Statistics
| Branch: | Revision:

root / cpu-exec.c @ e6e5906b

History | View | Annotate | Download (49 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_M68K)
198
    flags = env->fpcr & M68K_FPCR_PREC;
199
    cs_base = 0;
200
    pc = env->pc;
201
#elif defined(TARGET_SH4)
202
    flags = env->sr & (SR_MD | SR_RB);
203
    cs_base = 0;         /* XXXXX */
204
    pc = env->pc;
205
#else
206
#error unsupported CPU
207
#endif
208
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
209
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
210
                         tb->flags != flags, 0)) {
211
        tb = tb_find_slow(pc, cs_base, flags);
212
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
213
           doing it in tb_find_slow */
214
        if (tb_invalidated_flag) {
215
            /* as some TB could have been invalidated because
216
               of memory exceptions while generating the code, we
217
               must recompute the hash index here */
218
            T0 = 0;
219
        }
220
    }
221
    return tb;
222
}
223

    
224

    
225
/* main execution loop */
226

    
227
int cpu_exec(CPUState *env1)
228
{
229
    int saved_T0, saved_T1;
230
#if defined(reg_T2)
231
    int saved_T2;
232
#endif
233
    CPUState *saved_env;
234
#if defined(TARGET_I386)
235
#ifdef reg_EAX
236
    int saved_EAX;
237
#endif
238
#ifdef reg_ECX
239
    int saved_ECX;
240
#endif
241
#ifdef reg_EDX
242
    int saved_EDX;
243
#endif
244
#ifdef reg_EBX
245
    int saved_EBX;
246
#endif
247
#ifdef reg_ESP
248
    int saved_ESP;
249
#endif
250
#ifdef reg_EBP
251
    int saved_EBP;
252
#endif
253
#ifdef reg_ESI
254
    int saved_ESI;
255
#endif
256
#ifdef reg_EDI
257
    int saved_EDI;
258
#endif
259
#elif defined(TARGET_SPARC)
260
#if defined(reg_REGWPTR)
261
    uint32_t *saved_regwptr;
262
#endif
263
#endif
264
#if defined(__sparc__) && !defined(HOST_SOLARIS)
265
    int saved_i7, tmp_T0;
266
#endif
267
    int ret, interrupt_request;
268
    void (*gen_func)(void);
269
    TranslationBlock *tb;
270
    uint8_t *tc_ptr;
271

    
272
#if defined(TARGET_I386)
273
    /* handle exit of HALTED state */
274
    if (env1->hflags & HF_HALTED_MASK) {
275
        /* disable halt condition */
276
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
277
            (env1->eflags & IF_MASK)) {
278
            env1->hflags &= ~HF_HALTED_MASK;
279
        } else {
280
            return EXCP_HALTED;
281
        }
282
    }
283
#elif defined(TARGET_PPC)
284
    if (env1->halted) {
285
        if (env1->msr[MSR_EE] && 
286
            (env1->interrupt_request & 
287
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
288
            env1->halted = 0;
289
        } else {
290
            return EXCP_HALTED;
291
        }
292
    }
293
#elif defined(TARGET_SPARC)
294
    if (env1->halted) {
295
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
296
            (env1->psret != 0)) {
297
            env1->halted = 0;
298
        } else {
299
            return EXCP_HALTED;
300
        }
301
    }
302
#elif defined(TARGET_ARM)
303
    if (env1->halted) {
304
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
305
           set.  */
306
        if (env1->interrupt_request
307
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
308
            env1->halted = 0;
309
        } else {
310
            return EXCP_HALTED;
311
        }
312
    }
313
#elif defined(TARGET_MIPS)
314
    if (env1->halted) {
315
        if (env1->interrupt_request &
316
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
317
            env1->halted = 0;
318
        } else {
319
            return EXCP_HALTED;
320
        }
321
    }
322
#endif
323

    
324
    cpu_single_env = env1; 
325

    
326
    /* first we save global registers */
327
    saved_env = env;
328
    env = env1;
329
    saved_T0 = T0;
330
    saved_T1 = T1;
331
#if defined(reg_T2)
332
    saved_T2 = T2;
333
#endif
334
#if defined(__sparc__) && !defined(HOST_SOLARIS)
335
    /* we also save i7 because longjmp may not restore it */
336
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
337
#endif
338

    
339
#if defined(TARGET_I386)
340
#ifdef reg_EAX
341
    saved_EAX = EAX;
342
#endif
343
#ifdef reg_ECX
344
    saved_ECX = ECX;
345
#endif
346
#ifdef reg_EDX
347
    saved_EDX = EDX;
348
#endif
349
#ifdef reg_EBX
350
    saved_EBX = EBX;
351
#endif
352
#ifdef reg_ESP
353
    saved_ESP = ESP;
354
#endif
355
#ifdef reg_EBP
356
    saved_EBP = EBP;
357
#endif
358
#ifdef reg_ESI
359
    saved_ESI = ESI;
360
#endif
361
#ifdef reg_EDI
362
    saved_EDI = EDI;
363
#endif
364

    
365
    env_to_regs();
366
    /* put eflags in CPU temporary format */
367
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
368
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
369
    CC_OP = CC_OP_EFLAGS;
370
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
371
#elif defined(TARGET_ARM)
372
#elif defined(TARGET_SPARC)
373
#if defined(reg_REGWPTR)
374
    saved_regwptr = REGWPTR;
375
#endif
376
#elif defined(TARGET_PPC)
377
#elif defined(TARGET_M68K)
378
    env->cc_op = CC_OP_FLAGS;
379
    env->cc_dest = env->sr & 0xf;
380
    env->cc_x = (env->sr >> 4) & 1;
381
#elif defined(TARGET_MIPS)
382
#elif defined(TARGET_SH4)
383
    /* XXXXX */
384
#else
385
#error unsupported target CPU
386
#endif
387
    env->exception_index = -1;
388

    
389
    /* prepare setjmp context for exception handling */
390
    for(;;) {
391
        if (setjmp(env->jmp_env) == 0) {
392
            env->current_tb = NULL;
393
            /* if an exception is pending, we execute it here */
394
            if (env->exception_index >= 0) {
395
                if (env->exception_index >= EXCP_INTERRUPT) {
396
                    /* exit request from the cpu execution loop */
397
                    ret = env->exception_index;
398
                    break;
399
                } else if (env->user_mode_only) {
400
                    /* if user mode only, we simulate a fake exception
401
                       which will be hanlded outside the cpu execution
402
                       loop */
403
#if defined(TARGET_I386)
404
                    do_interrupt_user(env->exception_index, 
405
                                      env->exception_is_int, 
406
                                      env->error_code, 
407
                                      env->exception_next_eip);
408
#endif
409
                    ret = env->exception_index;
410
                    break;
411
                } else {
412
#if defined(TARGET_I386)
413
                    /* simulate a real cpu exception. On i386, it can
414
                       trigger new exceptions, but we do not handle
415
                       double or triple faults yet. */
416
                    do_interrupt(env->exception_index, 
417
                                 env->exception_is_int, 
418
                                 env->error_code, 
419
                                 env->exception_next_eip, 0);
420
#elif defined(TARGET_PPC)
421
                    do_interrupt(env);
422
#elif defined(TARGET_MIPS)
423
                    do_interrupt(env);
424
#elif defined(TARGET_SPARC)
425
                    do_interrupt(env->exception_index);
426
#elif defined(TARGET_ARM)
427
                    do_interrupt(env);
428
#elif defined(TARGET_SH4)
429
                    do_interrupt(env);
430
#endif
431
                }
432
                env->exception_index = -1;
433
            } 
434
#ifdef USE_KQEMU
435
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
436
                int ret;
437
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
438
                ret = kqemu_cpu_exec(env);
439
                /* put eflags in CPU temporary format */
440
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
441
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
442
                CC_OP = CC_OP_EFLAGS;
443
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
444
                if (ret == 1) {
445
                    /* exception */
446
                    longjmp(env->jmp_env, 1);
447
                } else if (ret == 2) {
448
                    /* softmmu execution needed */
449
                } else {
450
                    if (env->interrupt_request != 0) {
451
                        /* hardware interrupt will be executed just after */
452
                    } else {
453
                        /* otherwise, we restart */
454
                        longjmp(env->jmp_env, 1);
455
                    }
456
                }
457
            }
458
#endif
459

    
460
            T0 = 0; /* force lookup of first TB */
461
            for(;;) {
462
#if defined(__sparc__) && !defined(HOST_SOLARIS)
463
                /* g1 can be modified by some libc? functions */ 
464
                tmp_T0 = T0;
465
#endif            
466
                interrupt_request = env->interrupt_request;
467
                if (__builtin_expect(interrupt_request, 0)) {
468
#if defined(TARGET_I386)
469
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
470
                        !(env->hflags & HF_SMM_MASK)) {
471
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
472
                        do_smm_enter();
473
#if defined(__sparc__) && !defined(HOST_SOLARIS)
474
                        tmp_T0 = 0;
475
#else
476
                        T0 = 0;
477
#endif
478
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
479
                        (env->eflags & IF_MASK) && 
480
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
481
                        int intno;
482
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
483
                        intno = cpu_get_pic_interrupt(env);
484
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
485
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
486
                        }
487
                        do_interrupt(intno, 0, 0, 0, 1);
488
                        /* ensure that no TB jump will be modified as
489
                           the program flow was changed */
490
#if defined(__sparc__) && !defined(HOST_SOLARIS)
491
                        tmp_T0 = 0;
492
#else
493
                        T0 = 0;
494
#endif
495
                    }
496
#elif defined(TARGET_PPC)
497
#if 0
498
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
499
                        cpu_ppc_reset(env);
500
                    }
501
#endif
502
                    if (msr_ee != 0) {
503
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
504
                            /* Raise it */
505
                            env->exception_index = EXCP_EXTERNAL;
506
                            env->error_code = 0;
507
                            do_interrupt(env);
508
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
509
#if defined(__sparc__) && !defined(HOST_SOLARIS)
510
                            tmp_T0 = 0;
511
#else
512
                            T0 = 0;
513
#endif
514
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
515
                            /* Raise it */
516
                            env->exception_index = EXCP_DECR;
517
                            env->error_code = 0;
518
                            do_interrupt(env);
519
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
520
#if defined(__sparc__) && !defined(HOST_SOLARIS)
521
                            tmp_T0 = 0;
522
#else
523
                            T0 = 0;
524
#endif
525
                        }
526
                    }
527
#elif defined(TARGET_MIPS)
528
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
529
                        (env->CP0_Status & (1 << CP0St_IE)) &&
530
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
531
                        !(env->hflags & MIPS_HFLAG_EXL) &&
532
                        !(env->hflags & MIPS_HFLAG_ERL) &&
533
                        !(env->hflags & MIPS_HFLAG_DM)) {
534
                        /* Raise it */
535
                        env->exception_index = EXCP_EXT_INTERRUPT;
536
                        env->error_code = 0;
537
                        do_interrupt(env);
538
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
539
#if defined(__sparc__) && !defined(HOST_SOLARIS)
540
                        tmp_T0 = 0;
541
#else
542
                        T0 = 0;
543
#endif
544
                    }
545
#elif defined(TARGET_SPARC)
546
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
547
                        (env->psret != 0)) {
548
                        int pil = env->interrupt_index & 15;
549
                        int type = env->interrupt_index & 0xf0;
550

    
551
                        if (((type == TT_EXTINT) &&
552
                             (pil == 15 || pil > env->psrpil)) ||
553
                            type != TT_EXTINT) {
554
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
555
                            do_interrupt(env->interrupt_index);
556
                            env->interrupt_index = 0;
557
#if defined(__sparc__) && !defined(HOST_SOLARIS)
558
                            tmp_T0 = 0;
559
#else
560
                            T0 = 0;
561
#endif
562
                        }
563
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
564
                        //do_interrupt(0, 0, 0, 0, 0);
565
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
566
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
567
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
568
                        env->halted = 1;
569
                        env->exception_index = EXCP_HLT;
570
                        cpu_loop_exit();
571
                    }
572
#elif defined(TARGET_ARM)
573
                    if (interrupt_request & CPU_INTERRUPT_FIQ
574
                        && !(env->uncached_cpsr & CPSR_F)) {
575
                        env->exception_index = EXCP_FIQ;
576
                        do_interrupt(env);
577
                    }
578
                    if (interrupt_request & CPU_INTERRUPT_HARD
579
                        && !(env->uncached_cpsr & CPSR_I)) {
580
                        env->exception_index = EXCP_IRQ;
581
                        do_interrupt(env);
582
                    }
583
#elif defined(TARGET_SH4)
584
                    /* XXXXX */
585
#endif
586
                   /* Don't use the cached interupt_request value,
587
                      do_interrupt may have updated the EXITTB flag. */
588
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
589
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
590
                        /* ensure that no TB jump will be modified as
591
                           the program flow was changed */
592
#if defined(__sparc__) && !defined(HOST_SOLARIS)
593
                        tmp_T0 = 0;
594
#else
595
                        T0 = 0;
596
#endif
597
                    }
598
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
599
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
600
                        env->exception_index = EXCP_INTERRUPT;
601
                        cpu_loop_exit();
602
                    }
603
                }
604
#ifdef DEBUG_EXEC
605
                if ((loglevel & CPU_LOG_TB_CPU)) {
606
#if defined(TARGET_I386)
607
                    /* restore flags in standard format */
608
#ifdef reg_EAX
609
                    env->regs[R_EAX] = EAX;
610
#endif
611
#ifdef reg_EBX
612
                    env->regs[R_EBX] = EBX;
613
#endif
614
#ifdef reg_ECX
615
                    env->regs[R_ECX] = ECX;
616
#endif
617
#ifdef reg_EDX
618
                    env->regs[R_EDX] = EDX;
619
#endif
620
#ifdef reg_ESI
621
                    env->regs[R_ESI] = ESI;
622
#endif
623
#ifdef reg_EDI
624
                    env->regs[R_EDI] = EDI;
625
#endif
626
#ifdef reg_EBP
627
                    env->regs[R_EBP] = EBP;
628
#endif
629
#ifdef reg_ESP
630
                    env->regs[R_ESP] = ESP;
631
#endif
632
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
633
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
634
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
635
#elif defined(TARGET_ARM)
636
                    cpu_dump_state(env, logfile, fprintf, 0);
637
#elif defined(TARGET_SPARC)
638
                    REGWPTR = env->regbase + (env->cwp * 16);
639
                    env->regwptr = REGWPTR;
640
                    cpu_dump_state(env, logfile, fprintf, 0);
641
#elif defined(TARGET_PPC)
642
                    cpu_dump_state(env, logfile, fprintf, 0);
643
#elif defined(TARGET_M68K)
644
                    cpu_m68k_flush_flags(env, env->cc_op);
645
                    env->cc_op = CC_OP_FLAGS;
646
                    env->sr = (env->sr & 0xffe0)
647
                              | env->cc_dest | (env->cc_x << 4);
648
                    cpu_dump_state(env, logfile, fprintf, 0);
649
#elif defined(TARGET_MIPS)
650
                    cpu_dump_state(env, logfile, fprintf, 0);
651
#elif defined(TARGET_SH4)
652
                    cpu_dump_state(env, logfile, fprintf, 0);
653
#else
654
#error unsupported target CPU 
655
#endif
656
                }
657
#endif
658
                tb = tb_find_fast();
659
#ifdef DEBUG_EXEC
660
                if ((loglevel & CPU_LOG_EXEC)) {
661
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
662
                            (long)tb->tc_ptr, tb->pc,
663
                            lookup_symbol(tb->pc));
664
                }
665
#endif
666
#if defined(__sparc__) && !defined(HOST_SOLARIS)
667
                T0 = tmp_T0;
668
#endif            
669
                /* see if we can patch the calling TB. When the TB
670
                   spans two pages, we cannot safely do a direct
671
                   jump. */
672
                {
673
                    if (T0 != 0 &&
674
#if USE_KQEMU
675
                        (env->kqemu_enabled != 2) &&
676
#endif
677
                        tb->page_addr[1] == -1
678
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
679
                    && (tb->cflags & CF_CODE_COPY) == 
680
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
681
#endif
682
                    ) {
683
                    spin_lock(&tb_lock);
684
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
685
#if defined(USE_CODE_COPY)
686
                    /* propagates the FP use info */
687
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
688
                        (tb->cflags & CF_FP_USED);
689
#endif
690
                    spin_unlock(&tb_lock);
691
                }
692
                }
693
                tc_ptr = tb->tc_ptr;
694
                env->current_tb = tb;
695
                /* execute the generated code */
696
                gen_func = (void *)tc_ptr;
697
#if defined(__sparc__)
698
                __asm__ __volatile__("call        %0\n\t"
699
                                     "mov        %%o7,%%i0"
700
                                     : /* no outputs */
701
                                     : "r" (gen_func) 
702
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
703
                                       "l0", "l1", "l2", "l3", "l4", "l5",
704
                                       "l6", "l7");
705
#elif defined(__arm__)
706
                asm volatile ("mov pc, %0\n\t"
707
                              ".global exec_loop\n\t"
708
                              "exec_loop:\n\t"
709
                              : /* no outputs */
710
                              : "r" (gen_func)
711
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
712
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
713
{
714
    if (!(tb->cflags & CF_CODE_COPY)) {
715
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
716
            save_native_fp_state(env);
717
        }
718
        gen_func();
719
    } else {
720
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
721
            restore_native_fp_state(env);
722
        }
723
        /* we work with native eflags */
724
        CC_SRC = cc_table[CC_OP].compute_all();
725
        CC_OP = CC_OP_EFLAGS;
726
        asm(".globl exec_loop\n"
727
            "\n"
728
            "debug1:\n"
729
            "    pushl %%ebp\n"
730
            "    fs movl %10, %9\n"
731
            "    fs movl %11, %%eax\n"
732
            "    andl $0x400, %%eax\n"
733
            "    fs orl %8, %%eax\n"
734
            "    pushl %%eax\n"
735
            "    popf\n"
736
            "    fs movl %%esp, %12\n"
737
            "    fs movl %0, %%eax\n"
738
            "    fs movl %1, %%ecx\n"
739
            "    fs movl %2, %%edx\n"
740
            "    fs movl %3, %%ebx\n"
741
            "    fs movl %4, %%esp\n"
742
            "    fs movl %5, %%ebp\n"
743
            "    fs movl %6, %%esi\n"
744
            "    fs movl %7, %%edi\n"
745
            "    fs jmp *%9\n"
746
            "exec_loop:\n"
747
            "    fs movl %%esp, %4\n"
748
            "    fs movl %12, %%esp\n"
749
            "    fs movl %%eax, %0\n"
750
            "    fs movl %%ecx, %1\n"
751
            "    fs movl %%edx, %2\n"
752
            "    fs movl %%ebx, %3\n"
753
            "    fs movl %%ebp, %5\n"
754
            "    fs movl %%esi, %6\n"
755
            "    fs movl %%edi, %7\n"
756
            "    pushf\n"
757
            "    popl %%eax\n"
758
            "    movl %%eax, %%ecx\n"
759
            "    andl $0x400, %%ecx\n"
760
            "    shrl $9, %%ecx\n"
761
            "    andl $0x8d5, %%eax\n"
762
            "    fs movl %%eax, %8\n"
763
            "    movl $1, %%eax\n"
764
            "    subl %%ecx, %%eax\n"
765
            "    fs movl %%eax, %11\n"
766
            "    fs movl %9, %%ebx\n" /* get T0 value */
767
            "    popl %%ebp\n"
768
            :
769
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
770
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
771
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
772
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
773
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
774
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
775
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
776
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
777
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
778
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
779
            "a" (gen_func),
780
            "m" (*(uint8_t *)offsetof(CPUState, df)),
781
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
782
            : "%ecx", "%edx"
783
            );
784
    }
785
}
786
#elif defined(__ia64)
787
                struct fptr {
788
                        void *ip;
789
                        void *gp;
790
                } fp;
791

    
792
                fp.ip = tc_ptr;
793
                fp.gp = code_gen_buffer + 2 * (1 << 20);
794
                (*(void (*)(void)) &fp)();
795
#else
796
                gen_func();
797
#endif
798
                env->current_tb = NULL;
799
                /* reset soft MMU for next block (it can currently
800
                   only be set by a memory fault) */
801
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
802
                if (env->hflags & HF_SOFTMMU_MASK) {
803
                    env->hflags &= ~HF_SOFTMMU_MASK;
804
                    /* do not allow linking to another block */
805
                    T0 = 0;
806
                }
807
#endif
808
#if defined(USE_KQEMU)
809
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
810
                if (kqemu_is_ok(env) &&
811
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
812
                    cpu_loop_exit();
813
                }
814
#endif
815
            }
816
        } else {
817
            env_to_regs();
818
        }
819
    } /* for(;;) */
820

    
821

    
822
#if defined(TARGET_I386)
823
#if defined(USE_CODE_COPY)
824
    if (env->native_fp_regs) {
825
        save_native_fp_state(env);
826
    }
827
#endif
828
    /* restore flags in standard format */
829
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
830

    
831
    /* restore global registers */
832
#ifdef reg_EAX
833
    EAX = saved_EAX;
834
#endif
835
#ifdef reg_ECX
836
    ECX = saved_ECX;
837
#endif
838
#ifdef reg_EDX
839
    EDX = saved_EDX;
840
#endif
841
#ifdef reg_EBX
842
    EBX = saved_EBX;
843
#endif
844
#ifdef reg_ESP
845
    ESP = saved_ESP;
846
#endif
847
#ifdef reg_EBP
848
    EBP = saved_EBP;
849
#endif
850
#ifdef reg_ESI
851
    ESI = saved_ESI;
852
#endif
853
#ifdef reg_EDI
854
    EDI = saved_EDI;
855
#endif
856
#elif defined(TARGET_ARM)
857
    /* XXX: Save/restore host fpu exception state?.  */
858
#elif defined(TARGET_SPARC)
859
#if defined(reg_REGWPTR)
860
    REGWPTR = saved_regwptr;
861
#endif
862
#elif defined(TARGET_PPC)
863
#elif defined(TARGET_M68K)
864
    cpu_m68k_flush_flags(env, env->cc_op);
865
    env->cc_op = CC_OP_FLAGS;
866
    env->sr = (env->sr & 0xffe0)
867
              | env->cc_dest | (env->cc_x << 4);
868
#elif defined(TARGET_MIPS)
869
#elif defined(TARGET_SH4)
870
    /* XXXXX */
871
#else
872
#error unsupported target CPU
873
#endif
874
#if defined(__sparc__) && !defined(HOST_SOLARIS)
875
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
876
#endif
877
    T0 = saved_T0;
878
    T1 = saved_T1;
879
#if defined(reg_T2)
880
    T2 = saved_T2;
881
#endif
882
    env = saved_env;
883
    /* fail safe : never use cpu_single_env outside cpu_exec() */
884
    cpu_single_env = NULL; 
885
    return ret;
886
}
887

    
888
/* must only be called from the generated code as an exception can be
889
   generated */
890
void tb_invalidate_page_range(target_ulong start, target_ulong end)
891
{
892
    /* XXX: cannot enable it yet because it yields to MMU exception
893
       where NIP != read address on PowerPC */
894
#if 0
895
    target_ulong phys_addr;
896
    phys_addr = get_phys_addr_code(env, start);
897
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
898
#endif
899
}
900

    
901
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
902

    
903
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
904
{
905
    CPUX86State *saved_env;
906

    
907
    saved_env = env;
908
    env = s;
909
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
910
        selector &= 0xffff;
911
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
912
                               (selector << 4), 0xffff, 0);
913
    } else {
914
        load_seg(seg_reg, selector);
915
    }
916
    env = saved_env;
917
}
918

    
919
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
920
{
921
    CPUX86State *saved_env;
922

    
923
    saved_env = env;
924
    env = s;
925
    
926
    helper_fsave((target_ulong)ptr, data32);
927

    
928
    env = saved_env;
929
}
930

    
931
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
932
{
933
    CPUX86State *saved_env;
934

    
935
    saved_env = env;
936
    env = s;
937
    
938
    helper_frstor((target_ulong)ptr, data32);
939

    
940
    env = saved_env;
941
}
942

    
943
#endif /* TARGET_I386 */
944

    
945
#if !defined(CONFIG_SOFTMMU)
946

    
947
#if defined(TARGET_I386)
948

    
949
/* 'pc' is the host PC at which the exception was raised. 'address' is
950
   the effective address of the memory exception. 'is_write' is 1 if a
951
   write caused the exception and otherwise 0'. 'old_set' is the
952
   signal set which should be restored */
953
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
954
                                    int is_write, sigset_t *old_set, 
955
                                    void *puc)
956
{
957
    TranslationBlock *tb;
958
    int ret;
959

    
960
    if (cpu_single_env)
961
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
962
#if defined(DEBUG_SIGNAL)
963
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
964
                pc, address, is_write, *(unsigned long *)old_set);
965
#endif
966
    /* XXX: locking issue */
967
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
968
        return 1;
969
    }
970

    
971
    /* see if it is an MMU fault */
972
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
973
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
974
    if (ret < 0)
975
        return 0; /* not an MMU fault */
976
    if (ret == 0)
977
        return 1; /* the MMU fault was handled without causing real CPU fault */
978
    /* now we have a real cpu fault */
979
    tb = tb_find_pc(pc);
980
    if (tb) {
981
        /* the PC is inside the translated code. It means that we have
982
           a virtual CPU fault */
983
        cpu_restore_state(tb, env, pc, puc);
984
    }
985
    if (ret == 1) {
986
#if 0
987
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
988
               env->eip, env->cr[2], env->error_code);
989
#endif
990
        /* we restore the process signal mask as the sigreturn should
991
           do it (XXX: use sigsetjmp) */
992
        sigprocmask(SIG_SETMASK, old_set, NULL);
993
        raise_exception_err(env->exception_index, env->error_code);
994
    } else {
995
        /* activate soft MMU for this block */
996
        env->hflags |= HF_SOFTMMU_MASK;
997
        cpu_resume_from_signal(env, puc);
998
    }
999
    /* never comes here */
1000
    return 1;
1001
}
1002

    
1003
#elif defined(TARGET_ARM)
1004
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1005
                                    int is_write, sigset_t *old_set,
1006
                                    void *puc)
1007
{
1008
    TranslationBlock *tb;
1009
    int ret;
1010

    
1011
    if (cpu_single_env)
1012
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1013
#if defined(DEBUG_SIGNAL)
1014
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1015
           pc, address, is_write, *(unsigned long *)old_set);
1016
#endif
1017
    /* XXX: locking issue */
1018
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1019
        return 1;
1020
    }
1021
    /* see if it is an MMU fault */
1022
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
1023
    if (ret < 0)
1024
        return 0; /* not an MMU fault */
1025
    if (ret == 0)
1026
        return 1; /* the MMU fault was handled without causing real CPU fault */
1027
    /* now we have a real cpu fault */
1028
    tb = tb_find_pc(pc);
1029
    if (tb) {
1030
        /* the PC is inside the translated code. It means that we have
1031
           a virtual CPU fault */
1032
        cpu_restore_state(tb, env, pc, puc);
1033
    }
1034
    /* we restore the process signal mask as the sigreturn should
1035
       do it (XXX: use sigsetjmp) */
1036
    sigprocmask(SIG_SETMASK, old_set, NULL);
1037
    cpu_loop_exit();
1038
}
1039
#elif defined(TARGET_SPARC)
1040
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1041
                                    int is_write, sigset_t *old_set,
1042
                                    void *puc)
1043
{
1044
    TranslationBlock *tb;
1045
    int ret;
1046

    
1047
    if (cpu_single_env)
1048
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1049
#if defined(DEBUG_SIGNAL)
1050
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1051
           pc, address, is_write, *(unsigned long *)old_set);
1052
#endif
1053
    /* XXX: locking issue */
1054
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1055
        return 1;
1056
    }
1057
    /* see if it is an MMU fault */
1058
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1059
    if (ret < 0)
1060
        return 0; /* not an MMU fault */
1061
    if (ret == 0)
1062
        return 1; /* the MMU fault was handled without causing real CPU fault */
1063
    /* now we have a real cpu fault */
1064
    tb = tb_find_pc(pc);
1065
    if (tb) {
1066
        /* the PC is inside the translated code. It means that we have
1067
           a virtual CPU fault */
1068
        cpu_restore_state(tb, env, pc, puc);
1069
    }
1070
    /* we restore the process signal mask as the sigreturn should
1071
       do it (XXX: use sigsetjmp) */
1072
    sigprocmask(SIG_SETMASK, old_set, NULL);
1073
    cpu_loop_exit();
1074
}
1075
#elif defined (TARGET_PPC)
1076
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1077
                                    int is_write, sigset_t *old_set,
1078
                                    void *puc)
1079
{
1080
    TranslationBlock *tb;
1081
    int ret;
1082
    
1083
    if (cpu_single_env)
1084
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1085
#if defined(DEBUG_SIGNAL)
1086
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1087
           pc, address, is_write, *(unsigned long *)old_set);
1088
#endif
1089
    /* XXX: locking issue */
1090
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1091
        return 1;
1092
    }
1093

    
1094
    /* see if it is an MMU fault */
1095
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1096
    if (ret < 0)
1097
        return 0; /* not an MMU fault */
1098
    if (ret == 0)
1099
        return 1; /* the MMU fault was handled without causing real CPU fault */
1100

    
1101
    /* now we have a real cpu fault */
1102
    tb = tb_find_pc(pc);
1103
    if (tb) {
1104
        /* the PC is inside the translated code. It means that we have
1105
           a virtual CPU fault */
1106
        cpu_restore_state(tb, env, pc, puc);
1107
    }
1108
    if (ret == 1) {
1109
#if 0
1110
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1111
               env->nip, env->error_code, tb);
1112
#endif
1113
    /* we restore the process signal mask as the sigreturn should
1114
       do it (XXX: use sigsetjmp) */
1115
        sigprocmask(SIG_SETMASK, old_set, NULL);
1116
        do_raise_exception_err(env->exception_index, env->error_code);
1117
    } else {
1118
        /* activate soft MMU for this block */
1119
        cpu_resume_from_signal(env, puc);
1120
    }
1121
    /* never comes here */
1122
    return 1;
1123
}
1124

    
1125
#elif defined(TARGET_M68K)
1126
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1127
                                    int is_write, sigset_t *old_set,
1128
                                    void *puc)
1129
{
1130
    TranslationBlock *tb;
1131
    int ret;
1132

    
1133
    if (cpu_single_env)
1134
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1135
#if defined(DEBUG_SIGNAL)
1136
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1137
           pc, address, is_write, *(unsigned long *)old_set);
1138
#endif
1139
    /* XXX: locking issue */
1140
    if (is_write && page_unprotect(address, pc, puc)) {
1141
        return 1;
1142
    }
1143
    /* see if it is an MMU fault */
1144
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1145
    if (ret < 0)
1146
        return 0; /* not an MMU fault */
1147
    if (ret == 0)
1148
        return 1; /* the MMU fault was handled without causing real CPU fault */
1149
    /* now we have a real cpu fault */
1150
    tb = tb_find_pc(pc);
1151
    if (tb) {
1152
        /* the PC is inside the translated code. It means that we have
1153
           a virtual CPU fault */
1154
        cpu_restore_state(tb, env, pc, puc);
1155
    }
1156
    /* we restore the process signal mask as the sigreturn should
1157
       do it (XXX: use sigsetjmp) */
1158
    sigprocmask(SIG_SETMASK, old_set, NULL);
1159
    cpu_loop_exit();
1160
    /* never comes here */
1161
    return 1;
1162
}
1163

    
1164
#elif defined (TARGET_MIPS)
1165
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1166
                                    int is_write, sigset_t *old_set,
1167
                                    void *puc)
1168
{
1169
    TranslationBlock *tb;
1170
    int ret;
1171
    
1172
    if (cpu_single_env)
1173
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1174
#if defined(DEBUG_SIGNAL)
1175
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1176
           pc, address, is_write, *(unsigned long *)old_set);
1177
#endif
1178
    /* XXX: locking issue */
1179
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1180
        return 1;
1181
    }
1182

    
1183
    /* see if it is an MMU fault */
1184
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1185
    if (ret < 0)
1186
        return 0; /* not an MMU fault */
1187
    if (ret == 0)
1188
        return 1; /* the MMU fault was handled without causing real CPU fault */
1189

    
1190
    /* now we have a real cpu fault */
1191
    tb = tb_find_pc(pc);
1192
    if (tb) {
1193
        /* the PC is inside the translated code. It means that we have
1194
           a virtual CPU fault */
1195
        cpu_restore_state(tb, env, pc, puc);
1196
    }
1197
    if (ret == 1) {
1198
#if 0
1199
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1200
               env->nip, env->error_code, tb);
1201
#endif
1202
    /* we restore the process signal mask as the sigreturn should
1203
       do it (XXX: use sigsetjmp) */
1204
        sigprocmask(SIG_SETMASK, old_set, NULL);
1205
        do_raise_exception_err(env->exception_index, env->error_code);
1206
    } else {
1207
        /* activate soft MMU for this block */
1208
        cpu_resume_from_signal(env, puc);
1209
    }
1210
    /* never comes here */
1211
    return 1;
1212
}
1213

    
1214
#elif defined (TARGET_SH4)
1215
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1216
                                    int is_write, sigset_t *old_set,
1217
                                    void *puc)
1218
{
1219
    TranslationBlock *tb;
1220
    int ret;
1221
    
1222
    if (cpu_single_env)
1223
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1224
#if defined(DEBUG_SIGNAL)
1225
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1226
           pc, address, is_write, *(unsigned long *)old_set);
1227
#endif
1228
    /* XXX: locking issue */
1229
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1230
        return 1;
1231
    }
1232

    
1233
    /* see if it is an MMU fault */
1234
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1235
    if (ret < 0)
1236
        return 0; /* not an MMU fault */
1237
    if (ret == 0)
1238
        return 1; /* the MMU fault was handled without causing real CPU fault */
1239

    
1240
    /* now we have a real cpu fault */
1241
    tb = tb_find_pc(pc);
1242
    if (tb) {
1243
        /* the PC is inside the translated code. It means that we have
1244
           a virtual CPU fault */
1245
        cpu_restore_state(tb, env, pc, puc);
1246
    }
1247
#if 0
1248
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1249
               env->nip, env->error_code, tb);
1250
#endif
1251
    /* we restore the process signal mask as the sigreturn should
1252
       do it (XXX: use sigsetjmp) */
1253
    sigprocmask(SIG_SETMASK, old_set, NULL);
1254
    cpu_loop_exit();
1255
    /* never comes here */
1256
    return 1;
1257
}
1258
#else
1259
#error unsupported target CPU
1260
#endif
1261

    
1262
#if defined(__i386__)
1263

    
1264
#if defined(USE_CODE_COPY)
1265
static void cpu_send_trap(unsigned long pc, int trap, 
1266
                          struct ucontext *uc)
1267
{
1268
    TranslationBlock *tb;
1269

    
1270
    if (cpu_single_env)
1271
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1272
    /* now we have a real cpu fault */
1273
    tb = tb_find_pc(pc);
1274
    if (tb) {
1275
        /* the PC is inside the translated code. It means that we have
1276
           a virtual CPU fault */
1277
        cpu_restore_state(tb, env, pc, uc);
1278
    }
1279
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1280
    raise_exception_err(trap, env->error_code);
1281
}
1282
#endif
1283

    
1284
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1285
                       void *puc)
1286
{
1287
    struct ucontext *uc = puc;
1288
    unsigned long pc;
1289
    int trapno;
1290

    
1291
#ifndef REG_EIP
1292
/* for glibc 2.1 */
1293
#define REG_EIP    EIP
1294
#define REG_ERR    ERR
1295
#define REG_TRAPNO TRAPNO
1296
#endif
1297
    pc = uc->uc_mcontext.gregs[REG_EIP];
1298
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1299
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1300
    if (trapno == 0x00 || trapno == 0x05) {
1301
        /* send division by zero or bound exception */
1302
        cpu_send_trap(pc, trapno, uc);
1303
        return 1;
1304
    } else
1305
#endif
1306
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1307
                                 trapno == 0xe ? 
1308
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1309
                                 &uc->uc_sigmask, puc);
1310
}
1311

    
1312
#elif defined(__x86_64__)
1313

    
1314
int cpu_signal_handler(int host_signum, struct siginfo *info,
1315
                       void *puc)
1316
{
1317
    struct ucontext *uc = puc;
1318
    unsigned long pc;
1319

    
1320
    pc = uc->uc_mcontext.gregs[REG_RIP];
1321
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1322
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1323
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1324
                             &uc->uc_sigmask, puc);
1325
}
1326

    
1327
#elif defined(__powerpc__)
1328

    
1329
/***********************************************************************
1330
 * signal context platform-specific definitions
1331
 * From Wine
1332
 */
1333
#ifdef linux
1334
/* All Registers access - only for local access */
1335
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1336
/* Gpr Registers access  */
1337
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1338
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1339
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1340
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1341
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1342
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1343
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1344
/* Float Registers access  */
1345
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1346
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1347
/* Exception Registers access */
1348
# define DAR_sig(context)                        REG_sig(dar, context)
1349
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1350
# define TRAP_sig(context)                        REG_sig(trap, context)
1351
#endif /* linux */
1352

    
1353
#ifdef __APPLE__
1354
# include <sys/ucontext.h>
1355
typedef struct ucontext SIGCONTEXT;
1356
/* All Registers access - only for local access */
1357
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1358
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1359
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1360
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1361
/* Gpr Registers access */
1362
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1363
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1364
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1365
# define CTR_sig(context)                        REG_sig(ctr, context)
1366
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1367
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1368
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1369
/* Float Registers access */
1370
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1371
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1372
/* Exception Registers access */
1373
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1374
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1375
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1376
#endif /* __APPLE__ */
1377

    
1378
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1379
                       void *puc)
1380
{
1381
    struct ucontext *uc = puc;
1382
    unsigned long pc;
1383
    int is_write;
1384

    
1385
    pc = IAR_sig(uc);
1386
    is_write = 0;
1387
#if 0
1388
    /* ppc 4xx case */
1389
    if (DSISR_sig(uc) & 0x00800000)
1390
        is_write = 1;
1391
#else
1392
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1393
        is_write = 1;
1394
#endif
1395
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1396
                             is_write, &uc->uc_sigmask, puc);
1397
}
1398

    
1399
#elif defined(__alpha__)
1400

    
1401
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1402
                           void *puc)
1403
{
1404
    struct ucontext *uc = puc;
1405
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1406
    uint32_t insn = *pc;
1407
    int is_write = 0;
1408

    
1409
    /* XXX: need kernel patch to get write flag faster */
1410
    switch (insn >> 26) {
1411
    case 0x0d: // stw
1412
    case 0x0e: // stb
1413
    case 0x0f: // stq_u
1414
    case 0x24: // stf
1415
    case 0x25: // stg
1416
    case 0x26: // sts
1417
    case 0x27: // stt
1418
    case 0x2c: // stl
1419
    case 0x2d: // stq
1420
    case 0x2e: // stl_c
1421
    case 0x2f: // stq_c
1422
        is_write = 1;
1423
    }
1424

    
1425
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1426
                             is_write, &uc->uc_sigmask, puc);
1427
}
1428
#elif defined(__sparc__)
1429

    
1430
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1431
                       void *puc)
1432
{
1433
    uint32_t *regs = (uint32_t *)(info + 1);
1434
    void *sigmask = (regs + 20);
1435
    unsigned long pc;
1436
    int is_write;
1437
    uint32_t insn;
1438
    
1439
    /* XXX: is there a standard glibc define ? */
1440
    pc = regs[1];
1441
    /* XXX: need kernel patch to get write flag faster */
1442
    is_write = 0;
1443
    insn = *(uint32_t *)pc;
1444
    if ((insn >> 30) == 3) {
1445
      switch((insn >> 19) & 0x3f) {
1446
      case 0x05: // stb
1447
      case 0x06: // sth
1448
      case 0x04: // st
1449
      case 0x07: // std
1450
      case 0x24: // stf
1451
      case 0x27: // stdf
1452
      case 0x25: // stfsr
1453
        is_write = 1;
1454
        break;
1455
      }
1456
    }
1457
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1458
                             is_write, sigmask, NULL);
1459
}
1460

    
1461
#elif defined(__arm__)
1462

    
1463
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1464
                       void *puc)
1465
{
1466
    struct ucontext *uc = puc;
1467
    unsigned long pc;
1468
    int is_write;
1469
    
1470
    pc = uc->uc_mcontext.gregs[R15];
1471
    /* XXX: compute is_write */
1472
    is_write = 0;
1473
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1474
                             is_write,
1475
                             &uc->uc_sigmask, puc);
1476
}
1477

    
1478
#elif defined(__mc68000)
1479

    
1480
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1481
                       void *puc)
1482
{
1483
    struct ucontext *uc = puc;
1484
    unsigned long pc;
1485
    int is_write;
1486
    
1487
    pc = uc->uc_mcontext.gregs[16];
1488
    /* XXX: compute is_write */
1489
    is_write = 0;
1490
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1491
                             is_write,
1492
                             &uc->uc_sigmask, puc);
1493
}
1494

    
1495
#elif defined(__ia64)
1496

    
1497
#ifndef __ISR_VALID
1498
  /* This ought to be in <bits/siginfo.h>... */
1499
# define __ISR_VALID        1
1500
#endif
1501

    
1502
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1503
{
1504
    struct ucontext *uc = puc;
1505
    unsigned long ip;
1506
    int is_write = 0;
1507

    
1508
    ip = uc->uc_mcontext.sc_ip;
1509
    switch (host_signum) {
1510
      case SIGILL:
1511
      case SIGFPE:
1512
      case SIGSEGV:
1513
      case SIGBUS:
1514
      case SIGTRAP:
1515
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1516
              /* ISR.W (write-access) is bit 33:  */
1517
              is_write = (info->si_isr >> 33) & 1;
1518
          break;
1519

    
1520
      default:
1521
          break;
1522
    }
1523
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1524
                             is_write,
1525
                             &uc->uc_sigmask, puc);
1526
}
1527

    
1528
#elif defined(__s390__)
1529

    
1530
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1531
                       void *puc)
1532
{
1533
    struct ucontext *uc = puc;
1534
    unsigned long pc;
1535
    int is_write;
1536
    
1537
    pc = uc->uc_mcontext.psw.addr;
1538
    /* XXX: compute is_write */
1539
    is_write = 0;
1540
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1541
                             is_write,
1542
                             &uc->uc_sigmask, puc);
1543
}
1544

    
1545
#else
1546

    
1547
#error host CPU specific signal handler needed
1548

    
1549
#endif
1550

    
1551
#endif /* !defined(CONFIG_SOFTMMU) */