Statistics
| Branch: | Revision:

root / fpu / softfloat.h @ e6afc87f

History | View | Annotate | Download (25.8 kB)

1
/*
2
 * QEMU float support
3
 *
4
 * Derived from SoftFloat.
5
 */
6

    
7
/*============================================================================
8

9
This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10
Package, Release 2b.
11

12
Written by John R. Hauser.  This work was made possible in part by the
13
International Computer Science Institute, located at Suite 600, 1947 Center
14
Street, Berkeley, California 94704.  Funding was partially provided by the
15
National Science Foundation under grant MIP-9311980.  The original version
16
of this code was written as part of a project to build a fixed-point vector
17
processor in collaboration with the University of California at Berkeley,
18
overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19
is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20
arithmetic/SoftFloat.html'.
21

22
THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23
been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24
RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25
AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26
COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27
EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28
INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29
OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30

31
Derivative works are acceptable, even for commercial purposes, so long as
32
(1) the source code for the derivative work includes prominent notice that
33
the work is derivative, and (2) the source code includes prominent notice with
34
these four paragraphs for those parts of this code that are retained.
35

36
=============================================================================*/
37

    
38
#ifndef SOFTFLOAT_H
39
#define SOFTFLOAT_H
40

    
41
#if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42
#include <sunmath.h>
43
#endif
44

    
45
#include <inttypes.h>
46
#include "config.h"
47

    
48
/*----------------------------------------------------------------------------
49
| Each of the following `typedef's defines the most convenient type that holds
50
| integers of at least as many bits as specified.  For example, `uint8' should
51
| be the most convenient type that can hold unsigned integers of as many as
52
| 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
53
| implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
54
| to the same as `int'.
55
*----------------------------------------------------------------------------*/
56
typedef uint8_t flag;
57
typedef uint8_t uint8;
58
typedef int8_t int8;
59
#ifndef _AIX
60
typedef int uint16;
61
typedef int int16;
62
#endif
63
typedef unsigned int uint32;
64
typedef signed int int32;
65
typedef uint64_t uint64;
66
typedef int64_t int64;
67

    
68
#define LIT64( a ) a##LL
69
#define INLINE static inline
70

    
71
#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
72
#define SNAN_BIT_IS_ONE                1
73
#else
74
#define SNAN_BIT_IS_ONE                0
75
#endif
76

    
77
/*----------------------------------------------------------------------------
78
| The macro `FLOATX80' must be defined to enable the extended double-precision
79
| floating-point format `floatx80'.  If this macro is not defined, the
80
| `floatx80' type will not be defined, and none of the functions that either
81
| input or output the `floatx80' type will be defined.  The same applies to
82
| the `FLOAT128' macro and the quadruple-precision format `float128'.
83
*----------------------------------------------------------------------------*/
84
#ifdef CONFIG_SOFTFLOAT
85
/* bit exact soft float support */
86
#define FLOATX80
87
#define FLOAT128
88
#else
89
/* native float support */
90
#if (defined(__i386__) || defined(__x86_64__)) && !defined(CONFIG_BSD)
91
#define FLOATX80
92
#endif
93
#endif /* !CONFIG_SOFTFLOAT */
94

    
95
#define STATUS_PARAM , float_status *status
96
#define STATUS(field) status->field
97
#define STATUS_VAR , status
98

    
99
/*----------------------------------------------------------------------------
100
| Software IEC/IEEE floating-point ordering relations
101
*----------------------------------------------------------------------------*/
102
enum {
103
    float_relation_less      = -1,
104
    float_relation_equal     =  0,
105
    float_relation_greater   =  1,
106
    float_relation_unordered =  2
107
};
108

    
109
#ifdef CONFIG_SOFTFLOAT
110
/*----------------------------------------------------------------------------
111
| Software IEC/IEEE floating-point types.
112
*----------------------------------------------------------------------------*/
113
/* Use structures for soft-float types.  This prevents accidentally mixing
114
   them with native int/float types.  A sufficiently clever compiler and
115
   sane ABI should be able to see though these structs.  However
116
   x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
117
//#define USE_SOFTFLOAT_STRUCT_TYPES
118
#ifdef USE_SOFTFLOAT_STRUCT_TYPES
119
typedef struct {
120
    uint16_t v;
121
} float16;
122
#define float16_val(x) (((float16)(x)).v)
123
#define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
124
#define const_float16(x) { x }
125
typedef struct {
126
    uint32_t v;
127
} float32;
128
/* The cast ensures an error if the wrong type is passed.  */
129
#define float32_val(x) (((float32)(x)).v)
130
#define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
131
#define const_float32(x) { x }
132
typedef struct {
133
    uint64_t v;
134
} float64;
135
#define float64_val(x) (((float64)(x)).v)
136
#define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
137
#define const_float64(x) { x }
138
#else
139
typedef uint16_t float16;
140
typedef uint32_t float32;
141
typedef uint64_t float64;
142
#define float16_val(x) (x)
143
#define float32_val(x) (x)
144
#define float64_val(x) (x)
145
#define make_float16(x) (x)
146
#define make_float32(x) (x)
147
#define make_float64(x) (x)
148
#define const_float16(x) (x)
149
#define const_float32(x) (x)
150
#define const_float64(x) (x)
151
#endif
152
#ifdef FLOATX80
153
typedef struct {
154
    uint64_t low;
155
    uint16_t high;
156
} floatx80;
157
#define make_floatx80(exp, mant) ((floatx80) { mant, exp })
158
#endif
159
#ifdef FLOAT128
160
typedef struct {
161
#ifdef HOST_WORDS_BIGENDIAN
162
    uint64_t high, low;
163
#else
164
    uint64_t low, high;
165
#endif
166
} float128;
167
#endif
168

    
169
/*----------------------------------------------------------------------------
170
| Software IEC/IEEE floating-point underflow tininess-detection mode.
171
*----------------------------------------------------------------------------*/
172
enum {
173
    float_tininess_after_rounding  = 0,
174
    float_tininess_before_rounding = 1
175
};
176

    
177
/*----------------------------------------------------------------------------
178
| Software IEC/IEEE floating-point rounding mode.
179
*----------------------------------------------------------------------------*/
180
enum {
181
    float_round_nearest_even = 0,
182
    float_round_down         = 1,
183
    float_round_up           = 2,
184
    float_round_to_zero      = 3
185
};
186

    
187
/*----------------------------------------------------------------------------
188
| Software IEC/IEEE floating-point exception flags.
189
*----------------------------------------------------------------------------*/
190
enum {
191
    float_flag_invalid   =  1,
192
    float_flag_divbyzero =  4,
193
    float_flag_overflow  =  8,
194
    float_flag_underflow = 16,
195
    float_flag_inexact   = 32,
196
    float_flag_input_denormal = 64,
197
    float_flag_output_denormal = 128
198
};
199

    
200
typedef struct float_status {
201
    signed char float_detect_tininess;
202
    signed char float_rounding_mode;
203
    signed char float_exception_flags;
204
#ifdef FLOATX80
205
    signed char floatx80_rounding_precision;
206
#endif
207
    /* should denormalised results go to zero and set the inexact flag? */
208
    flag flush_to_zero;
209
    /* should denormalised inputs go to zero and set the input_denormal flag? */
210
    flag flush_inputs_to_zero;
211
    flag default_nan_mode;
212
} float_status;
213

    
214
void set_float_rounding_mode(int val STATUS_PARAM);
215
void set_float_exception_flags(int val STATUS_PARAM);
216
INLINE void set_float_detect_tininess(int val STATUS_PARAM)
217
{
218
    STATUS(float_detect_tininess) = val;
219
}
220
INLINE void set_flush_to_zero(flag val STATUS_PARAM)
221
{
222
    STATUS(flush_to_zero) = val;
223
}
224
INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
225
{
226
    STATUS(flush_inputs_to_zero) = val;
227
}
228
INLINE void set_default_nan_mode(flag val STATUS_PARAM)
229
{
230
    STATUS(default_nan_mode) = val;
231
}
232
INLINE int get_float_exception_flags(float_status *status)
233
{
234
    return STATUS(float_exception_flags);
235
}
236
#ifdef FLOATX80
237
void set_floatx80_rounding_precision(int val STATUS_PARAM);
238
#endif
239

    
240
/*----------------------------------------------------------------------------
241
| Routine to raise any or all of the software IEC/IEEE floating-point
242
| exception flags.
243
*----------------------------------------------------------------------------*/
244
void float_raise( int8 flags STATUS_PARAM);
245

    
246
/*----------------------------------------------------------------------------
247
| Software IEC/IEEE integer-to-floating-point conversion routines.
248
*----------------------------------------------------------------------------*/
249
float32 int32_to_float32( int32 STATUS_PARAM );
250
float64 int32_to_float64( int32 STATUS_PARAM );
251
float32 uint32_to_float32( unsigned int STATUS_PARAM );
252
float64 uint32_to_float64( unsigned int STATUS_PARAM );
253
#ifdef FLOATX80
254
floatx80 int32_to_floatx80( int32 STATUS_PARAM );
255
#endif
256
#ifdef FLOAT128
257
float128 int32_to_float128( int32 STATUS_PARAM );
258
#endif
259
float32 int64_to_float32( int64 STATUS_PARAM );
260
float32 uint64_to_float32( uint64 STATUS_PARAM );
261
float64 int64_to_float64( int64 STATUS_PARAM );
262
float64 uint64_to_float64( uint64 STATUS_PARAM );
263
#ifdef FLOATX80
264
floatx80 int64_to_floatx80( int64 STATUS_PARAM );
265
#endif
266
#ifdef FLOAT128
267
float128 int64_to_float128( int64 STATUS_PARAM );
268
#endif
269

    
270
/*----------------------------------------------------------------------------
271
| Software half-precision conversion routines.
272
*----------------------------------------------------------------------------*/
273
float16 float32_to_float16( float32, flag STATUS_PARAM );
274
float32 float16_to_float32( float16, flag STATUS_PARAM );
275

    
276
/*----------------------------------------------------------------------------
277
| Software half-precision operations.
278
*----------------------------------------------------------------------------*/
279
int float16_is_quiet_nan( float16 );
280
int float16_is_signaling_nan( float16 );
281
float16 float16_maybe_silence_nan( float16 );
282

    
283
/*----------------------------------------------------------------------------
284
| The pattern for a default generated half-precision NaN.
285
*----------------------------------------------------------------------------*/
286
#if defined(TARGET_ARM)
287
#define float16_default_nan make_float16(0x7E00)
288
#elif SNAN_BIT_IS_ONE
289
#define float16_default_nan make_float16(0x7DFF)
290
#else
291
#define float16_default_nan make_float16(0xFE00)
292
#endif
293

    
294
/*----------------------------------------------------------------------------
295
| Software IEC/IEEE single-precision conversion routines.
296
*----------------------------------------------------------------------------*/
297
int16 float32_to_int16_round_to_zero( float32 STATUS_PARAM );
298
unsigned int float32_to_uint16_round_to_zero( float32 STATUS_PARAM );
299
int32 float32_to_int32( float32 STATUS_PARAM );
300
int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
301
uint32 float32_to_uint32( float32 STATUS_PARAM );
302
uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
303
int64 float32_to_int64( float32 STATUS_PARAM );
304
int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
305
float64 float32_to_float64( float32 STATUS_PARAM );
306
#ifdef FLOATX80
307
floatx80 float32_to_floatx80( float32 STATUS_PARAM );
308
#endif
309
#ifdef FLOAT128
310
float128 float32_to_float128( float32 STATUS_PARAM );
311
#endif
312

    
313
/*----------------------------------------------------------------------------
314
| Software IEC/IEEE single-precision operations.
315
*----------------------------------------------------------------------------*/
316
float32 float32_round_to_int( float32 STATUS_PARAM );
317
float32 float32_add( float32, float32 STATUS_PARAM );
318
float32 float32_sub( float32, float32 STATUS_PARAM );
319
float32 float32_mul( float32, float32 STATUS_PARAM );
320
float32 float32_div( float32, float32 STATUS_PARAM );
321
float32 float32_rem( float32, float32 STATUS_PARAM );
322
float32 float32_sqrt( float32 STATUS_PARAM );
323
float32 float32_exp2( float32 STATUS_PARAM );
324
float32 float32_log2( float32 STATUS_PARAM );
325
int float32_eq( float32, float32 STATUS_PARAM );
326
int float32_le( float32, float32 STATUS_PARAM );
327
int float32_lt( float32, float32 STATUS_PARAM );
328
int float32_unordered( float32, float32 STATUS_PARAM );
329
int float32_eq_quiet( float32, float32 STATUS_PARAM );
330
int float32_le_quiet( float32, float32 STATUS_PARAM );
331
int float32_lt_quiet( float32, float32 STATUS_PARAM );
332
int float32_unordered_quiet( float32, float32 STATUS_PARAM );
333
int float32_compare( float32, float32 STATUS_PARAM );
334
int float32_compare_quiet( float32, float32 STATUS_PARAM );
335
float32 float32_min(float32, float32 STATUS_PARAM);
336
float32 float32_max(float32, float32 STATUS_PARAM);
337
int float32_is_quiet_nan( float32 );
338
int float32_is_signaling_nan( float32 );
339
float32 float32_maybe_silence_nan( float32 );
340
float32 float32_scalbn( float32, int STATUS_PARAM );
341

    
342
INLINE float32 float32_abs(float32 a)
343
{
344
    /* Note that abs does *not* handle NaN specially, nor does
345
     * it flush denormal inputs to zero.
346
     */
347
    return make_float32(float32_val(a) & 0x7fffffff);
348
}
349

    
350
INLINE float32 float32_chs(float32 a)
351
{
352
    /* Note that chs does *not* handle NaN specially, nor does
353
     * it flush denormal inputs to zero.
354
     */
355
    return make_float32(float32_val(a) ^ 0x80000000);
356
}
357

    
358
INLINE int float32_is_infinity(float32 a)
359
{
360
    return (float32_val(a) & 0x7fffffff) == 0x7f800000;
361
}
362

    
363
INLINE int float32_is_neg(float32 a)
364
{
365
    return float32_val(a) >> 31;
366
}
367

    
368
INLINE int float32_is_zero(float32 a)
369
{
370
    return (float32_val(a) & 0x7fffffff) == 0;
371
}
372

    
373
INLINE int float32_is_any_nan(float32 a)
374
{
375
    return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
376
}
377

    
378
INLINE int float32_is_zero_or_denormal(float32 a)
379
{
380
    return (float32_val(a) & 0x7f800000) == 0;
381
}
382

    
383
INLINE float32 float32_set_sign(float32 a, int sign)
384
{
385
    return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
386
}
387

    
388
#define float32_zero make_float32(0)
389
#define float32_one make_float32(0x3f800000)
390
#define float32_ln2 make_float32(0x3f317218)
391
#define float32_pi make_float32(0x40490fdb)
392
#define float32_half make_float32(0x3f000000)
393
#define float32_infinity make_float32(0x7f800000)
394

    
395

    
396
/*----------------------------------------------------------------------------
397
| The pattern for a default generated single-precision NaN.
398
*----------------------------------------------------------------------------*/
399
#if defined(TARGET_SPARC)
400
#define float32_default_nan make_float32(0x7FFFFFFF)
401
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
402
#define float32_default_nan make_float32(0x7FC00000)
403
#elif SNAN_BIT_IS_ONE
404
#define float32_default_nan make_float32(0x7FBFFFFF)
405
#else
406
#define float32_default_nan make_float32(0xFFC00000)
407
#endif
408

    
409
/*----------------------------------------------------------------------------
410
| Software IEC/IEEE double-precision conversion routines.
411
*----------------------------------------------------------------------------*/
412
int16 float64_to_int16_round_to_zero( float64 STATUS_PARAM );
413
unsigned int float64_to_uint16_round_to_zero( float64 STATUS_PARAM );
414
int32 float64_to_int32( float64 STATUS_PARAM );
415
int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
416
uint32 float64_to_uint32( float64 STATUS_PARAM );
417
uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
418
int64 float64_to_int64( float64 STATUS_PARAM );
419
int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
420
uint64 float64_to_uint64 (float64 a STATUS_PARAM);
421
uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
422
float32 float64_to_float32( float64 STATUS_PARAM );
423
#ifdef FLOATX80
424
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
425
#endif
426
#ifdef FLOAT128
427
float128 float64_to_float128( float64 STATUS_PARAM );
428
#endif
429

    
430
/*----------------------------------------------------------------------------
431
| Software IEC/IEEE double-precision operations.
432
*----------------------------------------------------------------------------*/
433
float64 float64_round_to_int( float64 STATUS_PARAM );
434
float64 float64_trunc_to_int( float64 STATUS_PARAM );
435
float64 float64_add( float64, float64 STATUS_PARAM );
436
float64 float64_sub( float64, float64 STATUS_PARAM );
437
float64 float64_mul( float64, float64 STATUS_PARAM );
438
float64 float64_div( float64, float64 STATUS_PARAM );
439
float64 float64_rem( float64, float64 STATUS_PARAM );
440
float64 float64_sqrt( float64 STATUS_PARAM );
441
float64 float64_log2( float64 STATUS_PARAM );
442
int float64_eq( float64, float64 STATUS_PARAM );
443
int float64_le( float64, float64 STATUS_PARAM );
444
int float64_lt( float64, float64 STATUS_PARAM );
445
int float64_unordered( float64, float64 STATUS_PARAM );
446
int float64_eq_quiet( float64, float64 STATUS_PARAM );
447
int float64_le_quiet( float64, float64 STATUS_PARAM );
448
int float64_lt_quiet( float64, float64 STATUS_PARAM );
449
int float64_unordered_quiet( float64, float64 STATUS_PARAM );
450
int float64_compare( float64, float64 STATUS_PARAM );
451
int float64_compare_quiet( float64, float64 STATUS_PARAM );
452
float64 float64_min(float64, float64 STATUS_PARAM);
453
float64 float64_max(float64, float64 STATUS_PARAM);
454
int float64_is_quiet_nan( float64 a );
455
int float64_is_signaling_nan( float64 );
456
float64 float64_maybe_silence_nan( float64 );
457
float64 float64_scalbn( float64, int STATUS_PARAM );
458

    
459
INLINE float64 float64_abs(float64 a)
460
{
461
    /* Note that abs does *not* handle NaN specially, nor does
462
     * it flush denormal inputs to zero.
463
     */
464
    return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
465
}
466

    
467
INLINE float64 float64_chs(float64 a)
468
{
469
    /* Note that chs does *not* handle NaN specially, nor does
470
     * it flush denormal inputs to zero.
471
     */
472
    return make_float64(float64_val(a) ^ 0x8000000000000000LL);
473
}
474

    
475
INLINE int float64_is_infinity(float64 a)
476
{
477
    return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
478
}
479

    
480
INLINE int float64_is_neg(float64 a)
481
{
482
    return float64_val(a) >> 63;
483
}
484

    
485
INLINE int float64_is_zero(float64 a)
486
{
487
    return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
488
}
489

    
490
INLINE int float64_is_any_nan(float64 a)
491
{
492
    return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
493
}
494

    
495
INLINE float64 float64_set_sign(float64 a, int sign)
496
{
497
    return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
498
                        | ((int64_t)sign << 63));
499
}
500

    
501
#define float64_zero make_float64(0)
502
#define float64_one make_float64(0x3ff0000000000000LL)
503
#define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
504
#define float64_pi make_float64(0x400921fb54442d18LL)
505
#define float64_half make_float64(0x3fe0000000000000LL)
506
#define float64_infinity make_float64(0x7ff0000000000000LL)
507

    
508
/*----------------------------------------------------------------------------
509
| The pattern for a default generated double-precision NaN.
510
*----------------------------------------------------------------------------*/
511
#if defined(TARGET_SPARC)
512
#define float64_default_nan make_float64(LIT64( 0x7FFFFFFFFFFFFFFF ))
513
#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
514
#define float64_default_nan make_float64(LIT64( 0x7FF8000000000000 ))
515
#elif SNAN_BIT_IS_ONE
516
#define float64_default_nan make_float64(LIT64( 0x7FF7FFFFFFFFFFFF ))
517
#else
518
#define float64_default_nan make_float64(LIT64( 0xFFF8000000000000 ))
519
#endif
520

    
521
#ifdef FLOATX80
522

    
523
/*----------------------------------------------------------------------------
524
| Software IEC/IEEE extended double-precision conversion routines.
525
*----------------------------------------------------------------------------*/
526
int32 floatx80_to_int32( floatx80 STATUS_PARAM );
527
int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
528
int64 floatx80_to_int64( floatx80 STATUS_PARAM );
529
int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
530
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
531
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
532
#ifdef FLOAT128
533
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
534
#endif
535

    
536
/*----------------------------------------------------------------------------
537
| Software IEC/IEEE extended double-precision operations.
538
*----------------------------------------------------------------------------*/
539
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
540
floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
541
floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
542
floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
543
floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
544
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
545
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
546
int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
547
int floatx80_le( floatx80, floatx80 STATUS_PARAM );
548
int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
549
int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
550
int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
551
int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
552
int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
553
int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
554
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
555
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
556
int floatx80_is_quiet_nan( floatx80 );
557
int floatx80_is_signaling_nan( floatx80 );
558
floatx80 floatx80_maybe_silence_nan( floatx80 );
559
floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
560

    
561
INLINE floatx80 floatx80_abs(floatx80 a)
562
{
563
    a.high &= 0x7fff;
564
    return a;
565
}
566

    
567
INLINE floatx80 floatx80_chs(floatx80 a)
568
{
569
    a.high ^= 0x8000;
570
    return a;
571
}
572

    
573
INLINE int floatx80_is_infinity(floatx80 a)
574
{
575
    return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
576
}
577

    
578
INLINE int floatx80_is_neg(floatx80 a)
579
{
580
    return a.high >> 15;
581
}
582

    
583
INLINE int floatx80_is_zero(floatx80 a)
584
{
585
    return (a.high & 0x7fff) == 0 && a.low == 0;
586
}
587

    
588
INLINE int floatx80_is_any_nan(floatx80 a)
589
{
590
    return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
591
}
592

    
593
#define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
594
#define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
595
#define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
596
#define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
597
#define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
598
#define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
599

    
600
/*----------------------------------------------------------------------------
601
| The pattern for a default generated extended double-precision NaN.  The
602
| `high' and `low' values hold the most- and least-significant bits,
603
| respectively.
604
*----------------------------------------------------------------------------*/
605
#if SNAN_BIT_IS_ONE
606
#define floatx80_default_nan_high 0x7FFF
607
#define floatx80_default_nan_low  LIT64( 0xBFFFFFFFFFFFFFFF )
608
#else
609
#define floatx80_default_nan_high 0xFFFF
610
#define floatx80_default_nan_low  LIT64( 0xC000000000000000 )
611
#endif
612

    
613
#endif
614

    
615
#ifdef FLOAT128
616

    
617
/*----------------------------------------------------------------------------
618
| Software IEC/IEEE quadruple-precision conversion routines.
619
*----------------------------------------------------------------------------*/
620
int32 float128_to_int32( float128 STATUS_PARAM );
621
int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
622
int64 float128_to_int64( float128 STATUS_PARAM );
623
int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
624
float32 float128_to_float32( float128 STATUS_PARAM );
625
float64 float128_to_float64( float128 STATUS_PARAM );
626
#ifdef FLOATX80
627
floatx80 float128_to_floatx80( float128 STATUS_PARAM );
628
#endif
629

    
630
/*----------------------------------------------------------------------------
631
| Software IEC/IEEE quadruple-precision operations.
632
*----------------------------------------------------------------------------*/
633
float128 float128_round_to_int( float128 STATUS_PARAM );
634
float128 float128_add( float128, float128 STATUS_PARAM );
635
float128 float128_sub( float128, float128 STATUS_PARAM );
636
float128 float128_mul( float128, float128 STATUS_PARAM );
637
float128 float128_div( float128, float128 STATUS_PARAM );
638
float128 float128_rem( float128, float128 STATUS_PARAM );
639
float128 float128_sqrt( float128 STATUS_PARAM );
640
int float128_eq( float128, float128 STATUS_PARAM );
641
int float128_le( float128, float128 STATUS_PARAM );
642
int float128_lt( float128, float128 STATUS_PARAM );
643
int float128_unordered( float128, float128 STATUS_PARAM );
644
int float128_eq_quiet( float128, float128 STATUS_PARAM );
645
int float128_le_quiet( float128, float128 STATUS_PARAM );
646
int float128_lt_quiet( float128, float128 STATUS_PARAM );
647
int float128_unordered_quiet( float128, float128 STATUS_PARAM );
648
int float128_compare( float128, float128 STATUS_PARAM );
649
int float128_compare_quiet( float128, float128 STATUS_PARAM );
650
int float128_is_quiet_nan( float128 );
651
int float128_is_signaling_nan( float128 );
652
float128 float128_maybe_silence_nan( float128 );
653
float128 float128_scalbn( float128, int STATUS_PARAM );
654

    
655
INLINE float128 float128_abs(float128 a)
656
{
657
    a.high &= 0x7fffffffffffffffLL;
658
    return a;
659
}
660

    
661
INLINE float128 float128_chs(float128 a)
662
{
663
    a.high ^= 0x8000000000000000LL;
664
    return a;
665
}
666

    
667
INLINE int float128_is_infinity(float128 a)
668
{
669
    return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
670
}
671

    
672
INLINE int float128_is_neg(float128 a)
673
{
674
    return a.high >> 63;
675
}
676

    
677
INLINE int float128_is_zero(float128 a)
678
{
679
    return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
680
}
681

    
682
INLINE int float128_is_any_nan(float128 a)
683
{
684
    return ((a.high >> 48) & 0x7fff) == 0x7fff &&
685
        ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
686
}
687

    
688
/*----------------------------------------------------------------------------
689
| The pattern for a default generated quadruple-precision NaN.  The `high' and
690
| `low' values hold the most- and least-significant bits, respectively.
691
*----------------------------------------------------------------------------*/
692
#if SNAN_BIT_IS_ONE
693
#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
694
#define float128_default_nan_low  LIT64( 0xFFFFFFFFFFFFFFFF )
695
#else
696
#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
697
#define float128_default_nan_low  LIT64( 0x0000000000000000 )
698
#endif
699

    
700
#endif
701

    
702
#else /* CONFIG_SOFTFLOAT */
703

    
704
#include "softfloat-native.h"
705

    
706
#endif /* !CONFIG_SOFTFLOAT */
707

    
708
#endif /* !SOFTFLOAT_H */