Statistics
| Branch: | Revision:

root / vl.c @ e6198a70

History | View | Annotate | Download (231.8 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/fdc.h"
30
#include "hw/audiodev.h"
31
#include "hw/isa.h"
32
#include "net.h"
33
#include "console.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#include "qemu-timer.h"
37
#include "qemu-char.h"
38
#include "block.h"
39
#include "audio/audio.h"
40

    
41
#include <unistd.h>
42
#include <fcntl.h>
43
#include <signal.h>
44
#include <time.h>
45
#include <errno.h>
46
#include <sys/time.h>
47
#include <zlib.h>
48

    
49
#ifndef _WIN32
50
#include <sys/times.h>
51
#include <sys/wait.h>
52
#include <termios.h>
53
#include <sys/poll.h>
54
#include <sys/mman.h>
55
#include <sys/ioctl.h>
56
#include <sys/socket.h>
57
#include <netinet/in.h>
58
#include <dirent.h>
59
#include <netdb.h>
60
#include <sys/select.h>
61
#include <arpa/inet.h>
62
#ifdef _BSD
63
#include <sys/stat.h>
64
#ifndef __APPLE__
65
#include <libutil.h>
66
#endif
67
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
68
#include <freebsd/stdlib.h>
69
#else
70
#ifndef __sun__
71
#include <linux/if.h>
72
#include <linux/if_tun.h>
73
#include <pty.h>
74
#include <malloc.h>
75
#include <linux/rtc.h>
76

    
77
/* For the benefit of older linux systems which don't supply it,
78
   we use a local copy of hpet.h. */
79
/* #include <linux/hpet.h> */
80
#include "hpet.h"
81

    
82
#include <linux/ppdev.h>
83
#include <linux/parport.h>
84
#else
85
#include <sys/stat.h>
86
#include <sys/ethernet.h>
87
#include <sys/sockio.h>
88
#include <netinet/arp.h>
89
#include <netinet/in.h>
90
#include <netinet/in_systm.h>
91
#include <netinet/ip.h>
92
#include <netinet/ip_icmp.h> // must come after ip.h
93
#include <netinet/udp.h>
94
#include <netinet/tcp.h>
95
#include <net/if.h>
96
#include <syslog.h>
97
#include <stropts.h>
98
#endif
99
#endif
100
#else
101
#include <winsock2.h>
102
int inet_aton(const char *cp, struct in_addr *ia);
103
#endif
104

    
105
#if defined(CONFIG_SLIRP)
106
#include "libslirp.h"
107
#endif
108

    
109
#ifdef _WIN32
110
#include <malloc.h>
111
#include <sys/timeb.h>
112
#include <mmsystem.h>
113
#define getopt_long_only getopt_long
114
#define memalign(align, size) malloc(size)
115
#endif
116

    
117
#include "qemu_socket.h"
118

    
119
#ifdef CONFIG_SDL
120
#ifdef __APPLE__
121
#include <SDL/SDL.h>
122
#endif
123
#endif /* CONFIG_SDL */
124

    
125
#ifdef CONFIG_COCOA
126
#undef main
127
#define main qemu_main
128
#endif /* CONFIG_COCOA */
129

    
130
#include "disas.h"
131

    
132
#include "exec-all.h"
133

    
134
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
135
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
136
#ifdef __sun__
137
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
138
#else
139
#define SMBD_COMMAND "/usr/sbin/smbd"
140
#endif
141

    
142
//#define DEBUG_UNUSED_IOPORT
143
//#define DEBUG_IOPORT
144

    
145
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
146

    
147
#ifdef TARGET_PPC
148
#define DEFAULT_RAM_SIZE 144
149
#else
150
#define DEFAULT_RAM_SIZE 128
151
#endif
152
/* in ms */
153
#define GUI_REFRESH_INTERVAL 30
154

    
155
/* Max number of USB devices that can be specified on the commandline.  */
156
#define MAX_USB_CMDLINE 8
157

    
158
/* XXX: use a two level table to limit memory usage */
159
#define MAX_IOPORTS 65536
160

    
161
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
162
const char *bios_name = NULL;
163
void *ioport_opaque[MAX_IOPORTS];
164
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
165
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
166
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
167
   to store the VM snapshots */
168
DriveInfo drives_table[MAX_DRIVES+1];
169
int nb_drives;
170
/* point to the block driver where the snapshots are managed */
171
BlockDriverState *bs_snapshots;
172
int vga_ram_size;
173
static DisplayState display_state;
174
int nographic;
175
const char* keyboard_layout = NULL;
176
int64_t ticks_per_sec;
177
int ram_size;
178
int pit_min_timer_count = 0;
179
int nb_nics;
180
NICInfo nd_table[MAX_NICS];
181
int vm_running;
182
int rtc_utc = 1;
183
int rtc_start_date = -1; /* -1 means now */
184
int cirrus_vga_enabled = 1;
185
int vmsvga_enabled = 0;
186
#ifdef TARGET_SPARC
187
int graphic_width = 1024;
188
int graphic_height = 768;
189
int graphic_depth = 8;
190
#else
191
int graphic_width = 800;
192
int graphic_height = 600;
193
int graphic_depth = 15;
194
#endif
195
int full_screen = 0;
196
int no_frame = 0;
197
int no_quit = 0;
198
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
199
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
200
#ifdef TARGET_I386
201
int win2k_install_hack = 0;
202
#endif
203
int usb_enabled = 0;
204
static VLANState *first_vlan;
205
int smp_cpus = 1;
206
const char *vnc_display;
207
#if defined(TARGET_SPARC)
208
#define MAX_CPUS 16
209
#elif defined(TARGET_I386)
210
#define MAX_CPUS 255
211
#else
212
#define MAX_CPUS 1
213
#endif
214
int acpi_enabled = 1;
215
int fd_bootchk = 1;
216
int no_reboot = 0;
217
int cursor_hide = 1;
218
int graphic_rotate = 0;
219
int daemonize = 0;
220
const char *option_rom[MAX_OPTION_ROMS];
221
int nb_option_roms;
222
int semihosting_enabled = 0;
223
int autostart = 1;
224
#ifdef TARGET_ARM
225
int old_param = 0;
226
#endif
227
const char *qemu_name;
228
int alt_grab = 0;
229
#ifdef TARGET_SPARC
230
unsigned int nb_prom_envs = 0;
231
const char *prom_envs[MAX_PROM_ENVS];
232
#endif
233
int nb_drives_opt;
234
char drives_opt[MAX_DRIVES][1024];
235

    
236
static CPUState *cur_cpu;
237
static CPUState *next_cpu;
238
static int event_pending = 1;
239

    
240
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
241

    
242
/***********************************************************/
243
/* x86 ISA bus support */
244

    
245
target_phys_addr_t isa_mem_base = 0;
246
PicState2 *isa_pic;
247

    
248
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
249
{
250
#ifdef DEBUG_UNUSED_IOPORT
251
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
252
#endif
253
    return 0xff;
254
}
255

    
256
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
257
{
258
#ifdef DEBUG_UNUSED_IOPORT
259
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
260
#endif
261
}
262

    
263
/* default is to make two byte accesses */
264
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
265
{
266
    uint32_t data;
267
    data = ioport_read_table[0][address](ioport_opaque[address], address);
268
    address = (address + 1) & (MAX_IOPORTS - 1);
269
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
270
    return data;
271
}
272

    
273
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
274
{
275
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
276
    address = (address + 1) & (MAX_IOPORTS - 1);
277
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
278
}
279

    
280
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
281
{
282
#ifdef DEBUG_UNUSED_IOPORT
283
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
284
#endif
285
    return 0xffffffff;
286
}
287

    
288
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
289
{
290
#ifdef DEBUG_UNUSED_IOPORT
291
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
292
#endif
293
}
294

    
295
static void init_ioports(void)
296
{
297
    int i;
298

    
299
    for(i = 0; i < MAX_IOPORTS; i++) {
300
        ioport_read_table[0][i] = default_ioport_readb;
301
        ioport_write_table[0][i] = default_ioport_writeb;
302
        ioport_read_table[1][i] = default_ioport_readw;
303
        ioport_write_table[1][i] = default_ioport_writew;
304
        ioport_read_table[2][i] = default_ioport_readl;
305
        ioport_write_table[2][i] = default_ioport_writel;
306
    }
307
}
308

    
309
/* size is the word size in byte */
310
int register_ioport_read(int start, int length, int size,
311
                         IOPortReadFunc *func, void *opaque)
312
{
313
    int i, bsize;
314

    
315
    if (size == 1) {
316
        bsize = 0;
317
    } else if (size == 2) {
318
        bsize = 1;
319
    } else if (size == 4) {
320
        bsize = 2;
321
    } else {
322
        hw_error("register_ioport_read: invalid size");
323
        return -1;
324
    }
325
    for(i = start; i < start + length; i += size) {
326
        ioport_read_table[bsize][i] = func;
327
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
328
            hw_error("register_ioport_read: invalid opaque");
329
        ioport_opaque[i] = opaque;
330
    }
331
    return 0;
332
}
333

    
334
/* size is the word size in byte */
335
int register_ioport_write(int start, int length, int size,
336
                          IOPortWriteFunc *func, void *opaque)
337
{
338
    int i, bsize;
339

    
340
    if (size == 1) {
341
        bsize = 0;
342
    } else if (size == 2) {
343
        bsize = 1;
344
    } else if (size == 4) {
345
        bsize = 2;
346
    } else {
347
        hw_error("register_ioport_write: invalid size");
348
        return -1;
349
    }
350
    for(i = start; i < start + length; i += size) {
351
        ioport_write_table[bsize][i] = func;
352
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
353
            hw_error("register_ioport_write: invalid opaque");
354
        ioport_opaque[i] = opaque;
355
    }
356
    return 0;
357
}
358

    
359
void isa_unassign_ioport(int start, int length)
360
{
361
    int i;
362

    
363
    for(i = start; i < start + length; i++) {
364
        ioport_read_table[0][i] = default_ioport_readb;
365
        ioport_read_table[1][i] = default_ioport_readw;
366
        ioport_read_table[2][i] = default_ioport_readl;
367

    
368
        ioport_write_table[0][i] = default_ioport_writeb;
369
        ioport_write_table[1][i] = default_ioport_writew;
370
        ioport_write_table[2][i] = default_ioport_writel;
371
    }
372
}
373

    
374
/***********************************************************/
375

    
376
void cpu_outb(CPUState *env, int addr, int val)
377
{
378
#ifdef DEBUG_IOPORT
379
    if (loglevel & CPU_LOG_IOPORT)
380
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
381
#endif
382
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
383
#ifdef USE_KQEMU
384
    if (env)
385
        env->last_io_time = cpu_get_time_fast();
386
#endif
387
}
388

    
389
void cpu_outw(CPUState *env, int addr, int val)
390
{
391
#ifdef DEBUG_IOPORT
392
    if (loglevel & CPU_LOG_IOPORT)
393
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
394
#endif
395
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
396
#ifdef USE_KQEMU
397
    if (env)
398
        env->last_io_time = cpu_get_time_fast();
399
#endif
400
}
401

    
402
void cpu_outl(CPUState *env, int addr, int val)
403
{
404
#ifdef DEBUG_IOPORT
405
    if (loglevel & CPU_LOG_IOPORT)
406
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
407
#endif
408
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
409
#ifdef USE_KQEMU
410
    if (env)
411
        env->last_io_time = cpu_get_time_fast();
412
#endif
413
}
414

    
415
int cpu_inb(CPUState *env, int addr)
416
{
417
    int val;
418
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
419
#ifdef DEBUG_IOPORT
420
    if (loglevel & CPU_LOG_IOPORT)
421
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
422
#endif
423
#ifdef USE_KQEMU
424
    if (env)
425
        env->last_io_time = cpu_get_time_fast();
426
#endif
427
    return val;
428
}
429

    
430
int cpu_inw(CPUState *env, int addr)
431
{
432
    int val;
433
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
434
#ifdef DEBUG_IOPORT
435
    if (loglevel & CPU_LOG_IOPORT)
436
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
437
#endif
438
#ifdef USE_KQEMU
439
    if (env)
440
        env->last_io_time = cpu_get_time_fast();
441
#endif
442
    return val;
443
}
444

    
445
int cpu_inl(CPUState *env, int addr)
446
{
447
    int val;
448
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
449
#ifdef DEBUG_IOPORT
450
    if (loglevel & CPU_LOG_IOPORT)
451
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
452
#endif
453
#ifdef USE_KQEMU
454
    if (env)
455
        env->last_io_time = cpu_get_time_fast();
456
#endif
457
    return val;
458
}
459

    
460
/***********************************************************/
461
void hw_error(const char *fmt, ...)
462
{
463
    va_list ap;
464
    CPUState *env;
465

    
466
    va_start(ap, fmt);
467
    fprintf(stderr, "qemu: hardware error: ");
468
    vfprintf(stderr, fmt, ap);
469
    fprintf(stderr, "\n");
470
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
471
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
472
#ifdef TARGET_I386
473
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
474
#else
475
        cpu_dump_state(env, stderr, fprintf, 0);
476
#endif
477
    }
478
    va_end(ap);
479
    abort();
480
}
481

    
482
/***********************************************************/
483
/* keyboard/mouse */
484

    
485
static QEMUPutKBDEvent *qemu_put_kbd_event;
486
static void *qemu_put_kbd_event_opaque;
487
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
488
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
489

    
490
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
491
{
492
    qemu_put_kbd_event_opaque = opaque;
493
    qemu_put_kbd_event = func;
494
}
495

    
496
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
497
                                                void *opaque, int absolute,
498
                                                const char *name)
499
{
500
    QEMUPutMouseEntry *s, *cursor;
501

    
502
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
503
    if (!s)
504
        return NULL;
505

    
506
    s->qemu_put_mouse_event = func;
507
    s->qemu_put_mouse_event_opaque = opaque;
508
    s->qemu_put_mouse_event_absolute = absolute;
509
    s->qemu_put_mouse_event_name = qemu_strdup(name);
510
    s->next = NULL;
511

    
512
    if (!qemu_put_mouse_event_head) {
513
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
514
        return s;
515
    }
516

    
517
    cursor = qemu_put_mouse_event_head;
518
    while (cursor->next != NULL)
519
        cursor = cursor->next;
520

    
521
    cursor->next = s;
522
    qemu_put_mouse_event_current = s;
523

    
524
    return s;
525
}
526

    
527
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
528
{
529
    QEMUPutMouseEntry *prev = NULL, *cursor;
530

    
531
    if (!qemu_put_mouse_event_head || entry == NULL)
532
        return;
533

    
534
    cursor = qemu_put_mouse_event_head;
535
    while (cursor != NULL && cursor != entry) {
536
        prev = cursor;
537
        cursor = cursor->next;
538
    }
539

    
540
    if (cursor == NULL) // does not exist or list empty
541
        return;
542
    else if (prev == NULL) { // entry is head
543
        qemu_put_mouse_event_head = cursor->next;
544
        if (qemu_put_mouse_event_current == entry)
545
            qemu_put_mouse_event_current = cursor->next;
546
        qemu_free(entry->qemu_put_mouse_event_name);
547
        qemu_free(entry);
548
        return;
549
    }
550

    
551
    prev->next = entry->next;
552

    
553
    if (qemu_put_mouse_event_current == entry)
554
        qemu_put_mouse_event_current = prev;
555

    
556
    qemu_free(entry->qemu_put_mouse_event_name);
557
    qemu_free(entry);
558
}
559

    
560
void kbd_put_keycode(int keycode)
561
{
562
    if (qemu_put_kbd_event) {
563
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
564
    }
565
}
566

    
567
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
568
{
569
    QEMUPutMouseEvent *mouse_event;
570
    void *mouse_event_opaque;
571
    int width;
572

    
573
    if (!qemu_put_mouse_event_current) {
574
        return;
575
    }
576

    
577
    mouse_event =
578
        qemu_put_mouse_event_current->qemu_put_mouse_event;
579
    mouse_event_opaque =
580
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
581

    
582
    if (mouse_event) {
583
        if (graphic_rotate) {
584
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
585
                width = 0x7fff;
586
            else
587
                width = graphic_width;
588
            mouse_event(mouse_event_opaque,
589
                                 width - dy, dx, dz, buttons_state);
590
        } else
591
            mouse_event(mouse_event_opaque,
592
                                 dx, dy, dz, buttons_state);
593
    }
594
}
595

    
596
int kbd_mouse_is_absolute(void)
597
{
598
    if (!qemu_put_mouse_event_current)
599
        return 0;
600

    
601
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
602
}
603

    
604
void do_info_mice(void)
605
{
606
    QEMUPutMouseEntry *cursor;
607
    int index = 0;
608

    
609
    if (!qemu_put_mouse_event_head) {
610
        term_printf("No mouse devices connected\n");
611
        return;
612
    }
613

    
614
    term_printf("Mouse devices available:\n");
615
    cursor = qemu_put_mouse_event_head;
616
    while (cursor != NULL) {
617
        term_printf("%c Mouse #%d: %s\n",
618
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
619
                    index, cursor->qemu_put_mouse_event_name);
620
        index++;
621
        cursor = cursor->next;
622
    }
623
}
624

    
625
void do_mouse_set(int index)
626
{
627
    QEMUPutMouseEntry *cursor;
628
    int i = 0;
629

    
630
    if (!qemu_put_mouse_event_head) {
631
        term_printf("No mouse devices connected\n");
632
        return;
633
    }
634

    
635
    cursor = qemu_put_mouse_event_head;
636
    while (cursor != NULL && index != i) {
637
        i++;
638
        cursor = cursor->next;
639
    }
640

    
641
    if (cursor != NULL)
642
        qemu_put_mouse_event_current = cursor;
643
    else
644
        term_printf("Mouse at given index not found\n");
645
}
646

    
647
/* compute with 96 bit intermediate result: (a*b)/c */
648
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
649
{
650
    union {
651
        uint64_t ll;
652
        struct {
653
#ifdef WORDS_BIGENDIAN
654
            uint32_t high, low;
655
#else
656
            uint32_t low, high;
657
#endif
658
        } l;
659
    } u, res;
660
    uint64_t rl, rh;
661

    
662
    u.ll = a;
663
    rl = (uint64_t)u.l.low * (uint64_t)b;
664
    rh = (uint64_t)u.l.high * (uint64_t)b;
665
    rh += (rl >> 32);
666
    res.l.high = rh / c;
667
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
668
    return res.ll;
669
}
670

    
671
/***********************************************************/
672
/* real time host monotonic timer */
673

    
674
#define QEMU_TIMER_BASE 1000000000LL
675

    
676
#ifdef WIN32
677

    
678
static int64_t clock_freq;
679

    
680
static void init_get_clock(void)
681
{
682
    LARGE_INTEGER freq;
683
    int ret;
684
    ret = QueryPerformanceFrequency(&freq);
685
    if (ret == 0) {
686
        fprintf(stderr, "Could not calibrate ticks\n");
687
        exit(1);
688
    }
689
    clock_freq = freq.QuadPart;
690
}
691

    
692
static int64_t get_clock(void)
693
{
694
    LARGE_INTEGER ti;
695
    QueryPerformanceCounter(&ti);
696
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
697
}
698

    
699
#else
700

    
701
static int use_rt_clock;
702

    
703
static void init_get_clock(void)
704
{
705
    use_rt_clock = 0;
706
#if defined(__linux__)
707
    {
708
        struct timespec ts;
709
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
710
            use_rt_clock = 1;
711
        }
712
    }
713
#endif
714
}
715

    
716
static int64_t get_clock(void)
717
{
718
#if defined(__linux__)
719
    if (use_rt_clock) {
720
        struct timespec ts;
721
        clock_gettime(CLOCK_MONOTONIC, &ts);
722
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
723
    } else
724
#endif
725
    {
726
        /* XXX: using gettimeofday leads to problems if the date
727
           changes, so it should be avoided. */
728
        struct timeval tv;
729
        gettimeofday(&tv, NULL);
730
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
731
    }
732
}
733

    
734
#endif
735

    
736
/***********************************************************/
737
/* guest cycle counter */
738

    
739
static int64_t cpu_ticks_prev;
740
static int64_t cpu_ticks_offset;
741
static int64_t cpu_clock_offset;
742
static int cpu_ticks_enabled;
743

    
744
/* return the host CPU cycle counter and handle stop/restart */
745
int64_t cpu_get_ticks(void)
746
{
747
    if (!cpu_ticks_enabled) {
748
        return cpu_ticks_offset;
749
    } else {
750
        int64_t ticks;
751
        ticks = cpu_get_real_ticks();
752
        if (cpu_ticks_prev > ticks) {
753
            /* Note: non increasing ticks may happen if the host uses
754
               software suspend */
755
            cpu_ticks_offset += cpu_ticks_prev - ticks;
756
        }
757
        cpu_ticks_prev = ticks;
758
        return ticks + cpu_ticks_offset;
759
    }
760
}
761

    
762
/* return the host CPU monotonic timer and handle stop/restart */
763
static int64_t cpu_get_clock(void)
764
{
765
    int64_t ti;
766
    if (!cpu_ticks_enabled) {
767
        return cpu_clock_offset;
768
    } else {
769
        ti = get_clock();
770
        return ti + cpu_clock_offset;
771
    }
772
}
773

    
774
/* enable cpu_get_ticks() */
775
void cpu_enable_ticks(void)
776
{
777
    if (!cpu_ticks_enabled) {
778
        cpu_ticks_offset -= cpu_get_real_ticks();
779
        cpu_clock_offset -= get_clock();
780
        cpu_ticks_enabled = 1;
781
    }
782
}
783

    
784
/* disable cpu_get_ticks() : the clock is stopped. You must not call
785
   cpu_get_ticks() after that.  */
786
void cpu_disable_ticks(void)
787
{
788
    if (cpu_ticks_enabled) {
789
        cpu_ticks_offset = cpu_get_ticks();
790
        cpu_clock_offset = cpu_get_clock();
791
        cpu_ticks_enabled = 0;
792
    }
793
}
794

    
795
/***********************************************************/
796
/* timers */
797

    
798
#define QEMU_TIMER_REALTIME 0
799
#define QEMU_TIMER_VIRTUAL  1
800

    
801
struct QEMUClock {
802
    int type;
803
    /* XXX: add frequency */
804
};
805

    
806
struct QEMUTimer {
807
    QEMUClock *clock;
808
    int64_t expire_time;
809
    QEMUTimerCB *cb;
810
    void *opaque;
811
    struct QEMUTimer *next;
812
};
813

    
814
struct qemu_alarm_timer {
815
    char const *name;
816
    unsigned int flags;
817

    
818
    int (*start)(struct qemu_alarm_timer *t);
819
    void (*stop)(struct qemu_alarm_timer *t);
820
    void (*rearm)(struct qemu_alarm_timer *t);
821
    void *priv;
822
};
823

    
824
#define ALARM_FLAG_DYNTICKS  0x1
825
#define ALARM_FLAG_MODIFIED  0x2
826

    
827
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
828
{
829
    return t->flags & ALARM_FLAG_DYNTICKS;
830
}
831

    
832
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
833
{
834
    if (!alarm_has_dynticks(t))
835
        return;
836

    
837
    if (!(t->flags & ALARM_FLAG_MODIFIED))
838
        return;
839

    
840
    t->flags &= ~(ALARM_FLAG_MODIFIED);
841

    
842
    t->rearm(t);
843
}
844

    
845
/* TODO: MIN_TIMER_REARM_US should be optimized */
846
#define MIN_TIMER_REARM_US 250
847

    
848
static struct qemu_alarm_timer *alarm_timer;
849

    
850
#ifdef _WIN32
851

    
852
struct qemu_alarm_win32 {
853
    MMRESULT timerId;
854
    HANDLE host_alarm;
855
    unsigned int period;
856
} alarm_win32_data = {0, NULL, -1};
857

    
858
static int win32_start_timer(struct qemu_alarm_timer *t);
859
static void win32_stop_timer(struct qemu_alarm_timer *t);
860
static void win32_rearm_timer(struct qemu_alarm_timer *t);
861

    
862
#else
863

    
864
static int unix_start_timer(struct qemu_alarm_timer *t);
865
static void unix_stop_timer(struct qemu_alarm_timer *t);
866

    
867
#ifdef __linux__
868

    
869
static int dynticks_start_timer(struct qemu_alarm_timer *t);
870
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
871
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
872

    
873
static int hpet_start_timer(struct qemu_alarm_timer *t);
874
static void hpet_stop_timer(struct qemu_alarm_timer *t);
875

    
876
static int rtc_start_timer(struct qemu_alarm_timer *t);
877
static void rtc_stop_timer(struct qemu_alarm_timer *t);
878

    
879
#endif /* __linux__ */
880

    
881
#endif /* _WIN32 */
882

    
883
static struct qemu_alarm_timer alarm_timers[] = {
884
#ifndef _WIN32
885
#ifdef __linux__
886
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
887
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
888
    /* HPET - if available - is preferred */
889
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
890
    /* ...otherwise try RTC */
891
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
892
#endif
893
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
894
#else
895
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
896
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
897
    {"win32", 0, win32_start_timer,
898
     win32_stop_timer, NULL, &alarm_win32_data},
899
#endif
900
    {NULL, }
901
};
902

    
903
static void show_available_alarms()
904
{
905
    int i;
906

    
907
    printf("Available alarm timers, in order of precedence:\n");
908
    for (i = 0; alarm_timers[i].name; i++)
909
        printf("%s\n", alarm_timers[i].name);
910
}
911

    
912
static void configure_alarms(char const *opt)
913
{
914
    int i;
915
    int cur = 0;
916
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
917
    char *arg;
918
    char *name;
919

    
920
    if (!strcmp(opt, "help")) {
921
        show_available_alarms();
922
        exit(0);
923
    }
924

    
925
    arg = strdup(opt);
926

    
927
    /* Reorder the array */
928
    name = strtok(arg, ",");
929
    while (name) {
930
        struct qemu_alarm_timer tmp;
931

    
932
        for (i = 0; i < count && alarm_timers[i].name; i++) {
933
            if (!strcmp(alarm_timers[i].name, name))
934
                break;
935
        }
936

    
937
        if (i == count) {
938
            fprintf(stderr, "Unknown clock %s\n", name);
939
            goto next;
940
        }
941

    
942
        if (i < cur)
943
            /* Ignore */
944
            goto next;
945

    
946
        /* Swap */
947
        tmp = alarm_timers[i];
948
        alarm_timers[i] = alarm_timers[cur];
949
        alarm_timers[cur] = tmp;
950

    
951
        cur++;
952
next:
953
        name = strtok(NULL, ",");
954
    }
955

    
956
    free(arg);
957

    
958
    if (cur) {
959
        /* Disable remaining timers */
960
        for (i = cur; i < count; i++)
961
            alarm_timers[i].name = NULL;
962
    }
963

    
964
    /* debug */
965
    show_available_alarms();
966
}
967

    
968
QEMUClock *rt_clock;
969
QEMUClock *vm_clock;
970

    
971
static QEMUTimer *active_timers[2];
972

    
973
static QEMUClock *qemu_new_clock(int type)
974
{
975
    QEMUClock *clock;
976
    clock = qemu_mallocz(sizeof(QEMUClock));
977
    if (!clock)
978
        return NULL;
979
    clock->type = type;
980
    return clock;
981
}
982

    
983
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
984
{
985
    QEMUTimer *ts;
986

    
987
    ts = qemu_mallocz(sizeof(QEMUTimer));
988
    ts->clock = clock;
989
    ts->cb = cb;
990
    ts->opaque = opaque;
991
    return ts;
992
}
993

    
994
void qemu_free_timer(QEMUTimer *ts)
995
{
996
    qemu_free(ts);
997
}
998

    
999
/* stop a timer, but do not dealloc it */
1000
void qemu_del_timer(QEMUTimer *ts)
1001
{
1002
    QEMUTimer **pt, *t;
1003

    
1004
    alarm_timer->flags |= ALARM_FLAG_MODIFIED;
1005

    
1006
    /* NOTE: this code must be signal safe because
1007
       qemu_timer_expired() can be called from a signal. */
1008
    pt = &active_timers[ts->clock->type];
1009
    for(;;) {
1010
        t = *pt;
1011
        if (!t)
1012
            break;
1013
        if (t == ts) {
1014
            *pt = t->next;
1015
            break;
1016
        }
1017
        pt = &t->next;
1018
    }
1019
}
1020

    
1021
/* modify the current timer so that it will be fired when current_time
1022
   >= expire_time. The corresponding callback will be called. */
1023
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1024
{
1025
    QEMUTimer **pt, *t;
1026

    
1027
    qemu_del_timer(ts);
1028

    
1029
    /* add the timer in the sorted list */
1030
    /* NOTE: this code must be signal safe because
1031
       qemu_timer_expired() can be called from a signal. */
1032
    pt = &active_timers[ts->clock->type];
1033
    for(;;) {
1034
        t = *pt;
1035
        if (!t)
1036
            break;
1037
        if (t->expire_time > expire_time)
1038
            break;
1039
        pt = &t->next;
1040
    }
1041
    ts->expire_time = expire_time;
1042
    ts->next = *pt;
1043
    *pt = ts;
1044
}
1045

    
1046
int qemu_timer_pending(QEMUTimer *ts)
1047
{
1048
    QEMUTimer *t;
1049
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1050
        if (t == ts)
1051
            return 1;
1052
    }
1053
    return 0;
1054
}
1055

    
1056
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1057
{
1058
    if (!timer_head)
1059
        return 0;
1060
    return (timer_head->expire_time <= current_time);
1061
}
1062

    
1063
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1064
{
1065
    QEMUTimer *ts;
1066

    
1067
    for(;;) {
1068
        ts = *ptimer_head;
1069
        if (!ts || ts->expire_time > current_time)
1070
            break;
1071
        /* remove timer from the list before calling the callback */
1072
        *ptimer_head = ts->next;
1073
        ts->next = NULL;
1074

    
1075
        /* run the callback (the timer list can be modified) */
1076
        ts->cb(ts->opaque);
1077
    }
1078
}
1079

    
1080
int64_t qemu_get_clock(QEMUClock *clock)
1081
{
1082
    switch(clock->type) {
1083
    case QEMU_TIMER_REALTIME:
1084
        return get_clock() / 1000000;
1085
    default:
1086
    case QEMU_TIMER_VIRTUAL:
1087
        return cpu_get_clock();
1088
    }
1089
}
1090

    
1091
static void init_timers(void)
1092
{
1093
    init_get_clock();
1094
    ticks_per_sec = QEMU_TIMER_BASE;
1095
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1096
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1097
}
1098

    
1099
/* save a timer */
1100
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1101
{
1102
    uint64_t expire_time;
1103

    
1104
    if (qemu_timer_pending(ts)) {
1105
        expire_time = ts->expire_time;
1106
    } else {
1107
        expire_time = -1;
1108
    }
1109
    qemu_put_be64(f, expire_time);
1110
}
1111

    
1112
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1113
{
1114
    uint64_t expire_time;
1115

    
1116
    expire_time = qemu_get_be64(f);
1117
    if (expire_time != -1) {
1118
        qemu_mod_timer(ts, expire_time);
1119
    } else {
1120
        qemu_del_timer(ts);
1121
    }
1122
}
1123

    
1124
static void timer_save(QEMUFile *f, void *opaque)
1125
{
1126
    if (cpu_ticks_enabled) {
1127
        hw_error("cannot save state if virtual timers are running");
1128
    }
1129
    qemu_put_be64(f, cpu_ticks_offset);
1130
    qemu_put_be64(f, ticks_per_sec);
1131
    qemu_put_be64(f, cpu_clock_offset);
1132
}
1133

    
1134
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1135
{
1136
    if (version_id != 1 && version_id != 2)
1137
        return -EINVAL;
1138
    if (cpu_ticks_enabled) {
1139
        return -EINVAL;
1140
    }
1141
    cpu_ticks_offset=qemu_get_be64(f);
1142
    ticks_per_sec=qemu_get_be64(f);
1143
    if (version_id == 2) {
1144
        cpu_clock_offset=qemu_get_be64(f);
1145
    }
1146
    return 0;
1147
}
1148

    
1149
#ifdef _WIN32
1150
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1151
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1152
#else
1153
static void host_alarm_handler(int host_signum)
1154
#endif
1155
{
1156
#if 0
1157
#define DISP_FREQ 1000
1158
    {
1159
        static int64_t delta_min = INT64_MAX;
1160
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1161
        static int count;
1162
        ti = qemu_get_clock(vm_clock);
1163
        if (last_clock != 0) {
1164
            delta = ti - last_clock;
1165
            if (delta < delta_min)
1166
                delta_min = delta;
1167
            if (delta > delta_max)
1168
                delta_max = delta;
1169
            delta_cum += delta;
1170
            if (++count == DISP_FREQ) {
1171
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1172
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1173
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1174
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1175
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1176
                count = 0;
1177
                delta_min = INT64_MAX;
1178
                delta_max = 0;
1179
                delta_cum = 0;
1180
            }
1181
        }
1182
        last_clock = ti;
1183
    }
1184
#endif
1185
    if (alarm_has_dynticks(alarm_timer) ||
1186
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1187
                           qemu_get_clock(vm_clock)) ||
1188
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1189
                           qemu_get_clock(rt_clock))) {
1190
#ifdef _WIN32
1191
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1192
        SetEvent(data->host_alarm);
1193
#endif
1194
        CPUState *env = next_cpu;
1195

    
1196
        if (env) {
1197
            alarm_timer->flags |= ALARM_FLAG_MODIFIED;
1198
            /* stop the currently executing cpu because a timer occured */
1199
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1200
#ifdef USE_KQEMU
1201
            if (env->kqemu_enabled) {
1202
                kqemu_cpu_interrupt(env);
1203
            }
1204
#endif
1205
        }
1206
        event_pending = 1;
1207
    }
1208
}
1209

    
1210
static uint64_t qemu_next_deadline(void)
1211
{
1212
    int64_t nearest_delta_us = INT64_MAX;
1213
    int64_t vmdelta_us;
1214

    
1215
    if (active_timers[QEMU_TIMER_REALTIME])
1216
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1217
                            qemu_get_clock(rt_clock))*1000;
1218

    
1219
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1220
        /* round up */
1221
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1222
                      qemu_get_clock(vm_clock)+999)/1000;
1223
        if (vmdelta_us < nearest_delta_us)
1224
            nearest_delta_us = vmdelta_us;
1225
    }
1226

    
1227
    /* Avoid arming the timer to negative, zero, or too low values */
1228
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1229
        nearest_delta_us = MIN_TIMER_REARM_US;
1230

    
1231
    return nearest_delta_us;
1232
}
1233

    
1234
#ifndef _WIN32
1235

    
1236
#if defined(__linux__)
1237

    
1238
#define RTC_FREQ 1024
1239

    
1240
static void enable_sigio_timer(int fd)
1241
{
1242
    struct sigaction act;
1243

    
1244
    /* timer signal */
1245
    sigfillset(&act.sa_mask);
1246
    act.sa_flags = 0;
1247
    act.sa_handler = host_alarm_handler;
1248

    
1249
    sigaction(SIGIO, &act, NULL);
1250
    fcntl(fd, F_SETFL, O_ASYNC);
1251
    fcntl(fd, F_SETOWN, getpid());
1252
}
1253

    
1254
static int hpet_start_timer(struct qemu_alarm_timer *t)
1255
{
1256
    struct hpet_info info;
1257
    int r, fd;
1258

    
1259
    fd = open("/dev/hpet", O_RDONLY);
1260
    if (fd < 0)
1261
        return -1;
1262

    
1263
    /* Set frequency */
1264
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1265
    if (r < 0) {
1266
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1267
                "error, but for better emulation accuracy type:\n"
1268
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1269
        goto fail;
1270
    }
1271

    
1272
    /* Check capabilities */
1273
    r = ioctl(fd, HPET_INFO, &info);
1274
    if (r < 0)
1275
        goto fail;
1276

    
1277
    /* Enable periodic mode */
1278
    r = ioctl(fd, HPET_EPI, 0);
1279
    if (info.hi_flags && (r < 0))
1280
        goto fail;
1281

    
1282
    /* Enable interrupt */
1283
    r = ioctl(fd, HPET_IE_ON, 0);
1284
    if (r < 0)
1285
        goto fail;
1286

    
1287
    enable_sigio_timer(fd);
1288
    t->priv = (void *)(long)fd;
1289

    
1290
    return 0;
1291
fail:
1292
    close(fd);
1293
    return -1;
1294
}
1295

    
1296
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1297
{
1298
    int fd = (long)t->priv;
1299

    
1300
    close(fd);
1301
}
1302

    
1303
static int rtc_start_timer(struct qemu_alarm_timer *t)
1304
{
1305
    int rtc_fd;
1306

    
1307
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1308
    if (rtc_fd < 0)
1309
        return -1;
1310
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1311
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1312
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1313
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1314
        goto fail;
1315
    }
1316
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1317
    fail:
1318
        close(rtc_fd);
1319
        return -1;
1320
    }
1321

    
1322
    enable_sigio_timer(rtc_fd);
1323

    
1324
    t->priv = (void *)(long)rtc_fd;
1325

    
1326
    return 0;
1327
}
1328

    
1329
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1330
{
1331
    int rtc_fd = (long)t->priv;
1332

    
1333
    close(rtc_fd);
1334
}
1335

    
1336
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1337
{
1338
    struct sigevent ev;
1339
    timer_t host_timer;
1340
    struct sigaction act;
1341

    
1342
    sigfillset(&act.sa_mask);
1343
    act.sa_flags = 0;
1344
    act.sa_handler = host_alarm_handler;
1345

    
1346
    sigaction(SIGALRM, &act, NULL);
1347

    
1348
    ev.sigev_value.sival_int = 0;
1349
    ev.sigev_notify = SIGEV_SIGNAL;
1350
    ev.sigev_signo = SIGALRM;
1351

    
1352
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1353
        perror("timer_create");
1354

    
1355
        /* disable dynticks */
1356
        fprintf(stderr, "Dynamic Ticks disabled\n");
1357

    
1358
        return -1;
1359
    }
1360

    
1361
    t->priv = (void *)host_timer;
1362

    
1363
    return 0;
1364
}
1365

    
1366
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1367
{
1368
    timer_t host_timer = (timer_t)t->priv;
1369

    
1370
    timer_delete(host_timer);
1371
}
1372

    
1373
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1374
{
1375
    timer_t host_timer = (timer_t)t->priv;
1376
    struct itimerspec timeout;
1377
    int64_t nearest_delta_us = INT64_MAX;
1378
    int64_t current_us;
1379

    
1380
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1381
                !active_timers[QEMU_TIMER_VIRTUAL])
1382
            return;
1383

    
1384
    nearest_delta_us = qemu_next_deadline();
1385

    
1386
    /* check whether a timer is already running */
1387
    if (timer_gettime(host_timer, &timeout)) {
1388
        perror("gettime");
1389
        fprintf(stderr, "Internal timer error: aborting\n");
1390
        exit(1);
1391
    }
1392
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1393
    if (current_us && current_us <= nearest_delta_us)
1394
        return;
1395

    
1396
    timeout.it_interval.tv_sec = 0;
1397
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1398
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1399
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1400
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1401
        perror("settime");
1402
        fprintf(stderr, "Internal timer error: aborting\n");
1403
        exit(1);
1404
    }
1405
}
1406

    
1407
#endif /* defined(__linux__) */
1408

    
1409
static int unix_start_timer(struct qemu_alarm_timer *t)
1410
{
1411
    struct sigaction act;
1412
    struct itimerval itv;
1413
    int err;
1414

    
1415
    /* timer signal */
1416
    sigfillset(&act.sa_mask);
1417
    act.sa_flags = 0;
1418
    act.sa_handler = host_alarm_handler;
1419

    
1420
    sigaction(SIGALRM, &act, NULL);
1421

    
1422
    itv.it_interval.tv_sec = 0;
1423
    /* for i386 kernel 2.6 to get 1 ms */
1424
    itv.it_interval.tv_usec = 999;
1425
    itv.it_value.tv_sec = 0;
1426
    itv.it_value.tv_usec = 10 * 1000;
1427

    
1428
    err = setitimer(ITIMER_REAL, &itv, NULL);
1429
    if (err)
1430
        return -1;
1431

    
1432
    return 0;
1433
}
1434

    
1435
static void unix_stop_timer(struct qemu_alarm_timer *t)
1436
{
1437
    struct itimerval itv;
1438

    
1439
    memset(&itv, 0, sizeof(itv));
1440
    setitimer(ITIMER_REAL, &itv, NULL);
1441
}
1442

    
1443
#endif /* !defined(_WIN32) */
1444

    
1445
#ifdef _WIN32
1446

    
1447
static int win32_start_timer(struct qemu_alarm_timer *t)
1448
{
1449
    TIMECAPS tc;
1450
    struct qemu_alarm_win32 *data = t->priv;
1451
    UINT flags;
1452

    
1453
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1454
    if (!data->host_alarm) {
1455
        perror("Failed CreateEvent");
1456
        return -1;
1457
    }
1458

    
1459
    memset(&tc, 0, sizeof(tc));
1460
    timeGetDevCaps(&tc, sizeof(tc));
1461

    
1462
    if (data->period < tc.wPeriodMin)
1463
        data->period = tc.wPeriodMin;
1464

    
1465
    timeBeginPeriod(data->period);
1466

    
1467
    flags = TIME_CALLBACK_FUNCTION;
1468
    if (alarm_has_dynticks(t))
1469
        flags |= TIME_ONESHOT;
1470
    else
1471
        flags |= TIME_PERIODIC;
1472

    
1473
    data->timerId = timeSetEvent(1,         // interval (ms)
1474
                        data->period,       // resolution
1475
                        host_alarm_handler, // function
1476
                        (DWORD)t,           // parameter
1477
                        flags);
1478

    
1479
    if (!data->timerId) {
1480
        perror("Failed to initialize win32 alarm timer");
1481

    
1482
        timeEndPeriod(data->period);
1483
        CloseHandle(data->host_alarm);
1484
        return -1;
1485
    }
1486

    
1487
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1488

    
1489
    return 0;
1490
}
1491

    
1492
static void win32_stop_timer(struct qemu_alarm_timer *t)
1493
{
1494
    struct qemu_alarm_win32 *data = t->priv;
1495

    
1496
    timeKillEvent(data->timerId);
1497
    timeEndPeriod(data->period);
1498

    
1499
    CloseHandle(data->host_alarm);
1500
}
1501

    
1502
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1503
{
1504
    struct qemu_alarm_win32 *data = t->priv;
1505
    uint64_t nearest_delta_us;
1506

    
1507
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1508
                !active_timers[QEMU_TIMER_VIRTUAL])
1509
            return;
1510

    
1511
    nearest_delta_us = qemu_next_deadline();
1512
    nearest_delta_us /= 1000;
1513

    
1514
    timeKillEvent(data->timerId);
1515

    
1516
    data->timerId = timeSetEvent(1,
1517
                        data->period,
1518
                        host_alarm_handler,
1519
                        (DWORD)t,
1520
                        TIME_ONESHOT | TIME_PERIODIC);
1521

    
1522
    if (!data->timerId) {
1523
        perror("Failed to re-arm win32 alarm timer");
1524

    
1525
        timeEndPeriod(data->period);
1526
        CloseHandle(data->host_alarm);
1527
        exit(1);
1528
    }
1529
}
1530

    
1531
#endif /* _WIN32 */
1532

    
1533
static void init_timer_alarm(void)
1534
{
1535
    struct qemu_alarm_timer *t;
1536
    int i, err = -1;
1537

    
1538
    for (i = 0; alarm_timers[i].name; i++) {
1539
        t = &alarm_timers[i];
1540

    
1541
        err = t->start(t);
1542
        if (!err)
1543
            break;
1544
    }
1545

    
1546
    if (err) {
1547
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1548
        fprintf(stderr, "Terminating\n");
1549
        exit(1);
1550
    }
1551

    
1552
    alarm_timer = t;
1553
}
1554

    
1555
static void quit_timers(void)
1556
{
1557
    alarm_timer->stop(alarm_timer);
1558
    alarm_timer = NULL;
1559
}
1560

    
1561
/***********************************************************/
1562
/* character device */
1563

    
1564
static void qemu_chr_event(CharDriverState *s, int event)
1565
{
1566
    if (!s->chr_event)
1567
        return;
1568
    s->chr_event(s->handler_opaque, event);
1569
}
1570

    
1571
static void qemu_chr_reset_bh(void *opaque)
1572
{
1573
    CharDriverState *s = opaque;
1574
    qemu_chr_event(s, CHR_EVENT_RESET);
1575
    qemu_bh_delete(s->bh);
1576
    s->bh = NULL;
1577
}
1578

    
1579
void qemu_chr_reset(CharDriverState *s)
1580
{
1581
    if (s->bh == NULL) {
1582
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1583
        qemu_bh_schedule(s->bh);
1584
    }
1585
}
1586

    
1587
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1588
{
1589
    return s->chr_write(s, buf, len);
1590
}
1591

    
1592
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1593
{
1594
    if (!s->chr_ioctl)
1595
        return -ENOTSUP;
1596
    return s->chr_ioctl(s, cmd, arg);
1597
}
1598

    
1599
int qemu_chr_can_read(CharDriverState *s)
1600
{
1601
    if (!s->chr_can_read)
1602
        return 0;
1603
    return s->chr_can_read(s->handler_opaque);
1604
}
1605

    
1606
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1607
{
1608
    s->chr_read(s->handler_opaque, buf, len);
1609
}
1610

    
1611
void qemu_chr_accept_input(CharDriverState *s)
1612
{
1613
    if (s->chr_accept_input)
1614
        s->chr_accept_input(s);
1615
}
1616

    
1617
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1618
{
1619
    char buf[4096];
1620
    va_list ap;
1621
    va_start(ap, fmt);
1622
    vsnprintf(buf, sizeof(buf), fmt, ap);
1623
    qemu_chr_write(s, (uint8_t *)buf, strlen(buf));
1624
    va_end(ap);
1625
}
1626

    
1627
void qemu_chr_send_event(CharDriverState *s, int event)
1628
{
1629
    if (s->chr_send_event)
1630
        s->chr_send_event(s, event);
1631
}
1632

    
1633
void qemu_chr_add_handlers(CharDriverState *s,
1634
                           IOCanRWHandler *fd_can_read,
1635
                           IOReadHandler *fd_read,
1636
                           IOEventHandler *fd_event,
1637
                           void *opaque)
1638
{
1639
    s->chr_can_read = fd_can_read;
1640
    s->chr_read = fd_read;
1641
    s->chr_event = fd_event;
1642
    s->handler_opaque = opaque;
1643
    if (s->chr_update_read_handler)
1644
        s->chr_update_read_handler(s);
1645
}
1646

    
1647
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1648
{
1649
    return len;
1650
}
1651

    
1652
static CharDriverState *qemu_chr_open_null(void)
1653
{
1654
    CharDriverState *chr;
1655

    
1656
    chr = qemu_mallocz(sizeof(CharDriverState));
1657
    if (!chr)
1658
        return NULL;
1659
    chr->chr_write = null_chr_write;
1660
    return chr;
1661
}
1662

    
1663
/* MUX driver for serial I/O splitting */
1664
static int term_timestamps;
1665
static int64_t term_timestamps_start;
1666
#define MAX_MUX 4
1667
#define MUX_BUFFER_SIZE 32        /* Must be a power of 2.  */
1668
#define MUX_BUFFER_MASK (MUX_BUFFER_SIZE - 1)
1669
typedef struct {
1670
    IOCanRWHandler *chr_can_read[MAX_MUX];
1671
    IOReadHandler *chr_read[MAX_MUX];
1672
    IOEventHandler *chr_event[MAX_MUX];
1673
    void *ext_opaque[MAX_MUX];
1674
    CharDriverState *drv;
1675
    unsigned char buffer[MUX_BUFFER_SIZE];
1676
    int prod;
1677
    int cons;
1678
    int mux_cnt;
1679
    int term_got_escape;
1680
    int max_size;
1681
} MuxDriver;
1682

    
1683

    
1684
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1685
{
1686
    MuxDriver *d = chr->opaque;
1687
    int ret;
1688
    if (!term_timestamps) {
1689
        ret = d->drv->chr_write(d->drv, buf, len);
1690
    } else {
1691
        int i;
1692

    
1693
        ret = 0;
1694
        for(i = 0; i < len; i++) {
1695
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1696
            if (buf[i] == '\n') {
1697
                char buf1[64];
1698
                int64_t ti;
1699
                int secs;
1700

    
1701
                ti = get_clock();
1702
                if (term_timestamps_start == -1)
1703
                    term_timestamps_start = ti;
1704
                ti -= term_timestamps_start;
1705
                secs = ti / 1000000000;
1706
                snprintf(buf1, sizeof(buf1),
1707
                         "[%02d:%02d:%02d.%03d] ",
1708
                         secs / 3600,
1709
                         (secs / 60) % 60,
1710
                         secs % 60,
1711
                         (int)((ti / 1000000) % 1000));
1712
                d->drv->chr_write(d->drv, (uint8_t *)buf1, strlen(buf1));
1713
            }
1714
        }
1715
    }
1716
    return ret;
1717
}
1718

    
1719
static char *mux_help[] = {
1720
    "% h    print this help\n\r",
1721
    "% x    exit emulator\n\r",
1722
    "% s    save disk data back to file (if -snapshot)\n\r",
1723
    "% t    toggle console timestamps\n\r"
1724
    "% b    send break (magic sysrq)\n\r",
1725
    "% c    switch between console and monitor\n\r",
1726
    "% %  sends %\n\r",
1727
    NULL
1728
};
1729

    
1730
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1731
static void mux_print_help(CharDriverState *chr)
1732
{
1733
    int i, j;
1734
    char ebuf[15] = "Escape-Char";
1735
    char cbuf[50] = "\n\r";
1736

    
1737
    if (term_escape_char > 0 && term_escape_char < 26) {
1738
        sprintf(cbuf,"\n\r");
1739
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1740
    } else {
1741
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r",
1742
            term_escape_char);
1743
    }
1744
    chr->chr_write(chr, (uint8_t *)cbuf, strlen(cbuf));
1745
    for (i = 0; mux_help[i] != NULL; i++) {
1746
        for (j=0; mux_help[i][j] != '\0'; j++) {
1747
            if (mux_help[i][j] == '%')
1748
                chr->chr_write(chr, (uint8_t *)ebuf, strlen(ebuf));
1749
            else
1750
                chr->chr_write(chr, (uint8_t *)&mux_help[i][j], 1);
1751
        }
1752
    }
1753
}
1754

    
1755
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1756
{
1757
    if (d->term_got_escape) {
1758
        d->term_got_escape = 0;
1759
        if (ch == term_escape_char)
1760
            goto send_char;
1761
        switch(ch) {
1762
        case '?':
1763
        case 'h':
1764
            mux_print_help(chr);
1765
            break;
1766
        case 'x':
1767
            {
1768
                 char *term =  "QEMU: Terminated\n\r";
1769
                 chr->chr_write(chr,(uint8_t *)term,strlen(term));
1770
                 exit(0);
1771
                 break;
1772
            }
1773
        case 's':
1774
            {
1775
                int i;
1776
                for (i = 0; i < nb_drives; i++) {
1777
                        bdrv_commit(drives_table[i].bdrv);
1778
                }
1779
            }
1780
            break;
1781
        case 'b':
1782
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1783
            break;
1784
        case 'c':
1785
            /* Switch to the next registered device */
1786
            chr->focus++;
1787
            if (chr->focus >= d->mux_cnt)
1788
                chr->focus = 0;
1789
            break;
1790
       case 't':
1791
           term_timestamps = !term_timestamps;
1792
           term_timestamps_start = -1;
1793
           break;
1794
        }
1795
    } else if (ch == term_escape_char) {
1796
        d->term_got_escape = 1;
1797
    } else {
1798
    send_char:
1799
        return 1;
1800
    }
1801
    return 0;
1802
}
1803

    
1804
static void mux_chr_accept_input(CharDriverState *chr)
1805
{
1806
    int m = chr->focus;
1807
    MuxDriver *d = chr->opaque;
1808

    
1809
    while (d->prod != d->cons &&
1810
           d->chr_can_read[m] &&
1811
           d->chr_can_read[m](d->ext_opaque[m])) {
1812
        d->chr_read[m](d->ext_opaque[m],
1813
                       &d->buffer[d->cons++ & MUX_BUFFER_MASK], 1);
1814
    }
1815
}
1816

    
1817
static int mux_chr_can_read(void *opaque)
1818
{
1819
    CharDriverState *chr = opaque;
1820
    MuxDriver *d = chr->opaque;
1821

    
1822
    if ((d->prod - d->cons) < MUX_BUFFER_SIZE)
1823
        return 1;
1824
    if (d->chr_can_read[chr->focus])
1825
        return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1826
    return 0;
1827
}
1828

    
1829
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1830
{
1831
    CharDriverState *chr = opaque;
1832
    MuxDriver *d = chr->opaque;
1833
    int m = chr->focus;
1834
    int i;
1835

    
1836
    mux_chr_accept_input (opaque);
1837

    
1838
    for(i = 0; i < size; i++)
1839
        if (mux_proc_byte(chr, d, buf[i])) {
1840
            if (d->prod == d->cons &&
1841
                d->chr_can_read[m] &&
1842
                d->chr_can_read[m](d->ext_opaque[m]))
1843
                d->chr_read[m](d->ext_opaque[m], &buf[i], 1);
1844
            else
1845
                d->buffer[d->prod++ & MUX_BUFFER_MASK] = buf[i];
1846
        }
1847
}
1848

    
1849
static void mux_chr_event(void *opaque, int event)
1850
{
1851
    CharDriverState *chr = opaque;
1852
    MuxDriver *d = chr->opaque;
1853
    int i;
1854

    
1855
    /* Send the event to all registered listeners */
1856
    for (i = 0; i < d->mux_cnt; i++)
1857
        if (d->chr_event[i])
1858
            d->chr_event[i](d->ext_opaque[i], event);
1859
}
1860

    
1861
static void mux_chr_update_read_handler(CharDriverState *chr)
1862
{
1863
    MuxDriver *d = chr->opaque;
1864

    
1865
    if (d->mux_cnt >= MAX_MUX) {
1866
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1867
        return;
1868
    }
1869
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1870
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1871
    d->chr_read[d->mux_cnt] = chr->chr_read;
1872
    d->chr_event[d->mux_cnt] = chr->chr_event;
1873
    /* Fix up the real driver with mux routines */
1874
    if (d->mux_cnt == 0) {
1875
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1876
                              mux_chr_event, chr);
1877
    }
1878
    chr->focus = d->mux_cnt;
1879
    d->mux_cnt++;
1880
}
1881

    
1882
static CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1883
{
1884
    CharDriverState *chr;
1885
    MuxDriver *d;
1886

    
1887
    chr = qemu_mallocz(sizeof(CharDriverState));
1888
    if (!chr)
1889
        return NULL;
1890
    d = qemu_mallocz(sizeof(MuxDriver));
1891
    if (!d) {
1892
        free(chr);
1893
        return NULL;
1894
    }
1895

    
1896
    chr->opaque = d;
1897
    d->drv = drv;
1898
    chr->focus = -1;
1899
    chr->chr_write = mux_chr_write;
1900
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1901
    chr->chr_accept_input = mux_chr_accept_input;
1902
    return chr;
1903
}
1904

    
1905

    
1906
#ifdef _WIN32
1907

    
1908
static void socket_cleanup(void)
1909
{
1910
    WSACleanup();
1911
}
1912

    
1913
static int socket_init(void)
1914
{
1915
    WSADATA Data;
1916
    int ret, err;
1917

    
1918
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1919
    if (ret != 0) {
1920
        err = WSAGetLastError();
1921
        fprintf(stderr, "WSAStartup: %d\n", err);
1922
        return -1;
1923
    }
1924
    atexit(socket_cleanup);
1925
    return 0;
1926
}
1927

    
1928
static int send_all(int fd, const uint8_t *buf, int len1)
1929
{
1930
    int ret, len;
1931

    
1932
    len = len1;
1933
    while (len > 0) {
1934
        ret = send(fd, buf, len, 0);
1935
        if (ret < 0) {
1936
            int errno;
1937
            errno = WSAGetLastError();
1938
            if (errno != WSAEWOULDBLOCK) {
1939
                return -1;
1940
            }
1941
        } else if (ret == 0) {
1942
            break;
1943
        } else {
1944
            buf += ret;
1945
            len -= ret;
1946
        }
1947
    }
1948
    return len1 - len;
1949
}
1950

    
1951
void socket_set_nonblock(int fd)
1952
{
1953
    unsigned long opt = 1;
1954
    ioctlsocket(fd, FIONBIO, &opt);
1955
}
1956

    
1957
#else
1958

    
1959
static int unix_write(int fd, const uint8_t *buf, int len1)
1960
{
1961
    int ret, len;
1962

    
1963
    len = len1;
1964
    while (len > 0) {
1965
        ret = write(fd, buf, len);
1966
        if (ret < 0) {
1967
            if (errno != EINTR && errno != EAGAIN)
1968
                return -1;
1969
        } else if (ret == 0) {
1970
            break;
1971
        } else {
1972
            buf += ret;
1973
            len -= ret;
1974
        }
1975
    }
1976
    return len1 - len;
1977
}
1978

    
1979
static inline int send_all(int fd, const uint8_t *buf, int len1)
1980
{
1981
    return unix_write(fd, buf, len1);
1982
}
1983

    
1984
void socket_set_nonblock(int fd)
1985
{
1986
    fcntl(fd, F_SETFL, O_NONBLOCK);
1987
}
1988
#endif /* !_WIN32 */
1989

    
1990
#ifndef _WIN32
1991

    
1992
typedef struct {
1993
    int fd_in, fd_out;
1994
    int max_size;
1995
} FDCharDriver;
1996

    
1997
#define STDIO_MAX_CLIENTS 1
1998
static int stdio_nb_clients = 0;
1999

    
2000
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2001
{
2002
    FDCharDriver *s = chr->opaque;
2003
    return unix_write(s->fd_out, buf, len);
2004
}
2005

    
2006
static int fd_chr_read_poll(void *opaque)
2007
{
2008
    CharDriverState *chr = opaque;
2009
    FDCharDriver *s = chr->opaque;
2010

    
2011
    s->max_size = qemu_chr_can_read(chr);
2012
    return s->max_size;
2013
}
2014

    
2015
static void fd_chr_read(void *opaque)
2016
{
2017
    CharDriverState *chr = opaque;
2018
    FDCharDriver *s = chr->opaque;
2019
    int size, len;
2020
    uint8_t buf[1024];
2021

    
2022
    len = sizeof(buf);
2023
    if (len > s->max_size)
2024
        len = s->max_size;
2025
    if (len == 0)
2026
        return;
2027
    size = read(s->fd_in, buf, len);
2028
    if (size == 0) {
2029
        /* FD has been closed. Remove it from the active list.  */
2030
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
2031
        return;
2032
    }
2033
    if (size > 0) {
2034
        qemu_chr_read(chr, buf, size);
2035
    }
2036
}
2037

    
2038
static void fd_chr_update_read_handler(CharDriverState *chr)
2039
{
2040
    FDCharDriver *s = chr->opaque;
2041

    
2042
    if (s->fd_in >= 0) {
2043
        if (nographic && s->fd_in == 0) {
2044
        } else {
2045
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
2046
                                 fd_chr_read, NULL, chr);
2047
        }
2048
    }
2049
}
2050

    
2051
/* open a character device to a unix fd */
2052
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
2053
{
2054
    CharDriverState *chr;
2055
    FDCharDriver *s;
2056

    
2057
    chr = qemu_mallocz(sizeof(CharDriverState));
2058
    if (!chr)
2059
        return NULL;
2060
    s = qemu_mallocz(sizeof(FDCharDriver));
2061
    if (!s) {
2062
        free(chr);
2063
        return NULL;
2064
    }
2065
    s->fd_in = fd_in;
2066
    s->fd_out = fd_out;
2067
    chr->opaque = s;
2068
    chr->chr_write = fd_chr_write;
2069
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2070

    
2071
    qemu_chr_reset(chr);
2072

    
2073
    return chr;
2074
}
2075

    
2076
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2077
{
2078
    int fd_out;
2079

    
2080
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2081
    if (fd_out < 0)
2082
        return NULL;
2083
    return qemu_chr_open_fd(-1, fd_out);
2084
}
2085

    
2086
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2087
{
2088
    int fd_in, fd_out;
2089
    char filename_in[256], filename_out[256];
2090

    
2091
    snprintf(filename_in, 256, "%s.in", filename);
2092
    snprintf(filename_out, 256, "%s.out", filename);
2093
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2094
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2095
    if (fd_in < 0 || fd_out < 0) {
2096
        if (fd_in >= 0)
2097
            close(fd_in);
2098
        if (fd_out >= 0)
2099
            close(fd_out);
2100
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2101
        if (fd_in < 0)
2102
            return NULL;
2103
    }
2104
    return qemu_chr_open_fd(fd_in, fd_out);
2105
}
2106

    
2107

    
2108
/* for STDIO, we handle the case where several clients use it
2109
   (nographic mode) */
2110

    
2111
#define TERM_FIFO_MAX_SIZE 1
2112

    
2113
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2114
static int term_fifo_size;
2115

    
2116
static int stdio_read_poll(void *opaque)
2117
{
2118
    CharDriverState *chr = opaque;
2119

    
2120
    /* try to flush the queue if needed */
2121
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2122
        qemu_chr_read(chr, term_fifo, 1);
2123
        term_fifo_size = 0;
2124
    }
2125
    /* see if we can absorb more chars */
2126
    if (term_fifo_size == 0)
2127
        return 1;
2128
    else
2129
        return 0;
2130
}
2131

    
2132
static void stdio_read(void *opaque)
2133
{
2134
    int size;
2135
    uint8_t buf[1];
2136
    CharDriverState *chr = opaque;
2137

    
2138
    size = read(0, buf, 1);
2139
    if (size == 0) {
2140
        /* stdin has been closed. Remove it from the active list.  */
2141
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2142
        return;
2143
    }
2144
    if (size > 0) {
2145
        if (qemu_chr_can_read(chr) > 0) {
2146
            qemu_chr_read(chr, buf, 1);
2147
        } else if (term_fifo_size == 0) {
2148
            term_fifo[term_fifo_size++] = buf[0];
2149
        }
2150
    }
2151
}
2152

    
2153
/* init terminal so that we can grab keys */
2154
static struct termios oldtty;
2155
static int old_fd0_flags;
2156

    
2157
static void term_exit(void)
2158
{
2159
    tcsetattr (0, TCSANOW, &oldtty);
2160
    fcntl(0, F_SETFL, old_fd0_flags);
2161
}
2162

    
2163
static void term_init(void)
2164
{
2165
    struct termios tty;
2166

    
2167
    tcgetattr (0, &tty);
2168
    oldtty = tty;
2169
    old_fd0_flags = fcntl(0, F_GETFL);
2170

    
2171
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2172
                          |INLCR|IGNCR|ICRNL|IXON);
2173
    tty.c_oflag |= OPOST;
2174
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2175
    /* if graphical mode, we allow Ctrl-C handling */
2176
    if (nographic)
2177
        tty.c_lflag &= ~ISIG;
2178
    tty.c_cflag &= ~(CSIZE|PARENB);
2179
    tty.c_cflag |= CS8;
2180
    tty.c_cc[VMIN] = 1;
2181
    tty.c_cc[VTIME] = 0;
2182

    
2183
    tcsetattr (0, TCSANOW, &tty);
2184

    
2185
    atexit(term_exit);
2186

    
2187
    fcntl(0, F_SETFL, O_NONBLOCK);
2188
}
2189

    
2190
static CharDriverState *qemu_chr_open_stdio(void)
2191
{
2192
    CharDriverState *chr;
2193

    
2194
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2195
        return NULL;
2196
    chr = qemu_chr_open_fd(0, 1);
2197
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2198
    stdio_nb_clients++;
2199
    term_init();
2200

    
2201
    return chr;
2202
}
2203

    
2204
#if defined(__linux__) || defined(__sun__)
2205
static CharDriverState *qemu_chr_open_pty(void)
2206
{
2207
    struct termios tty;
2208
    char slave_name[1024];
2209
    int master_fd, slave_fd;
2210

    
2211
#if defined(__linux__)
2212
    /* Not satisfying */
2213
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2214
        return NULL;
2215
    }
2216
#endif
2217

    
2218
    /* Disabling local echo and line-buffered output */
2219
    tcgetattr (master_fd, &tty);
2220
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2221
    tty.c_cc[VMIN] = 1;
2222
    tty.c_cc[VTIME] = 0;
2223
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2224

    
2225
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2226
    return qemu_chr_open_fd(master_fd, master_fd);
2227
}
2228

    
2229
static void tty_serial_init(int fd, int speed,
2230
                            int parity, int data_bits, int stop_bits)
2231
{
2232
    struct termios tty;
2233
    speed_t spd;
2234

    
2235
#if 0
2236
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2237
           speed, parity, data_bits, stop_bits);
2238
#endif
2239
    tcgetattr (fd, &tty);
2240

    
2241
    switch(speed) {
2242
    case 50:
2243
        spd = B50;
2244
        break;
2245
    case 75:
2246
        spd = B75;
2247
        break;
2248
    case 300:
2249
        spd = B300;
2250
        break;
2251
    case 600:
2252
        spd = B600;
2253
        break;
2254
    case 1200:
2255
        spd = B1200;
2256
        break;
2257
    case 2400:
2258
        spd = B2400;
2259
        break;
2260
    case 4800:
2261
        spd = B4800;
2262
        break;
2263
    case 9600:
2264
        spd = B9600;
2265
        break;
2266
    case 19200:
2267
        spd = B19200;
2268
        break;
2269
    case 38400:
2270
        spd = B38400;
2271
        break;
2272
    case 57600:
2273
        spd = B57600;
2274
        break;
2275
    default:
2276
    case 115200:
2277
        spd = B115200;
2278
        break;
2279
    }
2280

    
2281
    cfsetispeed(&tty, spd);
2282
    cfsetospeed(&tty, spd);
2283

    
2284
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2285
                          |INLCR|IGNCR|ICRNL|IXON);
2286
    tty.c_oflag |= OPOST;
2287
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2288
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2289
    switch(data_bits) {
2290
    default:
2291
    case 8:
2292
        tty.c_cflag |= CS8;
2293
        break;
2294
    case 7:
2295
        tty.c_cflag |= CS7;
2296
        break;
2297
    case 6:
2298
        tty.c_cflag |= CS6;
2299
        break;
2300
    case 5:
2301
        tty.c_cflag |= CS5;
2302
        break;
2303
    }
2304
    switch(parity) {
2305
    default:
2306
    case 'N':
2307
        break;
2308
    case 'E':
2309
        tty.c_cflag |= PARENB;
2310
        break;
2311
    case 'O':
2312
        tty.c_cflag |= PARENB | PARODD;
2313
        break;
2314
    }
2315
    if (stop_bits == 2)
2316
        tty.c_cflag |= CSTOPB;
2317

    
2318
    tcsetattr (fd, TCSANOW, &tty);
2319
}
2320

    
2321
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2322
{
2323
    FDCharDriver *s = chr->opaque;
2324

    
2325
    switch(cmd) {
2326
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2327
        {
2328
            QEMUSerialSetParams *ssp = arg;
2329
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2330
                            ssp->data_bits, ssp->stop_bits);
2331
        }
2332
        break;
2333
    case CHR_IOCTL_SERIAL_SET_BREAK:
2334
        {
2335
            int enable = *(int *)arg;
2336
            if (enable)
2337
                tcsendbreak(s->fd_in, 1);
2338
        }
2339
        break;
2340
    default:
2341
        return -ENOTSUP;
2342
    }
2343
    return 0;
2344
}
2345

    
2346
static CharDriverState *qemu_chr_open_tty(const char *filename)
2347
{
2348
    CharDriverState *chr;
2349
    int fd;
2350

    
2351
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2352
    fcntl(fd, F_SETFL, O_NONBLOCK);
2353
    tty_serial_init(fd, 115200, 'N', 8, 1);
2354
    chr = qemu_chr_open_fd(fd, fd);
2355
    if (!chr) {
2356
        close(fd);
2357
        return NULL;
2358
    }
2359
    chr->chr_ioctl = tty_serial_ioctl;
2360
    qemu_chr_reset(chr);
2361
    return chr;
2362
}
2363
#else  /* ! __linux__ && ! __sun__ */
2364
static CharDriverState *qemu_chr_open_pty(void)
2365
{
2366
    return NULL;
2367
}
2368
#endif /* __linux__ || __sun__ */
2369

    
2370
#if defined(__linux__)
2371
typedef struct {
2372
    int fd;
2373
    int mode;
2374
} ParallelCharDriver;
2375

    
2376
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2377
{
2378
    if (s->mode != mode) {
2379
        int m = mode;
2380
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2381
            return 0;
2382
        s->mode = mode;
2383
    }
2384
    return 1;
2385
}
2386

    
2387
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2388
{
2389
    ParallelCharDriver *drv = chr->opaque;
2390
    int fd = drv->fd;
2391
    uint8_t b;
2392

    
2393
    switch(cmd) {
2394
    case CHR_IOCTL_PP_READ_DATA:
2395
        if (ioctl(fd, PPRDATA, &b) < 0)
2396
            return -ENOTSUP;
2397
        *(uint8_t *)arg = b;
2398
        break;
2399
    case CHR_IOCTL_PP_WRITE_DATA:
2400
        b = *(uint8_t *)arg;
2401
        if (ioctl(fd, PPWDATA, &b) < 0)
2402
            return -ENOTSUP;
2403
        break;
2404
    case CHR_IOCTL_PP_READ_CONTROL:
2405
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2406
            return -ENOTSUP;
2407
        /* Linux gives only the lowest bits, and no way to know data
2408
           direction! For better compatibility set the fixed upper
2409
           bits. */
2410
        *(uint8_t *)arg = b | 0xc0;
2411
        break;
2412
    case CHR_IOCTL_PP_WRITE_CONTROL:
2413
        b = *(uint8_t *)arg;
2414
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2415
            return -ENOTSUP;
2416
        break;
2417
    case CHR_IOCTL_PP_READ_STATUS:
2418
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2419
            return -ENOTSUP;
2420
        *(uint8_t *)arg = b;
2421
        break;
2422
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2423
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2424
            struct ParallelIOArg *parg = arg;
2425
            int n = read(fd, parg->buffer, parg->count);
2426
            if (n != parg->count) {
2427
                return -EIO;
2428
            }
2429
        }
2430
        break;
2431
    case CHR_IOCTL_PP_EPP_READ:
2432
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2433
            struct ParallelIOArg *parg = arg;
2434
            int n = read(fd, parg->buffer, parg->count);
2435
            if (n != parg->count) {
2436
                return -EIO;
2437
            }
2438
        }
2439
        break;
2440
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2441
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2442
            struct ParallelIOArg *parg = arg;
2443
            int n = write(fd, parg->buffer, parg->count);
2444
            if (n != parg->count) {
2445
                return -EIO;
2446
            }
2447
        }
2448
        break;
2449
    case CHR_IOCTL_PP_EPP_WRITE:
2450
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2451
            struct ParallelIOArg *parg = arg;
2452
            int n = write(fd, parg->buffer, parg->count);
2453
            if (n != parg->count) {
2454
                return -EIO;
2455
            }
2456
        }
2457
        break;
2458
    default:
2459
        return -ENOTSUP;
2460
    }
2461
    return 0;
2462
}
2463

    
2464
static void pp_close(CharDriverState *chr)
2465
{
2466
    ParallelCharDriver *drv = chr->opaque;
2467
    int fd = drv->fd;
2468

    
2469
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2470
    ioctl(fd, PPRELEASE);
2471
    close(fd);
2472
    qemu_free(drv);
2473
}
2474

    
2475
static CharDriverState *qemu_chr_open_pp(const char *filename)
2476
{
2477
    CharDriverState *chr;
2478
    ParallelCharDriver *drv;
2479
    int fd;
2480

    
2481
    TFR(fd = open(filename, O_RDWR));
2482
    if (fd < 0)
2483
        return NULL;
2484

    
2485
    if (ioctl(fd, PPCLAIM) < 0) {
2486
        close(fd);
2487
        return NULL;
2488
    }
2489

    
2490
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2491
    if (!drv) {
2492
        close(fd);
2493
        return NULL;
2494
    }
2495
    drv->fd = fd;
2496
    drv->mode = IEEE1284_MODE_COMPAT;
2497

    
2498
    chr = qemu_mallocz(sizeof(CharDriverState));
2499
    if (!chr) {
2500
        qemu_free(drv);
2501
        close(fd);
2502
        return NULL;
2503
    }
2504
    chr->chr_write = null_chr_write;
2505
    chr->chr_ioctl = pp_ioctl;
2506
    chr->chr_close = pp_close;
2507
    chr->opaque = drv;
2508

    
2509
    qemu_chr_reset(chr);
2510

    
2511
    return chr;
2512
}
2513
#endif /* __linux__ */
2514

    
2515
#else /* _WIN32 */
2516

    
2517
typedef struct {
2518
    int max_size;
2519
    HANDLE hcom, hrecv, hsend;
2520
    OVERLAPPED orecv, osend;
2521
    BOOL fpipe;
2522
    DWORD len;
2523
} WinCharState;
2524

    
2525
#define NSENDBUF 2048
2526
#define NRECVBUF 2048
2527
#define MAXCONNECT 1
2528
#define NTIMEOUT 5000
2529

    
2530
static int win_chr_poll(void *opaque);
2531
static int win_chr_pipe_poll(void *opaque);
2532

    
2533
static void win_chr_close(CharDriverState *chr)
2534
{
2535
    WinCharState *s = chr->opaque;
2536

    
2537
    if (s->hsend) {
2538
        CloseHandle(s->hsend);
2539
        s->hsend = NULL;
2540
    }
2541
    if (s->hrecv) {
2542
        CloseHandle(s->hrecv);
2543
        s->hrecv = NULL;
2544
    }
2545
    if (s->hcom) {
2546
        CloseHandle(s->hcom);
2547
        s->hcom = NULL;
2548
    }
2549
    if (s->fpipe)
2550
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2551
    else
2552
        qemu_del_polling_cb(win_chr_poll, chr);
2553
}
2554

    
2555
static int win_chr_init(CharDriverState *chr, const char *filename)
2556
{
2557
    WinCharState *s = chr->opaque;
2558
    COMMCONFIG comcfg;
2559
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2560
    COMSTAT comstat;
2561
    DWORD size;
2562
    DWORD err;
2563

    
2564
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2565
    if (!s->hsend) {
2566
        fprintf(stderr, "Failed CreateEvent\n");
2567
        goto fail;
2568
    }
2569
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2570
    if (!s->hrecv) {
2571
        fprintf(stderr, "Failed CreateEvent\n");
2572
        goto fail;
2573
    }
2574

    
2575
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2576
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2577
    if (s->hcom == INVALID_HANDLE_VALUE) {
2578
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2579
        s->hcom = NULL;
2580
        goto fail;
2581
    }
2582

    
2583
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2584
        fprintf(stderr, "Failed SetupComm\n");
2585
        goto fail;
2586
    }
2587

    
2588
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2589
    size = sizeof(COMMCONFIG);
2590
    GetDefaultCommConfig(filename, &comcfg, &size);
2591
    comcfg.dcb.DCBlength = sizeof(DCB);
2592
    CommConfigDialog(filename, NULL, &comcfg);
2593

    
2594
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2595
        fprintf(stderr, "Failed SetCommState\n");
2596
        goto fail;
2597
    }
2598

    
2599
    if (!SetCommMask(s->hcom, EV_ERR)) {
2600
        fprintf(stderr, "Failed SetCommMask\n");
2601
        goto fail;
2602
    }
2603

    
2604
    cto.ReadIntervalTimeout = MAXDWORD;
2605
    if (!SetCommTimeouts(s->hcom, &cto)) {
2606
        fprintf(stderr, "Failed SetCommTimeouts\n");
2607
        goto fail;
2608
    }
2609

    
2610
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2611
        fprintf(stderr, "Failed ClearCommError\n");
2612
        goto fail;
2613
    }
2614
    qemu_add_polling_cb(win_chr_poll, chr);
2615
    return 0;
2616

    
2617
 fail:
2618
    win_chr_close(chr);
2619
    return -1;
2620
}
2621

    
2622
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2623
{
2624
    WinCharState *s = chr->opaque;
2625
    DWORD len, ret, size, err;
2626

    
2627
    len = len1;
2628
    ZeroMemory(&s->osend, sizeof(s->osend));
2629
    s->osend.hEvent = s->hsend;
2630
    while (len > 0) {
2631
        if (s->hsend)
2632
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2633
        else
2634
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2635
        if (!ret) {
2636
            err = GetLastError();
2637
            if (err == ERROR_IO_PENDING) {
2638
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2639
                if (ret) {
2640
                    buf += size;
2641
                    len -= size;
2642
                } else {
2643
                    break;
2644
                }
2645
            } else {
2646
                break;
2647
            }
2648
        } else {
2649
            buf += size;
2650
            len -= size;
2651
        }
2652
    }
2653
    return len1 - len;
2654
}
2655

    
2656
static int win_chr_read_poll(CharDriverState *chr)
2657
{
2658
    WinCharState *s = chr->opaque;
2659

    
2660
    s->max_size = qemu_chr_can_read(chr);
2661
    return s->max_size;
2662
}
2663

    
2664
static void win_chr_readfile(CharDriverState *chr)
2665
{
2666
    WinCharState *s = chr->opaque;
2667
    int ret, err;
2668
    uint8_t buf[1024];
2669
    DWORD size;
2670

    
2671
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2672
    s->orecv.hEvent = s->hrecv;
2673
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2674
    if (!ret) {
2675
        err = GetLastError();
2676
        if (err == ERROR_IO_PENDING) {
2677
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2678
        }
2679
    }
2680

    
2681
    if (size > 0) {
2682
        qemu_chr_read(chr, buf, size);
2683
    }
2684
}
2685

    
2686
static void win_chr_read(CharDriverState *chr)
2687
{
2688
    WinCharState *s = chr->opaque;
2689

    
2690
    if (s->len > s->max_size)
2691
        s->len = s->max_size;
2692
    if (s->len == 0)
2693
        return;
2694

    
2695
    win_chr_readfile(chr);
2696
}
2697

    
2698
static int win_chr_poll(void *opaque)
2699
{
2700
    CharDriverState *chr = opaque;
2701
    WinCharState *s = chr->opaque;
2702
    COMSTAT status;
2703
    DWORD comerr;
2704

    
2705
    ClearCommError(s->hcom, &comerr, &status);
2706
    if (status.cbInQue > 0) {
2707
        s->len = status.cbInQue;
2708
        win_chr_read_poll(chr);
2709
        win_chr_read(chr);
2710
        return 1;
2711
    }
2712
    return 0;
2713
}
2714

    
2715
static CharDriverState *qemu_chr_open_win(const char *filename)
2716
{
2717
    CharDriverState *chr;
2718
    WinCharState *s;
2719

    
2720
    chr = qemu_mallocz(sizeof(CharDriverState));
2721
    if (!chr)
2722
        return NULL;
2723
    s = qemu_mallocz(sizeof(WinCharState));
2724
    if (!s) {
2725
        free(chr);
2726
        return NULL;
2727
    }
2728
    chr->opaque = s;
2729
    chr->chr_write = win_chr_write;
2730
    chr->chr_close = win_chr_close;
2731

    
2732
    if (win_chr_init(chr, filename) < 0) {
2733
        free(s);
2734
        free(chr);
2735
        return NULL;
2736
    }
2737
    qemu_chr_reset(chr);
2738
    return chr;
2739
}
2740

    
2741
static int win_chr_pipe_poll(void *opaque)
2742
{
2743
    CharDriverState *chr = opaque;
2744
    WinCharState *s = chr->opaque;
2745
    DWORD size;
2746

    
2747
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2748
    if (size > 0) {
2749
        s->len = size;
2750
        win_chr_read_poll(chr);
2751
        win_chr_read(chr);
2752
        return 1;
2753
    }
2754
    return 0;
2755
}
2756

    
2757
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2758
{
2759
    WinCharState *s = chr->opaque;
2760
    OVERLAPPED ov;
2761
    int ret;
2762
    DWORD size;
2763
    char openname[256];
2764

    
2765
    s->fpipe = TRUE;
2766

    
2767
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2768
    if (!s->hsend) {
2769
        fprintf(stderr, "Failed CreateEvent\n");
2770
        goto fail;
2771
    }
2772
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2773
    if (!s->hrecv) {
2774
        fprintf(stderr, "Failed CreateEvent\n");
2775
        goto fail;
2776
    }
2777

    
2778
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2779
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2780
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2781
                              PIPE_WAIT,
2782
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2783
    if (s->hcom == INVALID_HANDLE_VALUE) {
2784
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2785
        s->hcom = NULL;
2786
        goto fail;
2787
    }
2788

    
2789
    ZeroMemory(&ov, sizeof(ov));
2790
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2791
    ret = ConnectNamedPipe(s->hcom, &ov);
2792
    if (ret) {
2793
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2794
        goto fail;
2795
    }
2796

    
2797
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2798
    if (!ret) {
2799
        fprintf(stderr, "Failed GetOverlappedResult\n");
2800
        if (ov.hEvent) {
2801
            CloseHandle(ov.hEvent);
2802
            ov.hEvent = NULL;
2803
        }
2804
        goto fail;
2805
    }
2806

    
2807
    if (ov.hEvent) {
2808
        CloseHandle(ov.hEvent);
2809
        ov.hEvent = NULL;
2810
    }
2811
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2812
    return 0;
2813

    
2814
 fail:
2815
    win_chr_close(chr);
2816
    return -1;
2817
}
2818

    
2819

    
2820
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2821
{
2822
    CharDriverState *chr;
2823
    WinCharState *s;
2824

    
2825
    chr = qemu_mallocz(sizeof(CharDriverState));
2826
    if (!chr)
2827
        return NULL;
2828
    s = qemu_mallocz(sizeof(WinCharState));
2829
    if (!s) {
2830
        free(chr);
2831
        return NULL;
2832
    }
2833
    chr->opaque = s;
2834
    chr->chr_write = win_chr_write;
2835
    chr->chr_close = win_chr_close;
2836

    
2837
    if (win_chr_pipe_init(chr, filename) < 0) {
2838
        free(s);
2839
        free(chr);
2840
        return NULL;
2841
    }
2842
    qemu_chr_reset(chr);
2843
    return chr;
2844
}
2845

    
2846
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2847
{
2848
    CharDriverState *chr;
2849
    WinCharState *s;
2850

    
2851
    chr = qemu_mallocz(sizeof(CharDriverState));
2852
    if (!chr)
2853
        return NULL;
2854
    s = qemu_mallocz(sizeof(WinCharState));
2855
    if (!s) {
2856
        free(chr);
2857
        return NULL;
2858
    }
2859
    s->hcom = fd_out;
2860
    chr->opaque = s;
2861
    chr->chr_write = win_chr_write;
2862
    qemu_chr_reset(chr);
2863
    return chr;
2864
}
2865

    
2866
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2867
{
2868
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2869
}
2870

    
2871
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2872
{
2873
    HANDLE fd_out;
2874

    
2875
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2876
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2877
    if (fd_out == INVALID_HANDLE_VALUE)
2878
        return NULL;
2879

    
2880
    return qemu_chr_open_win_file(fd_out);
2881
}
2882
#endif /* !_WIN32 */
2883

    
2884
/***********************************************************/
2885
/* UDP Net console */
2886

    
2887
typedef struct {
2888
    int fd;
2889
    struct sockaddr_in daddr;
2890
    uint8_t buf[1024];
2891
    int bufcnt;
2892
    int bufptr;
2893
    int max_size;
2894
} NetCharDriver;
2895

    
2896
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2897
{
2898
    NetCharDriver *s = chr->opaque;
2899

    
2900
    return sendto(s->fd, buf, len, 0,
2901
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2902
}
2903

    
2904
static int udp_chr_read_poll(void *opaque)
2905
{
2906
    CharDriverState *chr = opaque;
2907
    NetCharDriver *s = chr->opaque;
2908

    
2909
    s->max_size = qemu_chr_can_read(chr);
2910

    
2911
    /* If there were any stray characters in the queue process them
2912
     * first
2913
     */
2914
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2915
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2916
        s->bufptr++;
2917
        s->max_size = qemu_chr_can_read(chr);
2918
    }
2919
    return s->max_size;
2920
}
2921

    
2922
static void udp_chr_read(void *opaque)
2923
{
2924
    CharDriverState *chr = opaque;
2925
    NetCharDriver *s = chr->opaque;
2926

    
2927
    if (s->max_size == 0)
2928
        return;
2929
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2930
    s->bufptr = s->bufcnt;
2931
    if (s->bufcnt <= 0)
2932
        return;
2933

    
2934
    s->bufptr = 0;
2935
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2936
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2937
        s->bufptr++;
2938
        s->max_size = qemu_chr_can_read(chr);
2939
    }
2940
}
2941

    
2942
static void udp_chr_update_read_handler(CharDriverState *chr)
2943
{
2944
    NetCharDriver *s = chr->opaque;
2945

    
2946
    if (s->fd >= 0) {
2947
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2948
                             udp_chr_read, NULL, chr);
2949
    }
2950
}
2951

    
2952
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2953
#ifndef _WIN32
2954
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2955
#endif
2956
int parse_host_src_port(struct sockaddr_in *haddr,
2957
                        struct sockaddr_in *saddr,
2958
                        const char *str);
2959

    
2960
static CharDriverState *qemu_chr_open_udp(const char *def)
2961
{
2962
    CharDriverState *chr = NULL;
2963
    NetCharDriver *s = NULL;
2964
    int fd = -1;
2965
    struct sockaddr_in saddr;
2966

    
2967
    chr = qemu_mallocz(sizeof(CharDriverState));
2968
    if (!chr)
2969
        goto return_err;
2970
    s = qemu_mallocz(sizeof(NetCharDriver));
2971
    if (!s)
2972
        goto return_err;
2973

    
2974
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2975
    if (fd < 0) {
2976
        perror("socket(PF_INET, SOCK_DGRAM)");
2977
        goto return_err;
2978
    }
2979

    
2980
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2981
        printf("Could not parse: %s\n", def);
2982
        goto return_err;
2983
    }
2984

    
2985
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2986
    {
2987
        perror("bind");
2988
        goto return_err;
2989
    }
2990

    
2991
    s->fd = fd;
2992
    s->bufcnt = 0;
2993
    s->bufptr = 0;
2994
    chr->opaque = s;
2995
    chr->chr_write = udp_chr_write;
2996
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2997
    return chr;
2998

    
2999
return_err:
3000
    if (chr)
3001
        free(chr);
3002
    if (s)
3003
        free(s);
3004
    if (fd >= 0)
3005
        closesocket(fd);
3006
    return NULL;
3007
}
3008

    
3009
/***********************************************************/
3010
/* TCP Net console */
3011

    
3012
typedef struct {
3013
    int fd, listen_fd;
3014
    int connected;
3015
    int max_size;
3016
    int do_telnetopt;
3017
    int do_nodelay;
3018
    int is_unix;
3019
} TCPCharDriver;
3020

    
3021
static void tcp_chr_accept(void *opaque);
3022

    
3023
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
3024
{
3025
    TCPCharDriver *s = chr->opaque;
3026
    if (s->connected) {
3027
        return send_all(s->fd, buf, len);
3028
    } else {
3029
        /* XXX: indicate an error ? */
3030
        return len;
3031
    }
3032
}
3033

    
3034
static int tcp_chr_read_poll(void *opaque)
3035
{
3036
    CharDriverState *chr = opaque;
3037
    TCPCharDriver *s = chr->opaque;
3038
    if (!s->connected)
3039
        return 0;
3040
    s->max_size = qemu_chr_can_read(chr);
3041
    return s->max_size;
3042
}
3043

    
3044
#define IAC 255
3045
#define IAC_BREAK 243
3046
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
3047
                                      TCPCharDriver *s,
3048
                                      uint8_t *buf, int *size)
3049
{
3050
    /* Handle any telnet client's basic IAC options to satisfy char by
3051
     * char mode with no echo.  All IAC options will be removed from
3052
     * the buf and the do_telnetopt variable will be used to track the
3053
     * state of the width of the IAC information.
3054
     *
3055
     * IAC commands come in sets of 3 bytes with the exception of the
3056
     * "IAC BREAK" command and the double IAC.
3057
     */
3058

    
3059
    int i;
3060
    int j = 0;
3061

    
3062
    for (i = 0; i < *size; i++) {
3063
        if (s->do_telnetopt > 1) {
3064
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3065
                /* Double IAC means send an IAC */
3066
                if (j != i)
3067
                    buf[j] = buf[i];
3068
                j++;
3069
                s->do_telnetopt = 1;
3070
            } else {
3071
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3072
                    /* Handle IAC break commands by sending a serial break */
3073
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3074
                    s->do_telnetopt++;
3075
                }
3076
                s->do_telnetopt++;
3077
            }
3078
            if (s->do_telnetopt >= 4) {
3079
                s->do_telnetopt = 1;
3080
            }
3081
        } else {
3082
            if ((unsigned char)buf[i] == IAC) {
3083
                s->do_telnetopt = 2;
3084
            } else {
3085
                if (j != i)
3086
                    buf[j] = buf[i];
3087
                j++;
3088
            }
3089
        }
3090
    }
3091
    *size = j;
3092
}
3093

    
3094
static void tcp_chr_read(void *opaque)
3095
{
3096
    CharDriverState *chr = opaque;
3097
    TCPCharDriver *s = chr->opaque;
3098
    uint8_t buf[1024];
3099
    int len, size;
3100

    
3101
    if (!s->connected || s->max_size <= 0)
3102
        return;
3103
    len = sizeof(buf);
3104
    if (len > s->max_size)
3105
        len = s->max_size;
3106
    size = recv(s->fd, buf, len, 0);
3107
    if (size == 0) {
3108
        /* connection closed */
3109
        s->connected = 0;
3110
        if (s->listen_fd >= 0) {
3111
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3112
        }
3113
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3114
        closesocket(s->fd);
3115
        s->fd = -1;
3116
    } else if (size > 0) {
3117
        if (s->do_telnetopt)
3118
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3119
        if (size > 0)
3120
            qemu_chr_read(chr, buf, size);
3121
    }
3122
}
3123

    
3124
static void tcp_chr_connect(void *opaque)
3125
{
3126
    CharDriverState *chr = opaque;
3127
    TCPCharDriver *s = chr->opaque;
3128

    
3129
    s->connected = 1;
3130
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3131
                         tcp_chr_read, NULL, chr);
3132
    qemu_chr_reset(chr);
3133
}
3134

    
3135
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3136
static void tcp_chr_telnet_init(int fd)
3137
{
3138
    char buf[3];
3139
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3140
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3141
    send(fd, (char *)buf, 3, 0);
3142
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3143
    send(fd, (char *)buf, 3, 0);
3144
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3145
    send(fd, (char *)buf, 3, 0);
3146
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3147
    send(fd, (char *)buf, 3, 0);
3148
}
3149

    
3150
static void socket_set_nodelay(int fd)
3151
{
3152
    int val = 1;
3153
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3154
}
3155

    
3156
static void tcp_chr_accept(void *opaque)
3157
{
3158
    CharDriverState *chr = opaque;
3159
    TCPCharDriver *s = chr->opaque;
3160
    struct sockaddr_in saddr;
3161
#ifndef _WIN32
3162
    struct sockaddr_un uaddr;
3163
#endif
3164
    struct sockaddr *addr;
3165
    socklen_t len;
3166
    int fd;
3167

    
3168
    for(;;) {
3169
#ifndef _WIN32
3170
        if (s->is_unix) {
3171
            len = sizeof(uaddr);
3172
            addr = (struct sockaddr *)&uaddr;
3173
        } else
3174
#endif
3175
        {
3176
            len = sizeof(saddr);
3177
            addr = (struct sockaddr *)&saddr;
3178
        }
3179
        fd = accept(s->listen_fd, addr, &len);
3180
        if (fd < 0 && errno != EINTR) {
3181
            return;
3182
        } else if (fd >= 0) {
3183
            if (s->do_telnetopt)
3184
                tcp_chr_telnet_init(fd);
3185
            break;
3186
        }
3187
    }
3188
    socket_set_nonblock(fd);
3189
    if (s->do_nodelay)
3190
        socket_set_nodelay(fd);
3191
    s->fd = fd;
3192
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3193
    tcp_chr_connect(chr);
3194
}
3195

    
3196
static void tcp_chr_close(CharDriverState *chr)
3197
{
3198
    TCPCharDriver *s = chr->opaque;
3199
    if (s->fd >= 0)
3200
        closesocket(s->fd);
3201
    if (s->listen_fd >= 0)
3202
        closesocket(s->listen_fd);
3203
    qemu_free(s);
3204
}
3205

    
3206
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3207
                                          int is_telnet,
3208
                                          int is_unix)
3209
{
3210
    CharDriverState *chr = NULL;
3211
    TCPCharDriver *s = NULL;
3212
    int fd = -1, ret, err, val;
3213
    int is_listen = 0;
3214
    int is_waitconnect = 1;
3215
    int do_nodelay = 0;
3216
    const char *ptr;
3217
    struct sockaddr_in saddr;
3218
#ifndef _WIN32
3219
    struct sockaddr_un uaddr;
3220
#endif
3221
    struct sockaddr *addr;
3222
    socklen_t addrlen;
3223

    
3224
#ifndef _WIN32
3225
    if (is_unix) {
3226
        addr = (struct sockaddr *)&uaddr;
3227
        addrlen = sizeof(uaddr);
3228
        if (parse_unix_path(&uaddr, host_str) < 0)
3229
            goto fail;
3230
    } else
3231
#endif
3232
    {
3233
        addr = (struct sockaddr *)&saddr;
3234
        addrlen = sizeof(saddr);
3235
        if (parse_host_port(&saddr, host_str) < 0)
3236
            goto fail;
3237
    }
3238

    
3239
    ptr = host_str;
3240
    while((ptr = strchr(ptr,','))) {
3241
        ptr++;
3242
        if (!strncmp(ptr,"server",6)) {
3243
            is_listen = 1;
3244
        } else if (!strncmp(ptr,"nowait",6)) {
3245
            is_waitconnect = 0;
3246
        } else if (!strncmp(ptr,"nodelay",6)) {
3247
            do_nodelay = 1;
3248
        } else {
3249
            printf("Unknown option: %s\n", ptr);
3250
            goto fail;
3251
        }
3252
    }
3253
    if (!is_listen)
3254
        is_waitconnect = 0;
3255

    
3256
    chr = qemu_mallocz(sizeof(CharDriverState));
3257
    if (!chr)
3258
        goto fail;
3259
    s = qemu_mallocz(sizeof(TCPCharDriver));
3260
    if (!s)
3261
        goto fail;
3262

    
3263
#ifndef _WIN32
3264
    if (is_unix)
3265
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3266
    else
3267
#endif
3268
        fd = socket(PF_INET, SOCK_STREAM, 0);
3269

    
3270
    if (fd < 0)
3271
        goto fail;
3272

    
3273
    if (!is_waitconnect)
3274
        socket_set_nonblock(fd);
3275

    
3276
    s->connected = 0;
3277
    s->fd = -1;
3278
    s->listen_fd = -1;
3279
    s->is_unix = is_unix;
3280
    s->do_nodelay = do_nodelay && !is_unix;
3281

    
3282
    chr->opaque = s;
3283
    chr->chr_write = tcp_chr_write;
3284
    chr->chr_close = tcp_chr_close;
3285

    
3286
    if (is_listen) {
3287
        /* allow fast reuse */
3288
#ifndef _WIN32
3289
        if (is_unix) {
3290
            char path[109];
3291
            strncpy(path, uaddr.sun_path, 108);
3292
            path[108] = 0;
3293
            unlink(path);
3294
        } else
3295
#endif
3296
        {
3297
            val = 1;
3298
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3299
        }
3300

    
3301
        ret = bind(fd, addr, addrlen);
3302
        if (ret < 0)
3303
            goto fail;
3304

    
3305
        ret = listen(fd, 0);
3306
        if (ret < 0)
3307
            goto fail;
3308

    
3309
        s->listen_fd = fd;
3310
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3311
        if (is_telnet)
3312
            s->do_telnetopt = 1;
3313
    } else {
3314
        for(;;) {
3315
            ret = connect(fd, addr, addrlen);
3316
            if (ret < 0) {
3317
                err = socket_error();
3318
                if (err == EINTR || err == EWOULDBLOCK) {
3319
                } else if (err == EINPROGRESS) {
3320
                    break;
3321
#ifdef _WIN32
3322
                } else if (err == WSAEALREADY) {
3323
                    break;
3324
#endif
3325
                } else {
3326
                    goto fail;
3327
                }
3328
            } else {
3329
                s->connected = 1;
3330
                break;
3331
            }
3332
        }
3333
        s->fd = fd;
3334
        socket_set_nodelay(fd);
3335
        if (s->connected)
3336
            tcp_chr_connect(chr);
3337
        else
3338
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3339
    }
3340

    
3341
    if (is_listen && is_waitconnect) {
3342
        printf("QEMU waiting for connection on: %s\n", host_str);
3343
        tcp_chr_accept(chr);
3344
        socket_set_nonblock(s->listen_fd);
3345
    }
3346

    
3347
    return chr;
3348
 fail:
3349
    if (fd >= 0)
3350
        closesocket(fd);
3351
    qemu_free(s);
3352
    qemu_free(chr);
3353
    return NULL;
3354
}
3355

    
3356
CharDriverState *qemu_chr_open(const char *filename)
3357
{
3358
    const char *p;
3359

    
3360
    if (!strcmp(filename, "vc")) {
3361
        return text_console_init(&display_state, 0);
3362
    } else if (strstart(filename, "vc:", &p)) {
3363
        return text_console_init(&display_state, p);
3364
    } else if (!strcmp(filename, "null")) {
3365
        return qemu_chr_open_null();
3366
    } else
3367
    if (strstart(filename, "tcp:", &p)) {
3368
        return qemu_chr_open_tcp(p, 0, 0);
3369
    } else
3370
    if (strstart(filename, "telnet:", &p)) {
3371
        return qemu_chr_open_tcp(p, 1, 0);
3372
    } else
3373
    if (strstart(filename, "udp:", &p)) {
3374
        return qemu_chr_open_udp(p);
3375
    } else
3376
    if (strstart(filename, "mon:", &p)) {
3377
        CharDriverState *drv = qemu_chr_open(p);
3378
        if (drv) {
3379
            drv = qemu_chr_open_mux(drv);
3380
            monitor_init(drv, !nographic);
3381
            return drv;
3382
        }
3383
        printf("Unable to open driver: %s\n", p);
3384
        return 0;
3385
    } else
3386
#ifndef _WIN32
3387
    if (strstart(filename, "unix:", &p)) {
3388
        return qemu_chr_open_tcp(p, 0, 1);
3389
    } else if (strstart(filename, "file:", &p)) {
3390
        return qemu_chr_open_file_out(p);
3391
    } else if (strstart(filename, "pipe:", &p)) {
3392
        return qemu_chr_open_pipe(p);
3393
    } else if (!strcmp(filename, "pty")) {
3394
        return qemu_chr_open_pty();
3395
    } else if (!strcmp(filename, "stdio")) {
3396
        return qemu_chr_open_stdio();
3397
    } else
3398
#if defined(__linux__)
3399
    if (strstart(filename, "/dev/parport", NULL)) {
3400
        return qemu_chr_open_pp(filename);
3401
    } else
3402
#endif
3403
#if defined(__linux__) || defined(__sun__)
3404
    if (strstart(filename, "/dev/", NULL)) {
3405
        return qemu_chr_open_tty(filename);
3406
    } else
3407
#endif
3408
#else /* !_WIN32 */
3409
    if (strstart(filename, "COM", NULL)) {
3410
        return qemu_chr_open_win(filename);
3411
    } else
3412
    if (strstart(filename, "pipe:", &p)) {
3413
        return qemu_chr_open_win_pipe(p);
3414
    } else
3415
    if (strstart(filename, "con:", NULL)) {
3416
        return qemu_chr_open_win_con(filename);
3417
    } else
3418
    if (strstart(filename, "file:", &p)) {
3419
        return qemu_chr_open_win_file_out(p);
3420
    }
3421
#endif
3422
    {
3423
        return NULL;
3424
    }
3425
}
3426

    
3427
void qemu_chr_close(CharDriverState *chr)
3428
{
3429
    if (chr->chr_close)
3430
        chr->chr_close(chr);
3431
}
3432

    
3433
/***********************************************************/
3434
/* network device redirectors */
3435

    
3436
__attribute__ (( unused ))
3437
static void hex_dump(FILE *f, const uint8_t *buf, int size)
3438
{
3439
    int len, i, j, c;
3440

    
3441
    for(i=0;i<size;i+=16) {
3442
        len = size - i;
3443
        if (len > 16)
3444
            len = 16;
3445
        fprintf(f, "%08x ", i);
3446
        for(j=0;j<16;j++) {
3447
            if (j < len)
3448
                fprintf(f, " %02x", buf[i+j]);
3449
            else
3450
                fprintf(f, "   ");
3451
        }
3452
        fprintf(f, " ");
3453
        for(j=0;j<len;j++) {
3454
            c = buf[i+j];
3455
            if (c < ' ' || c > '~')
3456
                c = '.';
3457
            fprintf(f, "%c", c);
3458
        }
3459
        fprintf(f, "\n");
3460
    }
3461
}
3462

    
3463
static int parse_macaddr(uint8_t *macaddr, const char *p)
3464
{
3465
    int i;
3466
    char *last_char;
3467
    long int offset;
3468

    
3469
    errno = 0;
3470
    offset = strtol(p, &last_char, 0);    
3471
    if (0 == errno && '\0' == *last_char &&
3472
            offset >= 0 && offset <= 0xFFFFFF) {
3473
        macaddr[3] = (offset & 0xFF0000) >> 16;
3474
        macaddr[4] = (offset & 0xFF00) >> 8;
3475
        macaddr[5] = offset & 0xFF;
3476
        return 0;
3477
    } else {
3478
        for(i = 0; i < 6; i++) {
3479
            macaddr[i] = strtol(p, (char **)&p, 16);
3480
            if (i == 5) {
3481
                if (*p != '\0')
3482
                    return -1;
3483
            } else {
3484
                if (*p != ':' && *p != '-')
3485
                    return -1;
3486
                p++;
3487
            }
3488
        }
3489
        return 0;    
3490
    }
3491

    
3492
    return -1;
3493
}
3494

    
3495
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3496
{
3497
    const char *p, *p1;
3498
    int len;
3499
    p = *pp;
3500
    p1 = strchr(p, sep);
3501
    if (!p1)
3502
        return -1;
3503
    len = p1 - p;
3504
    p1++;
3505
    if (buf_size > 0) {
3506
        if (len > buf_size - 1)
3507
            len = buf_size - 1;
3508
        memcpy(buf, p, len);
3509
        buf[len] = '\0';
3510
    }
3511
    *pp = p1;
3512
    return 0;
3513
}
3514

    
3515
int parse_host_src_port(struct sockaddr_in *haddr,
3516
                        struct sockaddr_in *saddr,
3517
                        const char *input_str)
3518
{
3519
    char *str = strdup(input_str);
3520
    char *host_str = str;
3521
    char *src_str;
3522
    char *ptr;
3523

    
3524
    /*
3525
     * Chop off any extra arguments at the end of the string which
3526
     * would start with a comma, then fill in the src port information
3527
     * if it was provided else use the "any address" and "any port".
3528
     */
3529
    if ((ptr = strchr(str,',')))
3530
        *ptr = '\0';
3531

    
3532
    if ((src_str = strchr(input_str,'@'))) {
3533
        *src_str = '\0';
3534
        src_str++;
3535
    }
3536

    
3537
    if (parse_host_port(haddr, host_str) < 0)
3538
        goto fail;
3539

    
3540
    if (!src_str || *src_str == '\0')
3541
        src_str = ":0";
3542

    
3543
    if (parse_host_port(saddr, src_str) < 0)
3544
        goto fail;
3545

    
3546
    free(str);
3547
    return(0);
3548

    
3549
fail:
3550
    free(str);
3551
    return -1;
3552
}
3553

    
3554
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3555
{
3556
    char buf[512];
3557
    struct hostent *he;
3558
    const char *p, *r;
3559
    int port;
3560

    
3561
    p = str;
3562
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3563
        return -1;
3564
    saddr->sin_family = AF_INET;
3565
    if (buf[0] == '\0') {
3566
        saddr->sin_addr.s_addr = 0;
3567
    } else {
3568
        if (isdigit(buf[0])) {
3569
            if (!inet_aton(buf, &saddr->sin_addr))
3570
                return -1;
3571
        } else {
3572
            if ((he = gethostbyname(buf)) == NULL)
3573
                return - 1;
3574
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3575
        }
3576
    }
3577
    port = strtol(p, (char **)&r, 0);
3578
    if (r == p)
3579
        return -1;
3580
    saddr->sin_port = htons(port);
3581
    return 0;
3582
}
3583

    
3584
#ifndef _WIN32
3585
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3586
{
3587
    const char *p;
3588
    int len;
3589

    
3590
    len = MIN(108, strlen(str));
3591
    p = strchr(str, ',');
3592
    if (p)
3593
        len = MIN(len, p - str);
3594

    
3595
    memset(uaddr, 0, sizeof(*uaddr));
3596

    
3597
    uaddr->sun_family = AF_UNIX;
3598
    memcpy(uaddr->sun_path, str, len);
3599

    
3600
    return 0;
3601
}
3602
#endif
3603

    
3604
/* find or alloc a new VLAN */
3605
VLANState *qemu_find_vlan(int id)
3606
{
3607
    VLANState **pvlan, *vlan;
3608
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3609
        if (vlan->id == id)
3610
            return vlan;
3611
    }
3612
    vlan = qemu_mallocz(sizeof(VLANState));
3613
    if (!vlan)
3614
        return NULL;
3615
    vlan->id = id;
3616
    vlan->next = NULL;
3617
    pvlan = &first_vlan;
3618
    while (*pvlan != NULL)
3619
        pvlan = &(*pvlan)->next;
3620
    *pvlan = vlan;
3621
    return vlan;
3622
}
3623

    
3624
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3625
                                      IOReadHandler *fd_read,
3626
                                      IOCanRWHandler *fd_can_read,
3627
                                      void *opaque)
3628
{
3629
    VLANClientState *vc, **pvc;
3630
    vc = qemu_mallocz(sizeof(VLANClientState));
3631
    if (!vc)
3632
        return NULL;
3633
    vc->fd_read = fd_read;
3634
    vc->fd_can_read = fd_can_read;
3635
    vc->opaque = opaque;
3636
    vc->vlan = vlan;
3637

    
3638
    vc->next = NULL;
3639
    pvc = &vlan->first_client;
3640
    while (*pvc != NULL)
3641
        pvc = &(*pvc)->next;
3642
    *pvc = vc;
3643
    return vc;
3644
}
3645

    
3646
int qemu_can_send_packet(VLANClientState *vc1)
3647
{
3648
    VLANState *vlan = vc1->vlan;
3649
    VLANClientState *vc;
3650

    
3651
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3652
        if (vc != vc1) {
3653
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3654
                return 1;
3655
        }
3656
    }
3657
    return 0;
3658
}
3659

    
3660
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3661
{
3662
    VLANState *vlan = vc1->vlan;
3663
    VLANClientState *vc;
3664

    
3665
#if 0
3666
    printf("vlan %d send:\n", vlan->id);
3667
    hex_dump(stdout, buf, size);
3668
#endif
3669
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3670
        if (vc != vc1) {
3671
            vc->fd_read(vc->opaque, buf, size);
3672
        }
3673
    }
3674
}
3675

    
3676
#if defined(CONFIG_SLIRP)
3677

    
3678
/* slirp network adapter */
3679

    
3680
static int slirp_inited;
3681
static VLANClientState *slirp_vc;
3682

    
3683
int slirp_can_output(void)
3684
{
3685
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3686
}
3687

    
3688
void slirp_output(const uint8_t *pkt, int pkt_len)
3689
{
3690
#if 0
3691
    printf("slirp output:\n");
3692
    hex_dump(stdout, pkt, pkt_len);
3693
#endif
3694
    if (!slirp_vc)
3695
        return;
3696
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3697
}
3698

    
3699
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3700
{
3701
#if 0
3702
    printf("slirp input:\n");
3703
    hex_dump(stdout, buf, size);
3704
#endif
3705
    slirp_input(buf, size);
3706
}
3707

    
3708
static int net_slirp_init(VLANState *vlan)
3709
{
3710
    if (!slirp_inited) {
3711
        slirp_inited = 1;
3712
        slirp_init();
3713
    }
3714
    slirp_vc = qemu_new_vlan_client(vlan,
3715
                                    slirp_receive, NULL, NULL);
3716
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3717
    return 0;
3718
}
3719

    
3720
static void net_slirp_redir(const char *redir_str)
3721
{
3722
    int is_udp;
3723
    char buf[256], *r;
3724
    const char *p;
3725
    struct in_addr guest_addr;
3726
    int host_port, guest_port;
3727

    
3728
    if (!slirp_inited) {
3729
        slirp_inited = 1;
3730
        slirp_init();
3731
    }
3732

    
3733
    p = redir_str;
3734
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3735
        goto fail;
3736
    if (!strcmp(buf, "tcp")) {
3737
        is_udp = 0;
3738
    } else if (!strcmp(buf, "udp")) {
3739
        is_udp = 1;
3740
    } else {
3741
        goto fail;
3742
    }
3743

    
3744
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3745
        goto fail;
3746
    host_port = strtol(buf, &r, 0);
3747
    if (r == buf)
3748
        goto fail;
3749

    
3750
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3751
        goto fail;
3752
    if (buf[0] == '\0') {
3753
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3754
    }
3755
    if (!inet_aton(buf, &guest_addr))
3756
        goto fail;
3757

    
3758
    guest_port = strtol(p, &r, 0);
3759
    if (r == p)
3760
        goto fail;
3761

    
3762
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3763
        fprintf(stderr, "qemu: could not set up redirection\n");
3764
        exit(1);
3765
    }
3766
    return;
3767
 fail:
3768
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3769
    exit(1);
3770
}
3771

    
3772
#ifndef _WIN32
3773

    
3774
char smb_dir[1024];
3775

    
3776
static void smb_exit(void)
3777
{
3778
    DIR *d;
3779
    struct dirent *de;
3780
    char filename[1024];
3781

    
3782
    /* erase all the files in the directory */
3783
    d = opendir(smb_dir);
3784
    for(;;) {
3785
        de = readdir(d);
3786
        if (!de)
3787
            break;
3788
        if (strcmp(de->d_name, ".") != 0 &&
3789
            strcmp(de->d_name, "..") != 0) {
3790
            snprintf(filename, sizeof(filename), "%s/%s",
3791
                     smb_dir, de->d_name);
3792
            unlink(filename);
3793
        }
3794
    }
3795
    closedir(d);
3796
    rmdir(smb_dir);
3797
}
3798

    
3799
/* automatic user mode samba server configuration */
3800
static void net_slirp_smb(const char *exported_dir)
3801
{
3802
    char smb_conf[1024];
3803
    char smb_cmdline[1024];
3804
    FILE *f;
3805

    
3806
    if (!slirp_inited) {
3807
        slirp_inited = 1;
3808
        slirp_init();
3809
    }
3810

    
3811
    /* XXX: better tmp dir construction */
3812
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3813
    if (mkdir(smb_dir, 0700) < 0) {
3814
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3815
        exit(1);
3816
    }
3817
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3818

    
3819
    f = fopen(smb_conf, "w");
3820
    if (!f) {
3821
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3822
        exit(1);
3823
    }
3824
    fprintf(f,
3825
            "[global]\n"
3826
            "private dir=%s\n"
3827
            "smb ports=0\n"
3828
            "socket address=127.0.0.1\n"
3829
            "pid directory=%s\n"
3830
            "lock directory=%s\n"
3831
            "log file=%s/log.smbd\n"
3832
            "smb passwd file=%s/smbpasswd\n"
3833
            "security = share\n"
3834
            "[qemu]\n"
3835
            "path=%s\n"
3836
            "read only=no\n"
3837
            "guest ok=yes\n",
3838
            smb_dir,
3839
            smb_dir,
3840
            smb_dir,
3841
            smb_dir,
3842
            smb_dir,
3843
            exported_dir
3844
            );
3845
    fclose(f);
3846
    atexit(smb_exit);
3847

    
3848
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3849
             SMBD_COMMAND, smb_conf);
3850

    
3851
    slirp_add_exec(0, smb_cmdline, 4, 139);
3852
}
3853

    
3854
#endif /* !defined(_WIN32) */
3855
void do_info_slirp(void)
3856
{
3857
    slirp_stats();
3858
}
3859

    
3860
#endif /* CONFIG_SLIRP */
3861

    
3862
#if !defined(_WIN32)
3863

    
3864
typedef struct TAPState {
3865
    VLANClientState *vc;
3866
    int fd;
3867
    char down_script[1024];
3868
} TAPState;
3869

    
3870
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3871
{
3872
    TAPState *s = opaque;
3873
    int ret;
3874
    for(;;) {
3875
        ret = write(s->fd, buf, size);
3876
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3877
        } else {
3878
            break;
3879
        }
3880
    }
3881
}
3882

    
3883
static void tap_send(void *opaque)
3884
{
3885
    TAPState *s = opaque;
3886
    uint8_t buf[4096];
3887
    int size;
3888

    
3889
#ifdef __sun__
3890
    struct strbuf sbuf;
3891
    int f = 0;
3892
    sbuf.maxlen = sizeof(buf);
3893
    sbuf.buf = buf;
3894
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3895
#else
3896
    size = read(s->fd, buf, sizeof(buf));
3897
#endif
3898
    if (size > 0) {
3899
        qemu_send_packet(s->vc, buf, size);
3900
    }
3901
}
3902

    
3903
/* fd support */
3904

    
3905
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3906
{
3907
    TAPState *s;
3908

    
3909
    s = qemu_mallocz(sizeof(TAPState));
3910
    if (!s)
3911
        return NULL;
3912
    s->fd = fd;
3913
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3914
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3915
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3916
    return s;
3917
}
3918

    
3919
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3920
static int tap_open(char *ifname, int ifname_size)
3921
{
3922
    int fd;
3923
    char *dev;
3924
    struct stat s;
3925

    
3926
    TFR(fd = open("/dev/tap", O_RDWR));
3927
    if (fd < 0) {
3928
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3929
        return -1;
3930
    }
3931

    
3932
    fstat(fd, &s);
3933
    dev = devname(s.st_rdev, S_IFCHR);
3934
    pstrcpy(ifname, ifname_size, dev);
3935

    
3936
    fcntl(fd, F_SETFL, O_NONBLOCK);
3937
    return fd;
3938
}
3939
#elif defined(__sun__)
3940
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3941
/*
3942
 * Allocate TAP device, returns opened fd.
3943
 * Stores dev name in the first arg(must be large enough).
3944
 */
3945
int tap_alloc(char *dev)
3946
{
3947
    int tap_fd, if_fd, ppa = -1;
3948
    static int ip_fd = 0;
3949
    char *ptr;
3950

    
3951
    static int arp_fd = 0;
3952
    int ip_muxid, arp_muxid;
3953
    struct strioctl  strioc_if, strioc_ppa;
3954
    int link_type = I_PLINK;;
3955
    struct lifreq ifr;
3956
    char actual_name[32] = "";
3957

    
3958
    memset(&ifr, 0x0, sizeof(ifr));
3959

    
3960
    if( *dev ){
3961
       ptr = dev;
3962
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3963
       ppa = atoi(ptr);
3964
    }
3965

    
3966
    /* Check if IP device was opened */
3967
    if( ip_fd )
3968
       close(ip_fd);
3969

    
3970
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3971
    if (ip_fd < 0) {
3972
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3973
       return -1;
3974
    }
3975

    
3976
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3977
    if (tap_fd < 0) {
3978
       syslog(LOG_ERR, "Can't open /dev/tap");
3979
       return -1;
3980
    }
3981

    
3982
    /* Assign a new PPA and get its unit number. */
3983
    strioc_ppa.ic_cmd = TUNNEWPPA;
3984
    strioc_ppa.ic_timout = 0;
3985
    strioc_ppa.ic_len = sizeof(ppa);
3986
    strioc_ppa.ic_dp = (char *)&ppa;
3987
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3988
       syslog (LOG_ERR, "Can't assign new interface");
3989

    
3990
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3991
    if (if_fd < 0) {
3992
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3993
       return -1;
3994
    }
3995
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3996
       syslog(LOG_ERR, "Can't push IP module");
3997
       return -1;
3998
    }
3999

    
4000
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
4001
        syslog(LOG_ERR, "Can't get flags\n");
4002

    
4003
    snprintf (actual_name, 32, "tap%d", ppa);
4004
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4005

    
4006
    ifr.lifr_ppa = ppa;
4007
    /* Assign ppa according to the unit number returned by tun device */
4008

    
4009
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
4010
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
4011
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
4012
        syslog (LOG_ERR, "Can't get flags\n");
4013
    /* Push arp module to if_fd */
4014
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
4015
        syslog (LOG_ERR, "Can't push ARP module (2)");
4016

    
4017
    /* Push arp module to ip_fd */
4018
    if (ioctl (ip_fd, I_POP, NULL) < 0)
4019
        syslog (LOG_ERR, "I_POP failed\n");
4020
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
4021
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
4022
    /* Open arp_fd */
4023
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
4024
    if (arp_fd < 0)
4025
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
4026

    
4027
    /* Set ifname to arp */
4028
    strioc_if.ic_cmd = SIOCSLIFNAME;
4029
    strioc_if.ic_timout = 0;
4030
    strioc_if.ic_len = sizeof(ifr);
4031
    strioc_if.ic_dp = (char *)&ifr;
4032
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
4033
        syslog (LOG_ERR, "Can't set ifname to arp\n");
4034
    }
4035

    
4036
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
4037
       syslog(LOG_ERR, "Can't link TAP device to IP");
4038
       return -1;
4039
    }
4040

    
4041
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
4042
        syslog (LOG_ERR, "Can't link TAP device to ARP");
4043

    
4044
    close (if_fd);
4045

    
4046
    memset(&ifr, 0x0, sizeof(ifr));
4047
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
4048
    ifr.lifr_ip_muxid  = ip_muxid;
4049
    ifr.lifr_arp_muxid = arp_muxid;
4050

    
4051
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
4052
    {
4053
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
4054
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
4055
      syslog (LOG_ERR, "Can't set multiplexor id");
4056
    }
4057

    
4058
    sprintf(dev, "tap%d", ppa);
4059
    return tap_fd;
4060
}
4061

    
4062
static int tap_open(char *ifname, int ifname_size)
4063
{
4064
    char  dev[10]="";
4065
    int fd;
4066
    if( (fd = tap_alloc(dev)) < 0 ){
4067
       fprintf(stderr, "Cannot allocate TAP device\n");
4068
       return -1;
4069
    }
4070
    pstrcpy(ifname, ifname_size, dev);
4071
    fcntl(fd, F_SETFL, O_NONBLOCK);
4072
    return fd;
4073
}
4074
#else
4075
static int tap_open(char *ifname, int ifname_size)
4076
{
4077
    struct ifreq ifr;
4078
    int fd, ret;
4079

    
4080
    TFR(fd = open("/dev/net/tun", O_RDWR));
4081
    if (fd < 0) {
4082
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4083
        return -1;
4084
    }
4085
    memset(&ifr, 0, sizeof(ifr));
4086
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4087
    if (ifname[0] != '\0')
4088
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4089
    else
4090
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4091
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4092
    if (ret != 0) {
4093
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4094
        close(fd);
4095
        return -1;
4096
    }
4097
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4098
    fcntl(fd, F_SETFL, O_NONBLOCK);
4099
    return fd;
4100
}
4101
#endif
4102

    
4103
static int launch_script(const char *setup_script, const char *ifname, int fd)
4104
{
4105
    int pid, status;
4106
    char *args[3];
4107
    char **parg;
4108

    
4109
        /* try to launch network script */
4110
        pid = fork();
4111
        if (pid >= 0) {
4112
            if (pid == 0) {
4113
                int open_max = sysconf (_SC_OPEN_MAX), i;
4114
                for (i = 0; i < open_max; i++)
4115
                    if (i != STDIN_FILENO &&
4116
                        i != STDOUT_FILENO &&
4117
                        i != STDERR_FILENO &&
4118
                        i != fd)
4119
                        close(i);
4120

    
4121
                parg = args;
4122
                *parg++ = (char *)setup_script;
4123
                *parg++ = (char *)ifname;
4124
                *parg++ = NULL;
4125
                execv(setup_script, args);
4126
                _exit(1);
4127
            }
4128
            while (waitpid(pid, &status, 0) != pid);
4129
            if (!WIFEXITED(status) ||
4130
                WEXITSTATUS(status) != 0) {
4131
                fprintf(stderr, "%s: could not launch network script\n",
4132
                        setup_script);
4133
                return -1;
4134
            }
4135
        }
4136
    return 0;
4137
}
4138

    
4139
static int net_tap_init(VLANState *vlan, const char *ifname1,
4140
                        const char *setup_script, const char *down_script)
4141
{
4142
    TAPState *s;
4143
    int fd;
4144
    char ifname[128];
4145

    
4146
    if (ifname1 != NULL)
4147
        pstrcpy(ifname, sizeof(ifname), ifname1);
4148
    else
4149
        ifname[0] = '\0';
4150
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4151
    if (fd < 0)
4152
        return -1;
4153

    
4154
    if (!setup_script || !strcmp(setup_script, "no"))
4155
        setup_script = "";
4156
    if (setup_script[0] != '\0') {
4157
        if (launch_script(setup_script, ifname, fd))
4158
            return -1;
4159
    }
4160
    s = net_tap_fd_init(vlan, fd);
4161
    if (!s)
4162
        return -1;
4163
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4164
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4165
    if (down_script && strcmp(down_script, "no"))
4166
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4167
    return 0;
4168
}
4169

    
4170
#endif /* !_WIN32 */
4171

    
4172
/* network connection */
4173
typedef struct NetSocketState {
4174
    VLANClientState *vc;
4175
    int fd;
4176
    int state; /* 0 = getting length, 1 = getting data */
4177
    int index;
4178
    int packet_len;
4179
    uint8_t buf[4096];
4180
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4181
} NetSocketState;
4182

    
4183
typedef struct NetSocketListenState {
4184
    VLANState *vlan;
4185
    int fd;
4186
} NetSocketListenState;
4187

    
4188
/* XXX: we consider we can send the whole packet without blocking */
4189
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4190
{
4191
    NetSocketState *s = opaque;
4192
    uint32_t len;
4193
    len = htonl(size);
4194

    
4195
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4196
    send_all(s->fd, buf, size);
4197
}
4198

    
4199
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4200
{
4201
    NetSocketState *s = opaque;
4202
    sendto(s->fd, buf, size, 0,
4203
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4204
}
4205

    
4206
static void net_socket_send(void *opaque)
4207
{
4208
    NetSocketState *s = opaque;
4209
    int l, size, err;
4210
    uint8_t buf1[4096];
4211
    const uint8_t *buf;
4212

    
4213
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4214
    if (size < 0) {
4215
        err = socket_error();
4216
        if (err != EWOULDBLOCK)
4217
            goto eoc;
4218
    } else if (size == 0) {
4219
        /* end of connection */
4220
    eoc:
4221
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4222
        closesocket(s->fd);
4223
        return;
4224
    }
4225
    buf = buf1;
4226
    while (size > 0) {
4227
        /* reassemble a packet from the network */
4228
        switch(s->state) {
4229
        case 0:
4230
            l = 4 - s->index;
4231
            if (l > size)
4232
                l = size;
4233
            memcpy(s->buf + s->index, buf, l);
4234
            buf += l;
4235
            size -= l;
4236
            s->index += l;
4237
            if (s->index == 4) {
4238
                /* got length */
4239
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4240
                s->index = 0;
4241
                s->state = 1;
4242
            }
4243
            break;
4244
        case 1:
4245
            l = s->packet_len - s->index;
4246
            if (l > size)
4247
                l = size;
4248
            memcpy(s->buf + s->index, buf, l);
4249
            s->index += l;
4250
            buf += l;
4251
            size -= l;
4252
            if (s->index >= s->packet_len) {
4253
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4254
                s->index = 0;
4255
                s->state = 0;
4256
            }
4257
            break;
4258
        }
4259
    }
4260
}
4261

    
4262
static void net_socket_send_dgram(void *opaque)
4263
{
4264
    NetSocketState *s = opaque;
4265
    int size;
4266

    
4267
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4268
    if (size < 0)
4269
        return;
4270
    if (size == 0) {
4271
        /* end of connection */
4272
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4273
        return;
4274
    }
4275
    qemu_send_packet(s->vc, s->buf, size);
4276
}
4277

    
4278
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4279
{
4280
    struct ip_mreq imr;
4281
    int fd;
4282
    int val, ret;
4283
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4284
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4285
                inet_ntoa(mcastaddr->sin_addr),
4286
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4287
        return -1;
4288

    
4289
    }
4290
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4291
    if (fd < 0) {
4292
        perror("socket(PF_INET, SOCK_DGRAM)");
4293
        return -1;
4294
    }
4295

    
4296
    val = 1;
4297
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4298
                   (const char *)&val, sizeof(val));
4299
    if (ret < 0) {
4300
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4301
        goto fail;
4302
    }
4303

    
4304
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4305
    if (ret < 0) {
4306
        perror("bind");
4307
        goto fail;
4308
    }
4309

    
4310
    /* Add host to multicast group */
4311
    imr.imr_multiaddr = mcastaddr->sin_addr;
4312
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4313

    
4314
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4315
                     (const char *)&imr, sizeof(struct ip_mreq));
4316
    if (ret < 0) {
4317
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4318
        goto fail;
4319
    }
4320

    
4321
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4322
    val = 1;
4323
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4324
                   (const char *)&val, sizeof(val));
4325
    if (ret < 0) {
4326
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4327
        goto fail;
4328
    }
4329

    
4330
    socket_set_nonblock(fd);
4331
    return fd;
4332
fail:
4333
    if (fd >= 0)
4334
        closesocket(fd);
4335
    return -1;
4336
}
4337

    
4338
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4339
                                          int is_connected)
4340
{
4341
    struct sockaddr_in saddr;
4342
    int newfd;
4343
    socklen_t saddr_len;
4344
    NetSocketState *s;
4345

    
4346
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4347
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4348
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4349
     */
4350

    
4351
    if (is_connected) {
4352
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4353
            /* must be bound */
4354
            if (saddr.sin_addr.s_addr==0) {
4355
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4356
                        fd);
4357
                return NULL;
4358
            }
4359
            /* clone dgram socket */
4360
            newfd = net_socket_mcast_create(&saddr);
4361
            if (newfd < 0) {
4362
                /* error already reported by net_socket_mcast_create() */
4363
                close(fd);
4364
                return NULL;
4365
            }
4366
            /* clone newfd to fd, close newfd */
4367
            dup2(newfd, fd);
4368
            close(newfd);
4369

    
4370
        } else {
4371
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4372
                    fd, strerror(errno));
4373
            return NULL;
4374
        }
4375
    }
4376

    
4377
    s = qemu_mallocz(sizeof(NetSocketState));
4378
    if (!s)
4379
        return NULL;
4380
    s->fd = fd;
4381

    
4382
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4383
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4384

    
4385
    /* mcast: save bound address as dst */
4386
    if (is_connected) s->dgram_dst=saddr;
4387

    
4388
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4389
            "socket: fd=%d (%s mcast=%s:%d)",
4390
            fd, is_connected? "cloned" : "",
4391
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4392
    return s;
4393
}
4394

    
4395
static void net_socket_connect(void *opaque)
4396
{
4397
    NetSocketState *s = opaque;
4398
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4399
}
4400

    
4401
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4402
                                          int is_connected)
4403
{
4404
    NetSocketState *s;
4405
    s = qemu_mallocz(sizeof(NetSocketState));
4406
    if (!s)
4407
        return NULL;
4408
    s->fd = fd;
4409
    s->vc = qemu_new_vlan_client(vlan,
4410
                                 net_socket_receive, NULL, s);
4411
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4412
             "socket: fd=%d", fd);
4413
    if (is_connected) {
4414
        net_socket_connect(s);
4415
    } else {
4416
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4417
    }
4418
    return s;
4419
}
4420

    
4421
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4422
                                          int is_connected)
4423
{
4424
    int so_type=-1, optlen=sizeof(so_type);
4425

    
4426
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type,
4427
        (socklen_t *)&optlen)< 0) {
4428
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4429
        return NULL;
4430
    }
4431
    switch(so_type) {
4432
    case SOCK_DGRAM:
4433
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4434
    case SOCK_STREAM:
4435
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4436
    default:
4437
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4438
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4439
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4440
    }
4441
    return NULL;
4442
}
4443

    
4444
static void net_socket_accept(void *opaque)
4445
{
4446
    NetSocketListenState *s = opaque;
4447
    NetSocketState *s1;
4448
    struct sockaddr_in saddr;
4449
    socklen_t len;
4450
    int fd;
4451

    
4452
    for(;;) {
4453
        len = sizeof(saddr);
4454
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4455
        if (fd < 0 && errno != EINTR) {
4456
            return;
4457
        } else if (fd >= 0) {
4458
            break;
4459
        }
4460
    }
4461
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4462
    if (!s1) {
4463
        closesocket(fd);
4464
    } else {
4465
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4466
                 "socket: connection from %s:%d",
4467
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4468
    }
4469
}
4470

    
4471
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4472
{
4473
    NetSocketListenState *s;
4474
    int fd, val, ret;
4475
    struct sockaddr_in saddr;
4476

    
4477
    if (parse_host_port(&saddr, host_str) < 0)
4478
        return -1;
4479

    
4480
    s = qemu_mallocz(sizeof(NetSocketListenState));
4481
    if (!s)
4482
        return -1;
4483

    
4484
    fd = socket(PF_INET, SOCK_STREAM, 0);
4485
    if (fd < 0) {
4486
        perror("socket");
4487
        return -1;
4488
    }
4489
    socket_set_nonblock(fd);
4490

    
4491
    /* allow fast reuse */
4492
    val = 1;
4493
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4494

    
4495
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4496
    if (ret < 0) {
4497
        perror("bind");
4498
        return -1;
4499
    }
4500
    ret = listen(fd, 0);
4501
    if (ret < 0) {
4502
        perror("listen");
4503
        return -1;
4504
    }
4505
    s->vlan = vlan;
4506
    s->fd = fd;
4507
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4508
    return 0;
4509
}
4510

    
4511
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4512
{
4513
    NetSocketState *s;
4514
    int fd, connected, ret, err;
4515
    struct sockaddr_in saddr;
4516

    
4517
    if (parse_host_port(&saddr, host_str) < 0)
4518
        return -1;
4519

    
4520
    fd = socket(PF_INET, SOCK_STREAM, 0);
4521
    if (fd < 0) {
4522
        perror("socket");
4523
        return -1;
4524
    }
4525
    socket_set_nonblock(fd);
4526

    
4527
    connected = 0;
4528
    for(;;) {
4529
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4530
        if (ret < 0) {
4531
            err = socket_error();
4532
            if (err == EINTR || err == EWOULDBLOCK) {
4533
            } else if (err == EINPROGRESS) {
4534
                break;
4535
#ifdef _WIN32
4536
            } else if (err == WSAEALREADY) {
4537
                break;
4538
#endif
4539
            } else {
4540
                perror("connect");
4541
                closesocket(fd);
4542
                return -1;
4543
            }
4544
        } else {
4545
            connected = 1;
4546
            break;
4547
        }
4548
    }
4549
    s = net_socket_fd_init(vlan, fd, connected);
4550
    if (!s)
4551
        return -1;
4552
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4553
             "socket: connect to %s:%d",
4554
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4555
    return 0;
4556
}
4557

    
4558
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4559
{
4560
    NetSocketState *s;
4561
    int fd;
4562
    struct sockaddr_in saddr;
4563

    
4564
    if (parse_host_port(&saddr, host_str) < 0)
4565
        return -1;
4566

    
4567

    
4568
    fd = net_socket_mcast_create(&saddr);
4569
    if (fd < 0)
4570
        return -1;
4571

    
4572
    s = net_socket_fd_init(vlan, fd, 0);
4573
    if (!s)
4574
        return -1;
4575

    
4576
    s->dgram_dst = saddr;
4577

    
4578
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4579
             "socket: mcast=%s:%d",
4580
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4581
    return 0;
4582

    
4583
}
4584

    
4585
static const char *get_word(char *buf, int buf_size, const char *p)
4586
{
4587
    char *q;
4588
    int substring;
4589

    
4590
    substring = 0;
4591
    q = buf;
4592
    while (*p != '\0') {
4593
        if (*p == '\\') {
4594
            p++;
4595
            if (*p == '\0')
4596
                break;
4597
        } else if (*p == '\"') {
4598
            substring = !substring;
4599
            p++;
4600
            continue;
4601
        } else if (!substring && (*p == ',' || *p == '='))
4602
            break;
4603
        if (q && (q - buf) < buf_size - 1)
4604
            *q++ = *p;
4605
        p++;
4606
    }
4607
    if (q)
4608
        *q = '\0';
4609

    
4610
    return p;
4611
}
4612

    
4613
static int get_param_value(char *buf, int buf_size,
4614
                           const char *tag, const char *str)
4615
{
4616
    const char *p;
4617
    char option[128];
4618

    
4619
    p = str;
4620
    for(;;) {
4621
        p = get_word(option, sizeof(option), p);
4622
        if (*p != '=')
4623
            break;
4624
        p++;
4625
        if (!strcmp(tag, option)) {
4626
            (void)get_word(buf, buf_size, p);
4627
            return strlen(buf);
4628
        } else {
4629
            p = get_word(NULL, 0, p);
4630
        }
4631
        if (*p != ',')
4632
            break;
4633
        p++;
4634
    }
4635
    return 0;
4636
}
4637

    
4638
static int check_params(char *buf, int buf_size,
4639
                        char **params, const char *str)
4640
{
4641
    const char *p;
4642
    int i;
4643

    
4644
    p = str;
4645
    for(;;) {
4646
        p = get_word(buf, buf_size, p);
4647
        if (*p != '=')
4648
            return -1;
4649
        p++;
4650
        for(i = 0; params[i] != NULL; i++)
4651
            if (!strcmp(params[i], buf))
4652
                break;
4653
        if (params[i] == NULL)
4654
            return -1;
4655
        p = get_word(NULL, 0, p);
4656
        if (*p != ',')
4657
            break;
4658
        p++;
4659
    }
4660
    return 0;
4661
}
4662

    
4663

    
4664
static int net_client_init(const char *str)
4665
{
4666
    const char *p;
4667
    char *q;
4668
    char device[64];
4669
    char buf[1024];
4670
    int vlan_id, ret;
4671
    VLANState *vlan;
4672

    
4673
    p = str;
4674
    q = device;
4675
    while (*p != '\0' && *p != ',') {
4676
        if ((q - device) < sizeof(device) - 1)
4677
            *q++ = *p;
4678
        p++;
4679
    }
4680
    *q = '\0';
4681
    if (*p == ',')
4682
        p++;
4683
    vlan_id = 0;
4684
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4685
        vlan_id = strtol(buf, NULL, 0);
4686
    }
4687
    vlan = qemu_find_vlan(vlan_id);
4688
    if (!vlan) {
4689
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4690
        return -1;
4691
    }
4692
    if (!strcmp(device, "nic")) {
4693
        NICInfo *nd;
4694
        uint8_t *macaddr;
4695

    
4696
        if (nb_nics >= MAX_NICS) {
4697
            fprintf(stderr, "Too Many NICs\n");
4698
            return -1;
4699
        }
4700
        nd = &nd_table[nb_nics];
4701
        macaddr = nd->macaddr;
4702
        macaddr[0] = 0x52;
4703
        macaddr[1] = 0x54;
4704
        macaddr[2] = 0x00;
4705
        macaddr[3] = 0x12;
4706
        macaddr[4] = 0x34;
4707
        macaddr[5] = 0x56 + nb_nics;
4708

    
4709
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4710
            if (parse_macaddr(macaddr, buf) < 0) {
4711
                fprintf(stderr, "invalid syntax for ethernet address\n");
4712
                return -1;
4713
            }
4714
        }
4715
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4716
            nd->model = strdup(buf);
4717
        }
4718
        nd->vlan = vlan;
4719
        nb_nics++;
4720
        vlan->nb_guest_devs++;
4721
        ret = 0;
4722
    } else
4723
    if (!strcmp(device, "none")) {
4724
        /* does nothing. It is needed to signal that no network cards
4725
           are wanted */
4726
        ret = 0;
4727
    } else
4728
#ifdef CONFIG_SLIRP
4729
    if (!strcmp(device, "user")) {
4730
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4731
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4732
        }
4733
        vlan->nb_host_devs++;
4734
        ret = net_slirp_init(vlan);
4735
    } else
4736
#endif
4737
#ifdef _WIN32
4738
    if (!strcmp(device, "tap")) {
4739
        char ifname[64];
4740
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4741
            fprintf(stderr, "tap: no interface name\n");
4742
            return -1;
4743
        }
4744
        vlan->nb_host_devs++;
4745
        ret = tap_win32_init(vlan, ifname);
4746
    } else
4747
#else
4748
    if (!strcmp(device, "tap")) {
4749
        char ifname[64];
4750
        char setup_script[1024], down_script[1024];
4751
        int fd;
4752
        vlan->nb_host_devs++;
4753
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4754
            fd = strtol(buf, NULL, 0);
4755
            ret = -1;
4756
            if (net_tap_fd_init(vlan, fd))
4757
                ret = 0;
4758
        } else {
4759
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4760
                ifname[0] = '\0';
4761
            }
4762
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4763
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4764
            }
4765
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4766
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4767
            }
4768
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4769
        }
4770
    } else
4771
#endif
4772
    if (!strcmp(device, "socket")) {
4773
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4774
            int fd;
4775
            fd = strtol(buf, NULL, 0);
4776
            ret = -1;
4777
            if (net_socket_fd_init(vlan, fd, 1))
4778
                ret = 0;
4779
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4780
            ret = net_socket_listen_init(vlan, buf);
4781
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4782
            ret = net_socket_connect_init(vlan, buf);
4783
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4784
            ret = net_socket_mcast_init(vlan, buf);
4785
        } else {
4786
            fprintf(stderr, "Unknown socket options: %s\n", p);
4787
            return -1;
4788
        }
4789
        vlan->nb_host_devs++;
4790
    } else
4791
    {
4792
        fprintf(stderr, "Unknown network device: %s\n", device);
4793
        return -1;
4794
    }
4795
    if (ret < 0) {
4796
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4797
    }
4798

    
4799
    return ret;
4800
}
4801

    
4802
void do_info_network(void)
4803
{
4804
    VLANState *vlan;
4805
    VLANClientState *vc;
4806

    
4807
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4808
        term_printf("VLAN %d devices:\n", vlan->id);
4809
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4810
            term_printf("  %s\n", vc->info_str);
4811
    }
4812
}
4813

    
4814
#define HD_ALIAS "file=\"%s\",index=%d,media=disk"
4815
#ifdef TARGET_PPC
4816
#define CDROM_ALIAS "index=1,media=cdrom"
4817
#else
4818
#define CDROM_ALIAS "index=2,media=cdrom"
4819
#endif
4820
#define FD_ALIAS "index=%d,if=floppy"
4821
#define PFLASH_ALIAS "file=\"%s\",if=pflash"
4822
#define MTD_ALIAS "file=\"%s\",if=mtd"
4823
#define SD_ALIAS "index=0,if=sd"
4824

    
4825
static int drive_add(const char *fmt, ...)
4826
{
4827
    va_list ap;
4828

    
4829
    if (nb_drives_opt >= MAX_DRIVES) {
4830
        fprintf(stderr, "qemu: too many drives\n");
4831
        exit(1);
4832
    }
4833

    
4834
    va_start(ap, fmt);
4835
    vsnprintf(drives_opt[nb_drives_opt], sizeof(drives_opt[0]), fmt, ap);
4836
    va_end(ap);
4837

    
4838
    return nb_drives_opt++;
4839
}
4840

    
4841
int drive_get_index(BlockInterfaceType type, int bus, int unit)
4842
{
4843
    int index;
4844

    
4845
    /* seek interface, bus and unit */
4846

    
4847
    for (index = 0; index < nb_drives; index++)
4848
        if (drives_table[index].type == type &&
4849
            drives_table[index].bus == bus &&
4850
            drives_table[index].unit == unit)
4851
        return index;
4852

    
4853
    return -1;
4854
}
4855

    
4856
int drive_get_max_bus(BlockInterfaceType type)
4857
{
4858
    int max_bus;
4859
    int index;
4860

    
4861
    max_bus = -1;
4862
    for (index = 0; index < nb_drives; index++) {
4863
        if(drives_table[index].type == type &&
4864
           drives_table[index].bus > max_bus)
4865
            max_bus = drives_table[index].bus;
4866
    }
4867
    return max_bus;
4868
}
4869

    
4870
static int drive_init(const char *str, int snapshot, QEMUMachine *machine)
4871
{
4872
    char buf[128];
4873
    char file[1024];
4874
    char devname[128];
4875
    const char *mediastr = "";
4876
    BlockInterfaceType type;
4877
    enum { MEDIA_DISK, MEDIA_CDROM } media;
4878
    int bus_id, unit_id;
4879
    int cyls, heads, secs, translation;
4880
    BlockDriverState *bdrv;
4881
    int max_devs;
4882
    int index;
4883
    char *params[] = { "bus", "unit", "if", "index", "cyls", "heads",
4884
                       "secs", "trans", "media", "snapshot", "file", NULL };
4885

    
4886
    if (check_params(buf, sizeof(buf), params, str) < 0) {
4887
         fprintf(stderr, "qemu: unknowm parameter '%s' in '%s'\n",
4888
                         buf, str);
4889
         return -1;
4890
    }
4891

    
4892
    file[0] = 0;
4893
    cyls = heads = secs = 0;
4894
    bus_id = 0;
4895
    unit_id = -1;
4896
    translation = BIOS_ATA_TRANSLATION_AUTO;
4897
    index = -1;
4898

    
4899
    if (!strcmp(machine->name, "realview") ||
4900
        !strcmp(machine->name, "SS-5") ||
4901
        !strcmp(machine->name, "SS-10") ||
4902
        !strcmp(machine->name, "SS-600MP") ||
4903
        !strcmp(machine->name, "versatilepb") ||
4904
        !strcmp(machine->name, "versatileab")) {
4905
        type = IF_SCSI;
4906
        max_devs = MAX_SCSI_DEVS;
4907
        strcpy(devname, "scsi");
4908
    } else {
4909
        type = IF_IDE;
4910
        max_devs = MAX_IDE_DEVS;
4911
        strcpy(devname, "ide");
4912
    }
4913
    media = MEDIA_DISK;
4914

    
4915
    /* extract parameters */
4916

    
4917
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
4918
        bus_id = strtol(buf, NULL, 0);
4919
        if (bus_id < 0) {
4920
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
4921
            return -1;
4922
        }
4923
    }
4924

    
4925
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
4926
        unit_id = strtol(buf, NULL, 0);
4927
        if (unit_id < 0) {
4928
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
4929
            return -1;
4930
        }
4931
    }
4932

    
4933
    if (get_param_value(buf, sizeof(buf), "if", str)) {
4934
        strncpy(devname, buf, sizeof(devname));
4935
        if (!strcmp(buf, "ide")) {
4936
            type = IF_IDE;