Statistics
| Branch: | Revision:

root / hw / sparc32_dma.c @ e64d7d59

History | View | Annotate | Download (7 kB)

1
/*
2
 * QEMU Sparc32 DMA controller emulation
3
 *
4
 * Copyright (c) 2006 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sparc32_dma.h"
26
#include "sun4m.h"
27

    
28
/* debug DMA */
29
//#define DEBUG_DMA
30

    
31
/*
32
 * This is the DMA controller part of chip STP2000 (Master I/O), also
33
 * produced as NCR89C100. See
34
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
35
 * and
36
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
37
 */
38

    
39
#ifdef DEBUG_DMA
40
#define DPRINTF(fmt, args...) \
41
do { printf("DMA: " fmt , ##args); } while (0)
42
#else
43
#define DPRINTF(fmt, args...)
44
#endif
45

    
46
#define DMA_REGS 4
47
#define DMA_SIZE (4 * sizeof(uint32_t))
48

    
49
#define DMA_VER 0xa0000000
50
#define DMA_INTR 1
51
#define DMA_INTREN 0x10
52
#define DMA_WRITE_MEM 0x100
53
#define DMA_LOADED 0x04000000
54
#define DMA_DRAIN_FIFO 0x40
55
#define DMA_RESET 0x80
56

    
57
typedef struct DMAState DMAState;
58

    
59
struct DMAState {
60
    uint32_t dmaregs[DMA_REGS];
61
    qemu_irq irq;
62
    void *iommu;
63
    qemu_irq dev_reset;
64
};
65

    
66
/* Note: on sparc, the lance 16 bit bus is swapped */
67
void ledma_memory_read(void *opaque, target_phys_addr_t addr,
68
                       uint8_t *buf, int len, int do_bswap)
69
{
70
    DMAState *s = opaque;
71
    int i;
72

    
73
    DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
74
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
75
    addr |= s->dmaregs[3];
76
    if (do_bswap) {
77
        sparc_iommu_memory_read(s->iommu, addr, buf, len);
78
    } else {
79
        addr &= ~1;
80
        len &= ~1;
81
        sparc_iommu_memory_read(s->iommu, addr, buf, len);
82
        for(i = 0; i < len; i += 2) {
83
            bswap16s((uint16_t *)(buf + i));
84
        }
85
    }
86
}
87

    
88
void ledma_memory_write(void *opaque, target_phys_addr_t addr,
89
                        uint8_t *buf, int len, int do_bswap)
90
{
91
    DMAState *s = opaque;
92
    int l, i;
93
    uint16_t tmp_buf[32];
94

    
95
    DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
96
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
97
    addr |= s->dmaregs[3];
98
    if (do_bswap) {
99
        sparc_iommu_memory_write(s->iommu, addr, buf, len);
100
    } else {
101
        addr &= ~1;
102
        len &= ~1;
103
        while (len > 0) {
104
            l = len;
105
            if (l > sizeof(tmp_buf))
106
                l = sizeof(tmp_buf);
107
            for(i = 0; i < l; i += 2) {
108
                tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
109
            }
110
            sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
111
            len -= l;
112
            buf += l;
113
            addr += l;
114
        }
115
    }
116
}
117

    
118
static void dma_set_irq(void *opaque, int irq, int level)
119
{
120
    DMAState *s = opaque;
121
    if (level) {
122
        DPRINTF("Raise IRQ\n");
123
        s->dmaregs[0] |= DMA_INTR;
124
        qemu_irq_raise(s->irq);
125
    } else {
126
        s->dmaregs[0] &= ~DMA_INTR;
127
        DPRINTF("Lower IRQ\n");
128
        qemu_irq_lower(s->irq);
129
    }
130
}
131

    
132
void espdma_memory_read(void *opaque, uint8_t *buf, int len)
133
{
134
    DMAState *s = opaque;
135

    
136
    DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
137
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
138
    sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
139
    s->dmaregs[0] |= DMA_INTR;
140
    s->dmaregs[1] += len;
141
}
142

    
143
void espdma_memory_write(void *opaque, uint8_t *buf, int len)
144
{
145
    DMAState *s = opaque;
146

    
147
    DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
148
            s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
149
    sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
150
    s->dmaregs[0] |= DMA_INTR;
151
    s->dmaregs[1] += len;
152
}
153

    
154
static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
155
{
156
    DMAState *s = opaque;
157
    uint32_t saddr;
158

    
159
    saddr = addr >> 2;
160
    DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
161
            s->dmaregs[saddr]);
162

    
163
    return s->dmaregs[saddr];
164
}
165

    
166
static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
167
{
168
    DMAState *s = opaque;
169
    uint32_t saddr;
170

    
171
    saddr = addr >> 2;
172
    DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
173
            s->dmaregs[saddr], val);
174
    switch (saddr) {
175
    case 0:
176
        if (!(val & DMA_INTREN)) {
177
            DPRINTF("Lower IRQ\n");
178
            qemu_irq_lower(s->irq);
179
        }
180
        if (val & DMA_RESET) {
181
            qemu_irq_raise(s->dev_reset);
182
            qemu_irq_lower(s->dev_reset);
183
        } else if (val & DMA_DRAIN_FIFO) {
184
            val &= ~DMA_DRAIN_FIFO;
185
        } else if (val == 0)
186
            val = DMA_DRAIN_FIFO;
187
        val &= 0x0fffffff;
188
        val |= DMA_VER;
189
        break;
190
    case 1:
191
        s->dmaregs[0] |= DMA_LOADED;
192
        break;
193
    default:
194
        break;
195
    }
196
    s->dmaregs[saddr] = val;
197
}
198

    
199
static CPUReadMemoryFunc *dma_mem_read[3] = {
200
    NULL,
201
    NULL,
202
    dma_mem_readl,
203
};
204

    
205
static CPUWriteMemoryFunc *dma_mem_write[3] = {
206
    NULL,
207
    NULL,
208
    dma_mem_writel,
209
};
210

    
211
static void dma_reset(void *opaque)
212
{
213
    DMAState *s = opaque;
214

    
215
    memset(s->dmaregs, 0, DMA_SIZE);
216
    s->dmaregs[0] = DMA_VER;
217
}
218

    
219
static void dma_save(QEMUFile *f, void *opaque)
220
{
221
    DMAState *s = opaque;
222
    unsigned int i;
223

    
224
    for (i = 0; i < DMA_REGS; i++)
225
        qemu_put_be32s(f, &s->dmaregs[i]);
226
}
227

    
228
static int dma_load(QEMUFile *f, void *opaque, int version_id)
229
{
230
    DMAState *s = opaque;
231
    unsigned int i;
232

    
233
    if (version_id != 2)
234
        return -EINVAL;
235
    for (i = 0; i < DMA_REGS; i++)
236
        qemu_get_be32s(f, &s->dmaregs[i]);
237

    
238
    return 0;
239
}
240

    
241
void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
242
                       void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
243
{
244
    DMAState *s;
245
    int dma_io_memory;
246

    
247
    s = qemu_mallocz(sizeof(DMAState));
248
    if (!s)
249
        return NULL;
250

    
251
    s->irq = parent_irq;
252
    s->iommu = iommu;
253

    
254
    dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
255
    cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
256

    
257
    register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
258
    qemu_register_reset(dma_reset, s);
259
    *dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
260

    
261
    *reset = &s->dev_reset;
262

    
263
    return s;
264
}