

    
727
void op_dsllv (void)
728
{
729
    T0 = T1 << (T0 & 0x3F);
730
    RETURN();
731
}
732

    
733
void op_dsrav (void)
734
{
735
    T0 = (int64_t)T1 >> (T0 & 0x3F);
736
    RETURN();
737
}
738

    
739
void op_dsrlv (void)
740
{
741
    T0 = T1 >> (T0 & 0x3F);
742
    RETURN();
743
}
744

    
745
void op_drotrv (void)
746
{
747
    target_ulong tmp;
748

    
749
    T0 &= 0x3F;
750
    if (T0) {
751
       tmp = T1 << (0x40 - T0);
752
       T0 = (T1 >> T0) | tmp;
753
    } else
754
       T0 = T1;
755
    RETURN();
756
}
757
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
758

    
759
void op_dclo (void)
760
{
761
    int n;
762

    
763
    if (T0 == ~((target_ulong)0)) {
764
        T0 = 64;
765
    } else {
766
        for (n = 0; n < 64; n++) {
767
            if (!(T0 & (1ULL << 63)))
768
                break;
769
            T0 = T0 << 1;
770
        }
771
        T0 = n;
772
    }
773
    RETURN();
774
}
775

    
776
void op_dclz (void)
777
{
778
    int n;
779

    
780
    if (T0 == 0) {
781
        T0 = 64;
782
    } else {
783
        for (n = 0; n < 64; n++) {
784
            if (T0 & (1ULL << 63))
785
                break;
786
            T0 = T0 << 1;
787
        }
788
        T0 = n;
789
    }
790
    RETURN();
791
}
792
#endif
793

    
794
/* 64 bits arithmetic */
795
#if TARGET_LONG_BITS > HOST_LONG_BITS
796
void op_mult (void)
797
{
798
    CALL_FROM_TB0(do_mult);
799
    RETURN();
800
}
801

    
802
void op_multu (void)
803
{
804
    CALL_FROM_TB0(do_multu);
805
    RETURN();
806
}
807

    
808
void op_madd (void)
809
{
810
    CALL_FROM_TB0(do_madd);
811
    RETURN();
812
}
813

    
814
void op_maddu (void)
815
{
816
    CALL_FROM_TB0(do_maddu);
817
    RETURN();
818
}
819

    
820
void op_msub (void)
821
{
822
    CALL_FROM_TB0(do_msub);
823
    RETURN();
824
}
825

    
826
void op_msubu (void)
827
{
828
    CALL_FROM_TB0(do_msubu);
829
    RETURN();
830
}
831

    
832
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
833

    
834
static inline uint64_t get_HILO (void)
835
{
836
    return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO);
837
}
838

    
839
static inline void set_HILO (uint64_t HILO)
840
{
841
    env->LO = (int32_t)(HILO & 0xFFFFFFFF);
842
    env->HI = (int32_t)(HILO >> 32);
843
}
844

    
845
void op_mult (void)
846
{
847
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
848
    RETURN();
849
}
850

    
851
void op_multu (void)
852
{
853
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
854
    RETURN();
855
}
856

    
857
void op_madd (void)
858
{
859
    int64_t tmp;
860

    
861
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
862
    set_HILO((int64_t)get_HILO() + tmp);
863
    RETURN();
864
}
865

    
866
void op_maddu (void)
867
{
868
    uint64_t tmp;
869

    
870
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
871
    set_HILO(get_HILO() + tmp);
872
    RETURN();
873
}
874

    
875
void op_msub (void)
876
{
877
    int64_t tmp;
878

    
879
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
880
    set_HILO((int64_t)get_HILO() - tmp);
881
    RETURN();
882
}
883

    
884
void op_msubu (void)
885
{
886
    uint64_t tmp;
887

    
888
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
889
    set_HILO(get_HILO() - tmp);
890
    RETURN();
891
}
892
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
893

    
894
#ifdef MIPS_HAS_MIPS64
895
void op_dmult (void)
896
{
897
    CALL_FROM_TB0(do_dmult);
898
    RETURN();
899
}
900

    
901
void op_dmultu (void)
902
{
903
    CALL_FROM_TB0(do_dmultu);
904
    RETURN();
905
}
906
#endif
907

    
908
/* Conditional moves */
909
void op_movn (void)
910
{
911
    if (T1 != 0)
912
        env->gpr[PARAM1] = T0;
913
    RETURN();
914
}
915

    
916
void op_movz (void)
917
{
918
    if (T1 == 0)
919
        env->gpr[PARAM1] = T0;
920
    RETURN();
921
}
922

    
923
void op_movf (void)
924
{
925
    if (!(env->fcr31 & PARAM1))
926
        env->gpr[PARAM2] = env->gpr[PARAM3];
927
    RETURN();
928
}
929

    
930
void op_movt (void)
931
{
932
    if (env->fcr31 & PARAM1)
933
        env->gpr[PARAM2] = env->gpr[PARAM3];
934
    RETURN();
935
}
936

    
937
/* Tests */
938
#define OP_COND(name, cond) \
939
void glue(op_, name) (void) \
940
{                           \
941
    if (cond) {             \
942
        T0 = 1;             \
943
    } else {                \
944
        T0 = 0;             \
945
    }                       \
946
    RETURN();               \
947
}
948

    
949
OP_COND(eq, T0 == T1);
950
OP_COND(ne, T0 != T1);
951
OP_COND(ge, (int32_t)T0 >= (int32_t)T1);
952
OP_COND(geu, T0 >= T1);
953
OP_COND(lt, (int32_t)T0 < (int32_t)T1);
954
OP_COND(ltu, T0 < T1);
955
OP_COND(gez, (int32_t)T0 >= 0);
956
OP_COND(gtz, (int32_t)T0 > 0);
957
OP_COND(lez, (int32_t)T0 <= 0);
958
OP_COND(ltz, (int32_t)T0 < 0);
959

    
960
/* Branches */
961
//#undef USE_DIRECT_JUMP
962

    
963
void OPPROTO op_goto_tb0(void)
964
{
965
    GOTO_TB(op_goto_tb0, PARAM1, 0);
966
    RETURN();
967
}
968

    
969
void OPPROTO op_goto_tb1(void)
970
{
971
    GOTO_TB(op_goto_tb1, PARAM1, 1);
972
    RETURN();
973
}
974

    
975
/* Branch to register */
976
void op_save_breg_target (void)
977
{
978
    env->btarget = T2;
979
    RETURN();
980
}
981

    
982
void op_restore_breg_target (void)
983
{
984
    T2 = env->btarget;
985
    RETURN();
986
}
987

    
988
void op_breg (void)
989
{
990
    env->PC = T2;
991
    RETURN();
992
}
993

    
994
void op_save_btarget (void)
995
{
996
    env->btarget = PARAM1;
997
    RETURN();
998
}
999

    
1000
/* Conditional branch */
1001
void op_set_bcond (void)
1002
{
1003
    T2 = T0;
1004
    RETURN();
1005
}
1006

    
1007
void op_save_bcond (void)
1008
{
1009
    env->bcond = T2;
1010
    RETURN();
1011
}
1012

    
1013
void op_restore_bcond (void)
1014
{
1015
    T2 = env->bcond;
1016
    RETURN();
1017
}
1018

    
1019
void op_jnz_T2 (void)
1020
{
1021
    if (T2)
1022
        GOTO_LABEL_PARAM(1);
1023
    RETURN();
1024
}
1025

    
1026
/* CP0 functions */
1027
void op_mfc0_index (void)
1028
{
1029
    T0 = env->CP0_Index;
1030
    RETURN();
1031
}
1032

    
1033
void op_mfc0_random (void)
1034
{
1035
    CALL_FROM_TB0(do_mfc0_random);
1036
    RETURN();
1037
}
1038

    
1039
void op_mfc0_entrylo0 (void)
1040
{
1041
    T0 = (int32_t)env->CP0_EntryLo0;
1042
    RETURN();
1043
}
1044

    
1045
void op_mfc0_entrylo1 (void)
1046
{
1047
    T0 = (int32_t)env->CP0_EntryLo1;
1048
    RETURN();
1049
}
1050

    
1051
void op_mfc0_context (void)
1052
{
1053
    T0 = (int32_t)env->CP0_Context;
1054
    RETURN();
1055
}
1056

    
1057
void op_mfc0_pagemask (void)
1058
{
1059
    T0 = env->CP0_PageMask;
1060
    RETURN();
1061
}
1062

    
1063
void op_mfc0_pagegrain (void)
1064
{
1065
    T0 = env->CP0_PageGrain;
1066
    RETURN();
1067
}
1068

    
1069
void op_mfc0_wired (void)
1070
{
1071
    T0 = env->CP0_Wired;
1072
    RETURN();
1073
}
1074

    
1075
void op_mfc0_hwrena (void)
1076
{
1077
    T0 = env->CP0_HWREna;
1078
    RETURN();
1079
}
1080

    
1081
void op_mfc0_badvaddr (void)
1082
{
1083
    T0 = (int32_t)env->CP0_BadVAddr;
1084
    RETURN();
1085
}
1086

    
1087
void op_mfc0_count (void)
1088
{
1089
    CALL_FROM_TB0(do_mfc0_count);
1090
    RETURN();
1091
}
1092

    
1093
void op_mfc0_entryhi (void)
1094
{
1095
    T0 = (int32_t)env->CP0_EntryHi;
1096
    RETURN();
1097
}
1098

    
1099
void op_mfc0_compare (void)
1100
{
1101
    T0 = env->CP0_Compare;
1102
    RETURN();
1103
}
1104

    
1105
void op_mfc0_status (void)
1106
{
1107
    T0 = env->CP0_Status;
1108
    if (env->hflags & MIPS_HFLAG_UM)
1109
        T0 |= (1 << CP0St_UM);
1110
    if (env->hflags & MIPS_HFLAG_ERL)
1111
        T0 |= (1 << CP0St_ERL);
1112
    if (env->hflags & MIPS_HFLAG_EXL)
1113
        T0 |= (1 << CP0St_EXL);
1114
    RETURN();
1115
}
1116

    
1117
void op_mfc0_intctl (void)
1118
{
1119
    T0 = env->CP0_IntCtl;
1120
    RETURN();
1121
}
1122

    
1123
void op_mfc0_srsctl (void)
1124
{
1125
    T0 = env->CP0_SRSCtl;
1126
    RETURN();
1127
}
1128

    
1129
void op_mfc0_srsmap (void)
1130
{
1131
    T0 = env->CP0_SRSMap;
1132
    RETURN();
1133
}
1134

    
1135
void op_mfc0_cause (void)
1136
{
1137
    T0 = env->CP0_Cause;
1138
    RETURN();
1139
}
1140

    
1141
void op_mfc0_epc (void)
1142
{
1143
    T0 = (int32_t)env->CP0_EPC;
1144
    RETURN();
1145
}
1146

    
1147
void op_mfc0_prid (void)
1148
{
1149
    T0 = env->CP0_PRid;
1150
    RETURN();
1151
}
1152

    
1153
void op_mfc0_ebase (void)
1154
{
1155
    T0 = env->CP0_EBase;
1156
    RETURN();
1157
}
1158

    
1159
void op_mfc0_config0 (void)
1160
{
1161
    T0 = env->CP0_Config0;
1162
    RETURN();
1163
}
1164

    
1165
void op_mfc0_config1 (void)
1166
{
1167
    T0 = env->CP0_Config1;
1168
    RETURN();
1169
}
1170

    
1171
void op_mfc0_config2 (void)
1172
{
1173
    T0 = env->CP0_Config2;
1174
    RETURN();
1175
}
1176

    
1177
void op_mfc0_config3 (void)
1178
{
1179
    T0 = env->CP0_Config3;
1180
    RETURN();
1181
}
1182

    
1183
void op_mfc0_config6 (void)
1184
{
1185
    T0 = env->CP0_Config6;
1186
    RETURN();
1187
}
1188

    
1189
void op_mfc0_config7 (void)
1190
{
1191
    T0 = env->CP0_Config7;
1192
    RETURN();
1193
}
1194

    
1195
void op_mfc0_lladdr (void)
1196
{
1197
    T0 = (int32_t)env->CP0_LLAddr >> 4;
1198
    RETURN();
1199
}
1200

    
1201
void op_mfc0_watchlo0 (void)
1202
{
1203
    T0 = (int32_t)env->CP0_WatchLo;
1204
    RETURN();
1205
}
1206

    
1207
void op_mfc0_watchhi0 (void)
1208
{
1209
    T0 = env->CP0_WatchHi;
1210
    RETURN();
1211
}
1212

    
1213
void op_mfc0_xcontext (void)
1214
{
1215
    T0 = (int32_t)env->CP0_XContext;
1216
    RETURN();
1217
}
1218

    
1219
void op_mfc0_framemask (void)
1220
{
1221
    T0 = env->CP0_Framemask;
1222
    RETURN();
1223
}
1224

    
1225
void op_mfc0_debug (void)
1226
{
1227
    T0 = env->CP0_Debug;
1228
    if (env->hflags & MIPS_HFLAG_DM)
1229
        T0 |= 1 << CP0DB_DM;
1230
    RETURN();
1231
}
1232

    
1233
void op_mfc0_depc (void)
1234
{
1235
    T0 = (int32_t)env->CP0_DEPC;
1236
    RETURN();
1237
}
1238

    
1239
void op_mfc0_performance0 (void)
1240
{
1241
    T0 = env->CP0_Performance0;
1242
    RETURN();
1243
}
1244

    
1245
void op_mfc0_taglo (void)
1246
{
1247
    T0 = env->CP0_TagLo;
1248
    RETURN();
1249
}
1250

    
1251
void op_mfc0_datalo (void)
1252
{
1253
    T0 = env->CP0_DataLo;
1254
    RETURN();
1255
}
1256

    
1257
void op_mfc0_taghi (void)
1258
{
1259
    T0 = env->CP0_TagHi;
1260
    RETURN();
1261
}
1262

    
1263
void op_mfc0_datahi (void)
1264
{
1265
    T0 = env->CP0_DataHi;
1266
    RETURN();
1267
}
1268

    
1269
void op_mfc0_errorepc (void)
1270
{
1271
    T0 = (int32_t)env->CP0_ErrorEPC;
1272
    RETURN();
1273
}
1274

    
1275
void op_mfc0_desave (void)
1276
{
1277
    T0 = env->CP0_DESAVE;
1278
    RETURN();
1279
}
1280

    
1281
void op_mtc0_index (void)
1282
{
1283
    env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 & (MIPS_TLB_NB - 1));
1284
    RETURN();
1285
}
1286

    
1287
void op_mtc0_entrylo0 (void)
1288
{
1289
    /* Large physaddr not implemented */
1290
    /* 1k pages not implemented */
1291
    env->CP0_EntryLo0 = (int32_t)T0 & 0x3FFFFFFF;
1292
    RETURN();
1293
}
1294

    
1295
void op_mtc0_entrylo1 (void)
1296
{
1297
    /* Large physaddr not implemented */
1298
    /* 1k pages not implemented */
1299
    env->CP0_EntryLo1 = (int32_t)T0 & 0x3FFFFFFF;
1300
    RETURN();
1301
}
1302

    
1303
void op_mtc0_context (void)
1304
{
1305
    env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0);
1306
    RETURN();
1307
}
1308

    
1309
void op_mtc0_pagemask (void)
1310
{
1311
    /* 1k pages not implemented */
1312
    env->CP0_PageMask = T0 & 0x1FFFE000;
1313
    RETURN();
1314
}
1315

    
1316
void op_mtc0_pagegrain (void)
1317
{
1318
    /* SmartMIPS not implemented */
1319
    /* Large physaddr not implemented */
1320
    /* 1k pages not implemented */
1321
    env->CP0_PageGrain = 0;
1322
    RETURN();
1323
}
1324

    
1325
void op_mtc0_wired (void)
1326
{
1327
    env->CP0_Wired = T0 & (MIPS_TLB_NB - 1);
1328
    RETURN();
1329
}
1330

    
1331
void op_mtc0_hwrena (void)
1332
{
1333
    env->CP0_HWREna = T0 & 0x0000000F;
1334
    RETURN();
1335
}
1336

    
1337
void op_mtc0_count (void)
1338
{
1339
    CALL_FROM_TB2(cpu_mips_store_count, env, T0);
1340
    RETURN();
1341
}
1342

    
1343
void op_mtc0_entryhi (void)
1344
{
1345
    target_ulong old, val;
1346

    
1347
    /* 1k pages not implemented */
1348
    /* Ignore MIPS64 TLB for now */
1349
    val = (target_ulong)(int32_t)T0 & ~(target_ulong)0x1F00;
1350
    old = env->CP0_EntryHi;
1351
    env->CP0_EntryHi = val;
1352
    /* If the ASID changes, flush qemu's TLB.  */
1353
    if ((old & 0xFF) != (val & 0xFF))
1354
        CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1);
1355
    RETURN();
1356
}
1357

    
1358
void op_mtc0_compare (void)
1359
{
1360
    CALL_FROM_TB2(cpu_mips_store_compare, env, T0);
1361
    RETURN();
1362
}
1363

    
1364
void op_mtc0_status (void)
1365
{
1366
    uint32_t val, old;
1367

    
1368
    val = (int32_t)T0 & 0xFA78FF01;
1369
    old = env->CP0_Status;
1370
    if (T0 & (1 << CP0St_UM))
1371
        env->hflags |= MIPS_HFLAG_UM;
1372
    else
1373
        env->hflags &= ~MIPS_HFLAG_UM;
1374
    if (T0 & (1 << CP0St_ERL))
1375
        env->hflags |= MIPS_HFLAG_ERL;
1376
    else
1377
        env->hflags &= ~MIPS_HFLAG_ERL;
1378
    if (T0 & (1 << CP0St_EXL))
1379
        env->hflags |= MIPS_HFLAG_EXL;
1380
    else
1381
        env->hflags &= ~MIPS_HFLAG_EXL;
1382
    env->CP0_Status = val;
1383
    if (loglevel & CPU_LOG_TB_IN_ASM)
1384
       CALL_FROM_TB2(do_mtc0_status_debug, old, val);
1385
    CALL_FROM_TB1(cpu_mips_update_irq, env);
1386
    RETURN();
1387
}
1388

    
1389
void op_mtc0_intctl (void)
1390
{
1391
    /* vectored interrupts not implemented */
1392
    env->CP0_IntCtl = 0;
1393
    RETURN();
1394
}
1395

    
1396
void op_mtc0_srsctl (void)
1397
{
1398
    /* shadow registers not implemented */
1399
    env->CP0_SRSCtl = 0;
1400
    RETURN();
1401
}
1402

    
1403
void op_mtc0_srsmap (void)
1404
{
1405
    /* shadow registers not implemented */
1406
    env->CP0_SRSMap = 0;
1407
    RETURN();
1408
}
1409

    
1410
void op_mtc0_cause (void)
1411
{
1412
    uint32_t mask = 0x00C00300;
1413

    
1414
    if ((env->CP0_Config0 & (0x7 << CP0C0_AR)) == (1 << CP0C0_AR))
1415
        mask |= 1 << CP0Ca_DC;
1416

    
1417
    env->CP0_Cause = (env->CP0_Cause & 0xFCC0FF7C) | (T0 & mask);
1418

    
1419
    /* Handle the software interrupt as an hardware one, as they
1420
       are very similar */
1421
    if (T0 & CP0Ca_IP_mask) {
1422
        CALL_FROM_TB1(cpu_mips_update_irq, env);
1423
    }
1424
    RETURN();
1425
}
1426

    
1427
void op_mtc0_epc (void)
1428
{
1429
    env->CP0_EPC = (int32_t)T0;
1430
    RETURN();
1431
}
1432

    
1433
void op_mtc0_ebase (void)
1434
{
1435
    /* vectored interrupts not implemented */
1436
    /* Multi-CPU not implemented */
1437
    env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000);
1438
    RETURN();
1439
}
1440

    
1441
void op_mtc0_config0 (void)
1442
{
1443
#if defined(MIPS_USES_R4K_TLB)
1444
     /* Fixed mapping MMU not implemented */
1445
    env->CP0_Config0 = (env->CP0_Config0 & 0x8017FF88) | (T0 & 0x00000001);
1446
#else
1447
    env->CP0_Config0 = (env->CP0_Config0 & 0xFE17FF88) | (T0 & 0x00000001);
1448
#endif
1449
    RETURN();
1450
}
1451

    
1452
void op_mtc0_config2 (void)
1453
{
1454
    /* tertiary/secondary caches not implemented */
1455
    env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1456
    RETURN();
1457
}
1458

    
1459
void op_mtc0_watchlo0 (void)
1460
{
1461
    env->CP0_WatchLo = (int32_t)T0;
1462
    RETURN();
1463
}
1464

    
1465
void op_mtc0_watchhi0 (void)
1466
{
1467
    env->CP0_WatchHi = T0 & 0x40FF0FF8;
1468
    RETURN();
1469
}
1470

    
1471
void op_mtc0_xcontext (void)
1472
{
1473
    env->CP0_XContext = (int32_t)T0; /* XXX */
1474
    RETURN();
1475
}
1476

    
1477
void op_mtc0_framemask (void)
1478
{
1479
    env->CP0_Framemask = T0; /* XXX */
1480
    RETURN();
1481
}
1482

    
1483
void op_mtc0_debug (void)
1484
{
1485
    env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120);
1486
    if (T0 & (1 << CP0DB_DM))
1487
        env->hflags |= MIPS_HFLAG_DM;
1488
    else
1489
        env->hflags &= ~MIPS_HFLAG_DM;
1490
    RETURN();
1491
}
1492

    
1493
void op_mtc0_depc (void)
1494
{
1495
    env->CP0_DEPC = (int32_t)T0;
1496
    RETURN();
1497
}
1498

    
1499
void op_mtc0_performance0 (void)
1500
{
1501
    env->CP0_Performance0 = T0; /* XXX */
1502
    RETURN();
1503
}
1504

    
1505
void op_mtc0_taglo (void)
1506
{
1507
    env->CP0_TagLo = T0 & 0xFFFFFCF6;
1508
    RETURN();
1509
}
1510

    
1511
void op_mtc0_datalo (void)
1512
{
1513
    env->CP0_DataLo = T0; /* XXX */
1514
    RETURN();
1515
}
1516

    
1517
void op_mtc0_taghi (void)
1518
{
1519
    env->CP0_TagHi = T0; /* XXX */
1520
    RETURN();
1521
}
1522

    
1523
void op_mtc0_datahi (void)
1524
{
1525
    env->CP0_DataHi = T0; /* XXX */
1526
    RETURN();
1527
}
1528

    
1529
void op_mtc0_errorepc (void)
1530
{
1531
    env->CP0_ErrorEPC = (int32_t)T0;
1532
    RETURN();
1533
}
1534

    
1535
void op_mtc0_desave (void)
1536
{
1537
    env->CP0_DESAVE = T0;
1538
    RETURN();
1539
}
1540

    
1541
void op_dmfc0_entrylo0 (void)
1542
{
1543
    T0 = env->CP0_EntryLo0;
1544
    RETURN();
1545
}
1546

    
1547
void op_dmfc0_entrylo1 (void)
1548
{
1549
    T0 = env->CP0_EntryLo1;
1550
    RETURN();
1551
}
1552

    
1553
void op_dmfc0_context (void)
1554
{
1555
    T0 = env->CP0_Context;
1556
    RETURN();
1557
}
1558

    
1559
void op_dmfc0_badvaddr (void)
1560
{
1561
    T0 = env->CP0_BadVAddr;
1562
    RETURN();
1563
}
1564

    
1565
void op_dmfc0_entryhi (void)
1566
{
1567
    T0 = env->CP0_EntryHi;
1568
    RETURN();
1569
}
1570

    
1571
void op_dmfc0_epc (void)
1572
{
1573
    T0 = env->CP0_EPC;
1574
    RETURN();
1575
}
1576

    
1577
void op_dmfc0_lladdr (void)
1578
{
1579
    T0 = env->CP0_LLAddr >> 4;
1580
    RETURN();
1581
}
1582

    
1583
void op_dmfc0_watchlo0 (void)
1584
{
1585
    T0 = env->CP0_WatchLo;
1586
    RETURN();
1587
}
1588

    
1589
void op_dmfc0_xcontext (void)
1590
{
1591
    T0 = env->CP0_XContext;
1592
    RETURN();
1593
}
1594

    
1595
void op_dmfc0_depc (void)
1596
{
1597
    T0 = env->CP0_DEPC;
1598
    RETURN();
1599
}
1600

    
1601
void op_dmfc0_errorepc (void)
1602
{
1603
    T0 = env->CP0_ErrorEPC;
1604
    RETURN();
1605
}
1606

    
1607
void op_dmtc0_entrylo0 (void)
1608
{
1609
    /* Large physaddr not implemented */
1610
    /* 1k pages not implemented */
1611
    env->CP0_EntryLo0 = T0 & 0x3FFFFFFF;
1612
    RETURN();
1613
}
1614

    
1615
void op_dmtc0_entrylo1 (void)
1616
{
1617
    /* Large physaddr not implemented */
1618
    /* 1k pages not implemented */
1619
    env->CP0_EntryLo1 = T0 & 0x3FFFFFFF;
1620
    RETURN();
1621
}
1622

    
1623
void op_dmtc0_context (void)
1624
{
1625
    env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0);
1626
    RETURN();
1627
}
1628

    
1629
void op_dmtc0_epc (void)
1630
{
1631
    env->CP0_EPC = T0;
1632
    RETURN();
1633
}
1634

    
1635
void op_dmtc0_watchlo0 (void)
1636
{
1637
    env->CP0_WatchLo = T0;
1638
    RETURN();
1639
}
1640

    
1641
void op_dmtc0_xcontext (void)
1642
{
1643
    env->CP0_XContext = T0; /* XXX */
1644
    RETURN();
1645
}
1646

    
1647
void op_dmtc0_depc (void)
1648
{
1649
    env->CP0_DEPC = T0;
1650
    RETURN();
1651
}
1652

    
1653
void op_dmtc0_errorepc (void)
1654
{
1655
    env->CP0_ErrorEPC = T0;
1656
    RETURN();
1657
}
1658

    
1659
#if 0
1660
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
1661
#else
1662
# define DEBUG_FPU_STATE() do { } while(0)
1663
#endif
1664

    
1665
void op_cp1_enabled(void)
1666
{
1667
    if (!(env->CP0_Status & (1 << CP0St_CU1))) {
1668
        CALL_FROM_TB2(do_raise_exception_direct_err, EXCP_CpU, 1);
1669
    }
1670
    RETURN();
1671
}
1672

    
1673
/* CP1 functions */
1674
void op_cfc1 (void)
1675
{
1676
    if (T1 == 0) {
1677
        T0 = env->fcr0;
1678
    }
1679
    else {
1680
        /* fetch fcr31, masking unused bits */
1681
        T0 = env->fcr31 & 0x0183FFFF;
1682
    }
1683
    DEBUG_FPU_STATE();
1684
    RETURN();
1685
}
1686

    
1687
/* convert MIPS rounding mode in FCR31 to IEEE library */
1688
unsigned int ieee_rm[] = { 
1689
    float_round_nearest_even,
1690
    float_round_to_zero,
1691
    float_round_up,
1692
    float_round_down
1693
};
1694

    
1695
#define RESTORE_ROUNDING_MODE \
1696
    set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
1697

    
1698
void op_ctc1 (void)
1699
{
1700
    if (T1 == 0) {
1701
        /* XXX should this throw an exception?
1702
         * don't write to FCR0.
1703
         * env->fcr0 = T0; 
1704
         */
1705
    }
1706
    else {
1707
        /* store new fcr31, masking unused bits */  
1708
        env->fcr31 = T0 & 0x0183FFFF;
1709

    
1710
        /* set rounding mode */
1711
        RESTORE_ROUNDING_MODE;
1712

    
1713
#ifndef CONFIG_SOFTFLOAT
1714
        /* no floating point exception for native float */
1715
        SET_FP_ENABLE(env->fcr31, 0);
1716
#endif
1717
    }
1718
    DEBUG_FPU_STATE();
1719
    RETURN();
1720
}
1721

    
1722
void op_mfc1 (void)
1723
{
1724
    T0 = WT0;
1725
    DEBUG_FPU_STATE();
1726
    RETURN();
1727
}
1728

    
1729
void op_mtc1 (void)
1730
{
1731
    WT0 = T0;
1732
    DEBUG_FPU_STATE();
1733
    RETURN();
1734
}
1735

    
1736
/* Float support.
1737
   Single precition routines have a "s" suffix, double precision a
1738
   "d" suffix.  */
1739

    
1740
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
1741

    
1742
FLOAT_OP(cvtd, s)
1743
{
1744
    FDT2 = float32_to_float64(FST0, &env->fp_status);
1745
    DEBUG_FPU_STATE();
1746
    RETURN();
1747
}
1748
FLOAT_OP(cvtd, w)
1749
{
1750
    FDT2 = int32_to_float64(WT0, &env->fp_status);
1751
    DEBUG_FPU_STATE();
1752
    RETURN();
1753
}
1754
FLOAT_OP(cvts, d)
1755
{
1756
    FST2 = float64_to_float32(FDT0, &env->fp_status);
1757
    DEBUG_FPU_STATE();
1758
    RETURN();
1759
}
1760
FLOAT_OP(cvts, w)
1761
{
1762
    FST2 = int32_to_float32(WT0, &env->fp_status);
1763
    DEBUG_FPU_STATE();
1764
    RETURN();
1765
}
1766
FLOAT_OP(cvtw, s)
1767
{
1768
    WT2 = float32_to_int32(FST0, &env->fp_status);
1769
    DEBUG_FPU_STATE();
1770
    RETURN();
1771
}
1772
FLOAT_OP(cvtw, d)
1773
{
1774
    WT2 = float64_to_int32(FDT0, &env->fp_status);
1775
    DEBUG_FPU_STATE();
1776
    RETURN();
1777
}
1778

    
1779
FLOAT_OP(roundw, d)
1780
{
1781
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
1782
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1783
    RESTORE_ROUNDING_MODE;
1784

    
1785
    DEBUG_FPU_STATE();
1786
    RETURN();
1787
}
1788
FLOAT_OP(roundw, s)
1789
{
1790
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
1791
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1792
    RESTORE_ROUNDING_MODE;
1793
    DEBUG_FPU_STATE();
1794
    RETURN();
1795
}
1796

    
1797
FLOAT_OP(truncw, d)
1798
{
1799
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
1800
    DEBUG_FPU_STATE();
1801
    RETURN();
1802
}
1803
FLOAT_OP(truncw, s)
1804
{
1805
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
1806
    DEBUG_FPU_STATE();
1807
    RETURN();
1808
}
1809

    
1810
FLOAT_OP(ceilw, d)
1811
{
1812
    set_float_rounding_mode(float_round_up, &env->fp_status);
1813
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1814
    RESTORE_ROUNDING_MODE;
1815

    
1816
    DEBUG_FPU_STATE();
1817
    RETURN();
1818
}
1819
FLOAT_OP(ceilw, s)
1820
{
1821
    set_float_rounding_mode(float_round_up, &env->fp_status);
1822
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1823
    RESTORE_ROUNDING_MODE;
1824
    DEBUG_FPU_STATE();
1825
    RETURN();
1826
}
1827

    
1828
FLOAT_OP(floorw, d)
1829
{
1830
    set_float_rounding_mode(float_round_down, &env->fp_status);
1831
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1832
    RESTORE_ROUNDING_MODE;
1833

    
1834
    DEBUG_FPU_STATE();
1835
    RETURN();
1836
}
1837
FLOAT_OP(floorw, s)
1838
{
1839
    set_float_rounding_mode(float_round_down, &env->fp_status);
1840
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1841
    RESTORE_ROUNDING_MODE;
1842
    DEBUG_FPU_STATE();
1843
    RETURN();
1844
}
1845

    
1846
/* binary operations */
1847
#define FLOAT_BINOP(name) \
1848
FLOAT_OP(name, d)         \
1849
{                         \
1850
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);    \
1851
    DEBUG_FPU_STATE();    \
1852
}                         \
1853
FLOAT_OP(name, s)         \
1854
{                         \
1855
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1856
    DEBUG_FPU_STATE();    \
1857
}
1858
FLOAT_BINOP(add)
1859
FLOAT_BINOP(sub)
1860
FLOAT_BINOP(mul)
1861
FLOAT_BINOP(div)
1862
#undef FLOAT_BINOP
1863

    
1864
/* unary operations, modifying fp status  */
1865
#define FLOAT_UNOP(name)  \
1866
FLOAT_OP(name, d)         \
1867
{                         \
1868
    FDT2 = float64_ ## name(FDT0, &env->fp_status);   \
1869
    DEBUG_FPU_STATE();    \
1870
}                         \
1871
FLOAT_OP(name, s)         \
1872
{                         \
1873
    FST2 = float32_ ## name(FST0, &env->fp_status);   \
1874
    DEBUG_FPU_STATE();    \
1875
}
1876
FLOAT_UNOP(sqrt)
1877
#undef FLOAT_UNOP
1878

    
1879
/* unary operations, not modifying fp status  */
1880
#define FLOAT_UNOP(name)  \
1881
FLOAT_OP(name, d)         \
1882
{                         \
1883
    FDT2 = float64_ ## name(FDT0);   \
1884
    DEBUG_FPU_STATE();    \
1885
}                         \
1886
FLOAT_OP(name, s)         \
1887
{                         \
1888
    FST2 = float32_ ## name(FST0);   \
1889
    DEBUG_FPU_STATE();    \
1890
}
1891
FLOAT_UNOP(abs)
1892
FLOAT_UNOP(chs)
1893
#undef FLOAT_UNOP
1894

    
1895
FLOAT_OP(mov, d)
1896
{
1897
    FDT2 = FDT0;
1898
    DEBUG_FPU_STATE();
1899
    RETURN();
1900
}
1901
FLOAT_OP(mov, s)
1902
{
1903
    FST2 = FST0;
1904
    DEBUG_FPU_STATE();
1905
    RETURN();
1906
}
1907

    
1908
#ifdef CONFIG_SOFTFLOAT
1909
#define clear_invalid() do {                                \
1910
    int flags = get_float_exception_flags(&env->fp_status); \
1911
    flags &= ~float_flag_invalid;                           \
1912
    set_float_exception_flags(flags, &env->fp_status);      \
1913
} while(0)
1914
#else
1915
#define clear_invalid() do { } while(0)
1916
#endif
1917

    
1918
extern void dump_fpu_s(CPUState *env);
1919

    
1920
#define FOP_COND(fmt, op, sig, cond)           \
1921
void op_cmp_ ## fmt ## _ ## op (void)          \
1922
{                                              \
1923
    if (cond)                                  \
1924
        SET_FP_COND(env->fcr31);               \
1925
    else                                       \
1926
        CLEAR_FP_COND(env->fcr31);             \
1927
    if (!sig)                                  \
1928
        clear_invalid();                       \
1929
    /*CALL_FROM_TB1(dump_fpu_s, env);*/ \
1930
    DEBUG_FPU_STATE();                         \
1931
    RETURN();                                  \
1932
}
1933

    
1934
int float64_is_unordered(float64 a, float64 b STATUS_PARAM)
1935
{
1936
    if (float64_is_nan(a) || float64_is_nan(b)) {
1937
        float_raise(float_flag_invalid, status);
1938
        return 1;
1939
    }
1940
    else {
1941
        return 0;
1942
    }
1943
}
1944

    
1945
FOP_COND(d, f,   0,                                                      0) 
1946
FOP_COND(d, un,  0, float64_is_unordered(FDT1, FDT0, &env->fp_status))
1947
FOP_COND(d, eq,  0,                                                      float64_eq(FDT0, FDT1, &env->fp_status))
1948
FOP_COND(d, ueq, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
1949
FOP_COND(d, olt, 0,                                                      float64_lt(FDT0, FDT1, &env->fp_status))
1950
FOP_COND(d, ult, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
1951
FOP_COND(d, ole, 0,                                                      float64_le(FDT0, FDT1, &env->fp_status))
1952
FOP_COND(d, ule, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
1953
/* NOTE: the comma operator will make "cond" to eval to false,
1954
 * but float*_is_unordered() is still called
1955
 */
1956
FOP_COND(d, sf,  1,                                                      (float64_is_unordered(FDT0, FDT1, &env->fp_status), 0))
1957
FOP_COND(d, ngle,1, float64_is_unordered(FDT1, FDT0, &env->fp_status))
1958
FOP_COND(d, seq, 1,                                                      float64_eq(FDT0, FDT1, &env->fp_status))
1959
FOP_COND(d, ngl, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
1960
FOP_COND(d, lt,  1,                                                      float64_lt(FDT0, FDT1, &env->fp_status))
1961
FOP_COND(d, nge, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
1962
FOP_COND(d, le,  1,                                                      float64_le(FDT0, FDT1, &env->fp_status))
1963
FOP_COND(d, ngt, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
1964

    
1965
flag float32_is_unordered(float32 a, float32 b STATUS_PARAM)
1966
{
1967
    extern flag float32_is_nan( float32 a );
1968
    if (float32_is_nan(a) || float32_is_nan(b)) {
1969
        float_raise(float_flag_invalid, status);
1970
        return 1;
1971
    }
1972
    else {
1973
        return 0;
1974
    }
1975
}
1976

    
1977
/* NOTE: the comma operator will make "cond" to eval to false,
1978
 * but float*_is_unordered() is still called
1979
 */
1980
FOP_COND(s, f,   0,                                                      0) 
1981
FOP_COND(s, un,  0, float32_is_unordered(FST1, FST0, &env->fp_status))
1982
FOP_COND(s, eq,  0,                                                      float32_eq(FST0, FST1, &env->fp_status))
1983
FOP_COND(s, ueq, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
1984
FOP_COND(s, olt, 0,                                                      float32_lt(FST0, FST1, &env->fp_status))
1985
FOP_COND(s, ult, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
1986
FOP_COND(s, ole, 0,                                                      float32_le(FST0, FST1, &env->fp_status))
1987
FOP_COND(s, ule, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
1988
/* NOTE: the comma operator will make "cond" to eval to false,
1989
 * but float*_is_unordered() is still called
1990
 */
1991
FOP_COND(s, sf,  1,                                                      (float32_is_unordered(FST0, FST1, &env->fp_status), 0))
1992
FOP_COND(s, ngle,1, float32_is_unordered(FST1, FST0, &env->fp_status))
1993
FOP_COND(s, seq, 1,                                                      float32_eq(FST0, FST1, &env->fp_status))
1994
FOP_COND(s, ngl, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
1995
FOP_COND(s, lt,  1,                                                      float32_lt(FST0, FST1, &env->fp_status))
1996
FOP_COND(s, nge, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
1997
FOP_COND(s, le,  1,                                                      float32_le(FST0, FST1, &env->fp_status))
1998
FOP_COND(s, ngt, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
1999

    
2000
void op_bc1f (void)
2001
{
2002
    T0 = ! IS_FP_COND_SET(env->fcr31);
2003
    DEBUG_FPU_STATE();
2004
    RETURN();
2005
}
2006

    
2007
void op_bc1t (void)
2008
{
2009
    T0 = IS_FP_COND_SET(env->fcr31);
2010
    DEBUG_FPU_STATE();
2011
    RETURN();
2012
}
2013

    
2014
#if defined(MIPS_USES_R4K_TLB)
2015
void op_tlbwi (void)
2016
{
2017
    CALL_FROM_TB0(do_tlbwi);
2018
    RETURN();
2019
}
2020

    
2021
void op_tlbwr (void)
2022
{
2023
    CALL_FROM_TB0(do_tlbwr);
2024
    RETURN();
2025
}
2026

    
2027
void op_tlbp (void)
2028
{
2029
    CALL_FROM_TB0(do_tlbp);
2030
    RETURN();
2031
}
2032

    
2033
void op_tlbr (void)
2034
{
2035
    CALL_FROM_TB0(do_tlbr);
2036
    RETURN();
2037
}
2038
#endif
2039

    
2040
/* Specials */
2041
#if defined (CONFIG_USER_ONLY)
2042
void op_tls_value (void)
2043
{
2044
  T0 = env->tls_value;
2045
}
2046
#endif
2047

    
2048
void op_pmon (void)
2049
{
2050
    CALL_FROM_TB1(do_pmon, PARAM1);
2051
    RETURN();
2052
}
2053

    
2054
void op_di (void)
2055
{
2056
    T0 = env->CP0_Status;
2057
    env->CP0_Status = T0 & ~(1 << CP0St_IE);
2058
    CALL_FROM_TB1(cpu_mips_update_irq, env);
2059
    RETURN();
2060
}
2061

    
2062
void op_ei (void)
2063
{
2064
    T0 = env->CP0_Status;
2065
    env->CP0_Status = T0 | (1 << CP0St_IE);
2066
    CALL_FROM_TB1(cpu_mips_update_irq, env);
2067
    RETURN();
2068
}
2069

    
2070
void op_trap (void)
2071
{
2072
    if (T0) {
2073
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_TRAP);
2074
    }
2075
    RETURN();
2076
}
2077

    
2078
void op_debug (void)
2079
{
2080
    CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG);
2081
    RETURN();
2082
}
2083

    
2084
void op_set_lladdr (void)
2085
{
2086
    env->CP0_LLAddr = T2;
2087
    RETURN();
2088
}
2089

    
2090
void debug_eret (void);
2091
void op_eret (void)
2092
{
2093
    CALL_FROM_TB0(debug_eret);
2094
    if (env->hflags & MIPS_HFLAG_ERL) {
2095
        env->PC = env->CP0_ErrorEPC;
2096
        env->hflags &= ~MIPS_HFLAG_ERL;
2097
        env->CP0_Status &= ~(1 << CP0St_ERL);
2098
    } else {
2099
        env->PC = env->CP0_EPC;
2100
        env->hflags &= ~MIPS_HFLAG_EXL;
2101
        env->CP0_Status &= ~(1 << CP0St_EXL);
2102
    }
2103
    env->CP0_LLAddr = 1;
2104
    RETURN();
2105
}
2106

    
2107
void op_deret (void)
2108
{
2109
    CALL_FROM_TB0(debug_eret);
2110
    env->PC = env->CP0_DEPC;
2111
    RETURN();
2112
}
2113

    
2114
void op_rdhwr_cpunum(void)
2115
{
2116
    if (env->CP0_HWREna & (1 << 0))
2117
       T0 = env->CP0_EBase & 0x2ff;
2118
    else
2119
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2120
    RETURN();
2121
}
2122

    
2123
void op_rdhwr_synci_step(void)
2124
{
2125
    if (env->CP0_HWREna & (1 << 1))
2126
       T0 = env->SYNCI_Step;
2127
    else
2128
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2129
    RETURN();
2130
}
2131

    
2132
void op_rdhwr_cc(void)
2133
{
2134
    if (env->CP0_HWREna & (1 << 2))
2135
       T0 = env->CP0_Count;
2136
    else
2137
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2138
    RETURN();
2139
}
2140

    
2141
void op_rdhwr_ccres(void)
2142
{
2143
    if (env->CP0_HWREna & (1 << 3))
2144
       T0 = env->CCRes;
2145
    else
2146
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2147
    RETURN();
2148
}
2149

    
2150
void op_save_state (void)
2151
{
2152
    env->hflags = PARAM1;
2153
    RETURN();
2154
}
2155

    
2156
void op_save_pc (void)
2157
{
2158
    env->PC = PARAM1;
2159
    RETURN();
2160
}
2161

    
2162
void op_raise_exception (void)
2163
{
2164
    CALL_FROM_TB1(do_raise_exception, PARAM1);
2165
    RETURN();
2166
}
2167

    
2168
void op_raise_exception_err (void)
2169
{
2170
    CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2);
2171
    RETURN();
2172
}
2173

    
2174
void op_exit_tb (void)
2175
{
2176
    EXIT_TB();
2177
    RETURN();
2178
}
2179

    
2180
void op_wait (void)
2181
{
2182
    env->halted = 1;
2183
    CALL_FROM_TB1(do_raise_exception, EXCP_HLT);
2184
    RETURN();
2185
}
2186

    
2187
/* Bitfield operations. */
2188
void op_ext(void)
2189
{
2190
    unsigned int pos = PARAM1;
2191
    unsigned int size = PARAM2;
2192

    
2193
    T0 = ((uint32_t)T1 >> pos) & ((1 << size) - 1);
2194
    RETURN();
2195
}
2196

    
2197
void op_ins(void)
2198
{
2199
    unsigned int pos = PARAM1;
2200
    unsigned int size = PARAM2;
2201
    target_ulong mask = ((1 << size) - 1) << pos;
2202

    
2203
    T0 = (T2 & ~mask) | (((uint32_t)T1 << pos) & mask);
2204
    RETURN();
2205
}
2206

    
2207
void op_wsbh(void)
2208
{
2209
    T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF);
2210
    RETURN();
2211
}
2212

    
2213
#ifdef MIPS_HAS_MIPS64
2214
void op_dext(void)
2215
{
2216
    unsigned int pos = PARAM1;
2217
    unsigned int size = PARAM2;
2218

    
2219
    T0 = (T1 >> pos) & ((1 << size) - 1);
2220
    RETURN();
2221
}
2222

    
2223
void op_dins(void)
2224
{
2225
    unsigned int pos = PARAM1;
2226
    unsigned int size = PARAM2;
2227
    target_ulong mask = ((1 << size) - 1) << pos;
2228

    
2229
    T0 = (T2 & ~mask) | ((T1 << pos) & mask);
2230
    RETURN();
2231
}
2232

    
2233
void op_dsbh(void)
2234
{
2235
    T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL);
2236
    RETURN();
2237
}
2238

    
2239
void op_dshd(void)
2240
{
2241
    T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL);
2242
    RETURN();
2243
}
2244
#endif
2245

    
2246
void op_seb(void)
2247
{
2248
    T0 = ((T1 & 0xFF) ^ 0x80) - 0x80;
2249
    RETURN();
2250
}
2251

    
2252
void op_seh(void)
2253
{
2254
    T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000;
2255
    RETURN();
2256
}