Statistics
| Branch: | Revision:

root / qemu-doc.texi @ e6e5906b

History | View | Annotate | Download (56.1 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU Linux User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item 
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item 
60
User mode emulation (Linux host only). In this mode, QEMU can launch
61
Linux processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance. 
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E or 1026E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@end itemize
83

    
84
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
85

    
86
@node Installation
87
@chapter Installation
88

    
89
If you want to compile QEMU yourself, see @ref{compilation}.
90

    
91
@menu
92
* install_linux::   Linux
93
* install_windows:: Windows
94
* install_mac::     Macintosh
95
@end menu
96

    
97
@node install_linux
98
@section Linux
99

    
100
If a precompiled package is available for your distribution - you just
101
have to install it. Otherwise, see @ref{compilation}.
102

    
103
@node install_windows
104
@section Windows
105

    
106
Download the experimental binary installer at
107
@url{http://www.free.oszoo.org/@/download.html}.
108

    
109
@node install_mac
110
@section Mac OS X
111

    
112
Download the experimental binary installer at
113
@url{http://www.free.oszoo.org/@/download.html}.
114

    
115
@node QEMU PC System emulator
116
@chapter QEMU PC System emulator
117

    
118
@menu
119
* pcsys_introduction:: Introduction
120
* pcsys_quickstart::   Quick Start
121
* sec_invocation::     Invocation
122
* pcsys_keys::         Keys
123
* pcsys_monitor::      QEMU Monitor
124
* disk_images::        Disk Images
125
* pcsys_network::      Network emulation
126
* direct_linux_boot::  Direct Linux Boot
127
* pcsys_usb::          USB emulation
128
* gdb_usage::          GDB usage
129
* pcsys_os_specific::  Target OS specific information
130
@end menu
131

    
132
@node pcsys_introduction
133
@section Introduction
134

    
135
@c man begin DESCRIPTION
136

    
137
The QEMU PC System emulator simulates the
138
following peripherals:
139

    
140
@itemize @minus
141
@item 
142
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
143
@item
144
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
145
extensions (hardware level, including all non standard modes).
146
@item
147
PS/2 mouse and keyboard
148
@item 
149
2 PCI IDE interfaces with hard disk and CD-ROM support
150
@item
151
Floppy disk
152
@item 
153
NE2000 PCI network adapters
154
@item
155
Serial ports
156
@item
157
Creative SoundBlaster 16 sound card
158
@item
159
ENSONIQ AudioPCI ES1370 sound card
160
@item
161
Adlib(OPL2) - Yamaha YM3812 compatible chip
162
@item
163
PCI UHCI USB controller and a virtual USB hub.
164
@end itemize
165

    
166
SMP is supported with up to 255 CPUs.
167

    
168
Note that adlib is only available when QEMU was configured with
169
-enable-adlib
170

    
171
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
172
VGA BIOS.
173

    
174
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
175

    
176
@c man end
177

    
178
@node pcsys_quickstart
179
@section Quick Start
180

    
181
Download and uncompress the linux image (@file{linux.img}) and type:
182

    
183
@example
184
qemu linux.img
185
@end example
186

    
187
Linux should boot and give you a prompt.
188

    
189
@node sec_invocation
190
@section Invocation
191

    
192
@example
193
@c man begin SYNOPSIS
194
usage: qemu [options] [disk_image]
195
@c man end
196
@end example
197

    
198
@c man begin OPTIONS
199
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
200

    
201
General options:
202
@table @option
203
@item -M machine
204
Select the emulated machine (@code{-M ?} for list)
205

    
206
@item -fda file
207
@item -fdb file
208
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
209
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
210

    
211
@item -hda file
212
@item -hdb file
213
@item -hdc file
214
@item -hdd file
215
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
216

    
217
@item -cdrom file
218
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
219
@option{-cdrom} at the same time). You can use the host CD-ROM by
220
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
221

    
222
@item -boot [a|c|d]
223
Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
224
the default.
225

    
226
@item -snapshot
227
Write to temporary files instead of disk image files. In this case,
228
the raw disk image you use is not written back. You can however force
229
the write back by pressing @key{C-a s} (@pxref{disk_images}). 
230

    
231
@item -no-fd-bootchk
232
Disable boot signature checking for floppy disks in Bochs BIOS. It may
233
be needed to boot from old floppy disks.
234

    
235
@item -m megs
236
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
237

    
238
@item -smp n
239
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240
CPUs are supported.
241

    
242
@item -nographic
243

    
244
Normally, QEMU uses SDL to display the VGA output. With this option,
245
you can totally disable graphical output so that QEMU is a simple
246
command line application. The emulated serial port is redirected on
247
the console. Therefore, you can still use QEMU to debug a Linux kernel
248
with a serial console.
249

    
250
@item -vnc d
251

    
252
Normally, QEMU uses SDL to display the VGA output.  With this option,
253
you can have QEMU listen on VNC display @var{d} and redirect the VGA
254
display over the VNC session.  It is very useful to enable the usb
255
tablet device when using this option (option @option{-usbdevice
256
tablet}). When using the VNC display, you must use the @option{-k}
257
option to set the keyboard layout.
258

    
259
@item -k language
260

    
261
Use keyboard layout @var{language} (for example @code{fr} for
262
French). This option is only needed where it is not easy to get raw PC
263
keycodes (e.g. on Macs, with some X11 servers or with a VNC
264
display). You don't normally need to use it on PC/Linux or PC/Windows
265
hosts.
266

    
267
The available layouts are:
268
@example
269
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
270
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
271
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
272
@end example
273

    
274
The default is @code{en-us}.
275

    
276
@item -audio-help
277

    
278
Will show the audio subsystem help: list of drivers, tunable
279
parameters.
280

    
281
@item -soundhw card1,card2,... or -soundhw all
282

    
283
Enable audio and selected sound hardware. Use ? to print all
284
available sound hardware.
285

    
286
@example
287
qemu -soundhw sb16,adlib hda
288
qemu -soundhw es1370 hda
289
qemu -soundhw all hda
290
qemu -soundhw ?
291
@end example
292

    
293
@item -localtime
294
Set the real time clock to local time (the default is to UTC
295
time). This option is needed to have correct date in MS-DOS or
296
Windows.
297

    
298
@item -full-screen
299
Start in full screen.
300

    
301
@item -pidfile file
302
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
303
from a script.
304

    
305
@item -win2k-hack
306
Use it when installing Windows 2000 to avoid a disk full bug. After
307
Windows 2000 is installed, you no longer need this option (this option
308
slows down the IDE transfers).
309

    
310
@end table
311

    
312
USB options:
313
@table @option
314

    
315
@item -usb
316
Enable the USB driver (will be the default soon)
317

    
318
@item -usbdevice devname
319
Add the USB device @var{devname}. @xref{usb_devices}.
320
@end table
321

    
322
Network options:
323

    
324
@table @option
325

    
326
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
327
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
328
= 0 is the default). The NIC is currently an NE2000 on the PC
329
target. Optionally, the MAC address can be changed. If no
330
@option{-net} option is specified, a single NIC is created.
331
Qemu can emulate several different models of network card.  Valid values for
332
@var{type} are @code{ne2k_pci}, @code{ne2k_isa}, @code{rtl8139},
333
@code{smc91c111} and @code{lance}.  Not all devices are supported on all
334
targets.
335

    
336
@item -net user[,vlan=n][,hostname=name]
337
Use the user mode network stack which requires no administrator
338
priviledge to run.  @option{hostname=name} can be used to specify the client
339
hostname reported by the builtin DHCP server.
340

    
341
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
342
Connect the host TAP network interface @var{name} to VLAN @var{n} and
343
use the network script @var{file} to configure it. The default
344
network script is @file{/etc/qemu-ifup}. If @var{name} is not
345
provided, the OS automatically provides one.  @option{fd=h} can be
346
used to specify the handle of an already opened host TAP interface. Example:
347

    
348
@example
349
qemu linux.img -net nic -net tap
350
@end example
351

    
352
More complicated example (two NICs, each one connected to a TAP device)
353
@example
354
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
355
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
356
@end example
357

    
358

    
359
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
360

    
361
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
362
machine using a TCP socket connection. If @option{listen} is
363
specified, QEMU waits for incoming connections on @var{port}
364
(@var{host} is optional). @option{connect} is used to connect to
365
another QEMU instance using the @option{listen} option. @option{fd=h}
366
specifies an already opened TCP socket.
367

    
368
Example:
369
@example
370
# launch a first QEMU instance
371
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
372
               -net socket,listen=:1234
373
# connect the VLAN 0 of this instance to the VLAN 0
374
# of the first instance
375
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
376
               -net socket,connect=127.0.0.1:1234
377
@end example
378

    
379
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
380

    
381
Create a VLAN @var{n} shared with another QEMU virtual
382
machines using a UDP multicast socket, effectively making a bus for 
383
every QEMU with same multicast address @var{maddr} and @var{port}.
384
NOTES:
385
@enumerate
386
@item 
387
Several QEMU can be running on different hosts and share same bus (assuming 
388
correct multicast setup for these hosts).
389
@item
390
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
391
@url{http://user-mode-linux.sf.net}.
392
@item Use @option{fd=h} to specify an already opened UDP multicast socket.
393
@end enumerate
394

    
395
Example:
396
@example
397
# launch one QEMU instance
398
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
399
               -net socket,mcast=230.0.0.1:1234
400
# launch another QEMU instance on same "bus"
401
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
402
               -net socket,mcast=230.0.0.1:1234
403
# launch yet another QEMU instance on same "bus"
404
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
405
               -net socket,mcast=230.0.0.1:1234
406
@end example
407

    
408
Example (User Mode Linux compat.):
409
@example
410
# launch QEMU instance (note mcast address selected
411
# is UML's default)
412
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
413
               -net socket,mcast=239.192.168.1:1102
414
# launch UML
415
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
416
@end example
417

    
418
@item -net none
419
Indicate that no network devices should be configured. It is used to
420
override the default configuration (@option{-net nic -net user}) which
421
is activated if no @option{-net} options are provided.
422

    
423
@item -tftp prefix
424
When using the user mode network stack, activate a built-in TFTP
425
server. All filenames beginning with @var{prefix} can be downloaded
426
from the host to the guest using a TFTP client. The TFTP client on the
427
guest must be configured in binary mode (use the command @code{bin} of
428
the Unix TFTP client). The host IP address on the guest is as usual
429
10.0.2.2.
430

    
431
@item -smb dir
432
When using the user mode network stack, activate a built-in SMB
433
server so that Windows OSes can access to the host files in @file{dir}
434
transparently.
435

    
436
In the guest Windows OS, the line:
437
@example
438
10.0.2.4 smbserver
439
@end example
440
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
441
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
442

    
443
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
444

    
445
Note that a SAMBA server must be installed on the host OS in
446
@file{/usr/sbin/smbd}. QEMU was tested succesfully with smbd version
447
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
448

    
449
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
450

    
451
When using the user mode network stack, redirect incoming TCP or UDP
452
connections to the host port @var{host-port} to the guest
453
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
454
is not specified, its value is 10.0.2.15 (default address given by the
455
built-in DHCP server).
456

    
457
For example, to redirect host X11 connection from screen 1 to guest
458
screen 0, use the following:
459

    
460
@example
461
# on the host
462
qemu -redir tcp:6001::6000 [...]
463
# this host xterm should open in the guest X11 server
464
xterm -display :1
465
@end example
466

    
467
To redirect telnet connections from host port 5555 to telnet port on
468
the guest, use the following:
469

    
470
@example
471
# on the host
472
qemu -redir tcp:5555::23 [...]
473
telnet localhost 5555
474
@end example
475

    
476
Then when you use on the host @code{telnet localhost 5555}, you
477
connect to the guest telnet server.
478

    
479
@end table
480

    
481
Linux boot specific: When using these options, you can use a given
482
Linux kernel without installing it in the disk image. It can be useful
483
for easier testing of various kernels.
484

    
485
@table @option
486

    
487
@item -kernel bzImage 
488
Use @var{bzImage} as kernel image.
489

    
490
@item -append cmdline 
491
Use @var{cmdline} as kernel command line
492

    
493
@item -initrd file
494
Use @var{file} as initial ram disk.
495

    
496
@end table
497

    
498
Debug/Expert options:
499
@table @option
500

    
501
@item -serial dev
502
Redirect the virtual serial port to host character device
503
@var{dev}. The default device is @code{vc} in graphical mode and
504
@code{stdio} in non graphical mode.
505

    
506
This option can be used several times to simulate up to 4 serials
507
ports.
508

    
509
Use @code{-serial none} to disable all serial ports.
510

    
511
Available character devices are:
512
@table @code
513
@item vc
514
Virtual console
515
@item pty
516
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
517
@item none
518
No device is allocated.
519
@item null
520
void device
521
@item /dev/XXX
522
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
523
parameters are set according to the emulated ones.
524
@item /dev/parportN
525
[Linux only, parallel port only] Use host parallel port
526
@var{N}. Currently only SPP parallel port features can be used.
527
@item file:filename
528
Write output to filename. No character can be read.
529
@item stdio
530
[Unix only] standard input/output
531
@item pipe:filename
532
name pipe @var{filename}
533
@item COMn
534
[Windows only] Use host serial port @var{n}
535
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
536
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specifed @var{src_port} a random port is automatically chosen.
537

    
538
If you just want a simple readonly console you can use @code{netcat} or
539
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
540
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
541
will appear in the netconsole session.
542

    
543
If you plan to send characters back via netconsole or you want to stop
544
and start qemu a lot of times, you should have qemu use the same
545
source port each time by using something like @code{-serial
546
udp::4555@@:4556} to qemu. Another approach is to use a patched
547
version of netcat which can listen to a TCP port and send and receive
548
characters via udp.  If you have a patched version of netcat which
549
activates telnet remote echo and single char transfer, then you can
550
use the following options to step up a netcat redirector to allow
551
telnet on port 5555 to access the qemu port.
552
@table @code
553
@item Qemu Options:
554
-serial udp::4555@@:4556
555
@item netcat options:
556
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
557
@item telnet options:
558
localhost 5555
559
@end table
560

    
561

    
562
@item tcp:[host]:port[,server][,nowait]
563
The TCP Net Console has two modes of operation.  It can send the serial
564
I/O to a location or wait for a connection from a location.  By default
565
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
566
the @var{server} option QEMU will wait for a client socket application
567
to connect to the port before continuing, unless the @code{nowait}
568
option was specified. If @var{host} is omitted, 0.0.0.0 is assumed. Only
569
one TCP connection at a time is accepted. You can use @code{telnet} to
570
connect to the corresponding character device.
571
@table @code
572
@item Example to send tcp console to 192.168.0.2 port 4444
573
-serial tcp:192.168.0.2:4444
574
@item Example to listen and wait on port 4444 for connection
575
-serial tcp::4444,server
576
@item Example to not wait and listen on ip 192.168.0.100 port 4444
577
-serial tcp:192.168.0.100:4444,server,nowait
578
@end table
579

    
580
@item telnet:host:port[,server][,nowait]
581
The telnet protocol is used instead of raw tcp sockets.  The options
582
work the same as if you had specified @code{-serial tcp}.  The
583
difference is that the port acts like a telnet server or client using
584
telnet option negotiation.  This will also allow you to send the
585
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
586
sequence.  Typically in unix telnet you do it with Control-] and then
587
type "send break" followed by pressing the enter key.
588

    
589
@end table
590

    
591
@item -parallel dev
592
Redirect the virtual parallel port to host device @var{dev} (same
593
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
594
be used to use hardware devices connected on the corresponding host
595
parallel port.
596

    
597
This option can be used several times to simulate up to 3 parallel
598
ports.
599

    
600
Use @code{-parallel none} to disable all parallel ports.
601

    
602
@item -monitor dev
603
Redirect the monitor to host device @var{dev} (same devices as the
604
serial port).
605
The default device is @code{vc} in graphical mode and @code{stdio} in
606
non graphical mode.
607

    
608
@item -s
609
Wait gdb connection to port 1234 (@pxref{gdb_usage}). 
610
@item -p port
611
Change gdb connection port.
612
@item -S
613
Do not start CPU at startup (you must type 'c' in the monitor).
614
@item -d             
615
Output log in /tmp/qemu.log
616
@item -hdachs c,h,s,[,t]
617
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
618
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
619
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
620
all thoses parameters. This option is useful for old MS-DOS disk
621
images.
622

    
623
@item -L path
624
Set the directory for the BIOS, VGA BIOS and keymaps.
625

    
626
@item -std-vga
627
Simulate a standard VGA card with Bochs VBE extensions (default is
628
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
629
VBE extensions (e.g. Windows XP) and if you want to use high
630
resolution modes (>= 1280x1024x16) then you should use this option.
631

    
632
@item -no-acpi
633
Disable ACPI (Advanced Configuration and Power Interface) support. Use
634
it if your guest OS complains about ACPI problems (PC target machine
635
only).
636

    
637
@item -no-reboot
638
Exit instead of rebooting.
639

    
640
@item -loadvm file
641
Start right away with a saved state (@code{loadvm} in monitor)
642
@end table
643

    
644
@c man end
645

    
646
@node pcsys_keys
647
@section Keys
648

    
649
@c man begin OPTIONS
650

    
651
During the graphical emulation, you can use the following keys:
652
@table @key
653
@item Ctrl-Alt-f
654
Toggle full screen
655

    
656
@item Ctrl-Alt-n
657
Switch to virtual console 'n'. Standard console mappings are:
658
@table @emph
659
@item 1
660
Target system display
661
@item 2
662
Monitor
663
@item 3
664
Serial port
665
@end table
666

    
667
@item Ctrl-Alt
668
Toggle mouse and keyboard grab.
669
@end table
670

    
671
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
672
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
673

    
674
During emulation, if you are using the @option{-nographic} option, use
675
@key{Ctrl-a h} to get terminal commands:
676

    
677
@table @key
678
@item Ctrl-a h
679
Print this help
680
@item Ctrl-a x    
681
Exit emulatior
682
@item Ctrl-a s    
683
Save disk data back to file (if -snapshot)
684
@item Ctrl-a b
685
Send break (magic sysrq in Linux)
686
@item Ctrl-a c
687
Switch between console and monitor
688
@item Ctrl-a Ctrl-a
689
Send Ctrl-a
690
@end table
691
@c man end
692

    
693
@ignore
694

    
695
@c man begin SEEALSO
696
The HTML documentation of QEMU for more precise information and Linux
697
user mode emulator invocation.
698
@c man end
699

    
700
@c man begin AUTHOR
701
Fabrice Bellard
702
@c man end
703

    
704
@end ignore
705

    
706
@node pcsys_monitor
707
@section QEMU Monitor
708

    
709
The QEMU monitor is used to give complex commands to the QEMU
710
emulator. You can use it to:
711

    
712
@itemize @minus
713

    
714
@item
715
Remove or insert removable medias images
716
(such as CD-ROM or floppies)
717

    
718
@item 
719
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
720
from a disk file.
721

    
722
@item Inspect the VM state without an external debugger.
723

    
724
@end itemize
725

    
726
@subsection Commands
727

    
728
The following commands are available:
729

    
730
@table @option
731

    
732
@item help or ? [cmd]
733
Show the help for all commands or just for command @var{cmd}.
734

    
735
@item commit  
736
Commit changes to the disk images (if -snapshot is used)
737

    
738
@item info subcommand 
739
show various information about the system state
740

    
741
@table @option
742
@item info network
743
show the various VLANs and the associated devices
744
@item info block
745
show the block devices
746
@item info registers
747
show the cpu registers
748
@item info history
749
show the command line history
750
@item info pci
751
show emulated PCI device
752
@item info usb
753
show USB devices plugged on the virtual USB hub
754
@item info usbhost
755
show all USB host devices
756
@item info capture
757
show information about active capturing
758
@item info snapshots
759
show list of VM snapshots
760
@end table
761

    
762
@item q or quit
763
Quit the emulator.
764

    
765
@item eject [-f] device
766
Eject a removable media (use -f to force it).
767

    
768
@item change device filename
769
Change a removable media.
770

    
771
@item screendump filename
772
Save screen into PPM image @var{filename}.
773

    
774
@item wavcapture filename [frequency [bits [channels]]]
775
Capture audio into @var{filename}. Using sample rate @var{frequency}
776
bits per sample @var{bits} and number of channels @var{channels}.
777

    
778
Defaults:
779
@itemize @minus
780
@item Sample rate = 44100 Hz - CD quality
781
@item Bits = 16
782
@item Number of channels = 2 - Stereo
783
@end itemize
784

    
785
@item stopcapture index
786
Stop capture with a given @var{index}, index can be obtained with
787
@example
788
info capture
789
@end example
790

    
791
@item log item1[,...]
792
Activate logging of the specified items to @file{/tmp/qemu.log}.
793

    
794
@item savevm [tag|id]
795
Create a snapshot of the whole virtual machine. If @var{tag} is
796
provided, it is used as human readable identifier. If there is already
797
a snapshot with the same tag or ID, it is replaced. More info at
798
@ref{vm_snapshots}.
799

    
800
@item loadvm tag|id
801
Set the whole virtual machine to the snapshot identified by the tag
802
@var{tag} or the unique snapshot ID @var{id}.
803

    
804
@item delvm tag|id
805
Delete the snapshot identified by @var{tag} or @var{id}.
806

    
807
@item stop
808
Stop emulation.
809

    
810
@item c or cont
811
Resume emulation.
812

    
813
@item gdbserver [port]
814
Start gdbserver session (default port=1234)
815

    
816
@item x/fmt addr
817
Virtual memory dump starting at @var{addr}.
818

    
819
@item xp /fmt addr
820
Physical memory dump starting at @var{addr}.
821

    
822
@var{fmt} is a format which tells the command how to format the
823
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
824

    
825
@table @var
826
@item count 
827
is the number of items to be dumped.
828

    
829
@item format
830
can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
831
c (char) or i (asm instruction).
832

    
833
@item size
834
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
835
@code{h} or @code{w} can be specified with the @code{i} format to
836
respectively select 16 or 32 bit code instruction size.
837

    
838
@end table
839

    
840
Examples: 
841
@itemize
842
@item
843
Dump 10 instructions at the current instruction pointer:
844
@example 
845
(qemu) x/10i $eip
846
0x90107063:  ret
847
0x90107064:  sti
848
0x90107065:  lea    0x0(%esi,1),%esi
849
0x90107069:  lea    0x0(%edi,1),%edi
850
0x90107070:  ret
851
0x90107071:  jmp    0x90107080
852
0x90107073:  nop
853
0x90107074:  nop
854
0x90107075:  nop
855
0x90107076:  nop
856
@end example
857

    
858
@item
859
Dump 80 16 bit values at the start of the video memory.
860
@smallexample 
861
(qemu) xp/80hx 0xb8000
862
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
863
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
864
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
865
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
866
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
867
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
868
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
869
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
870
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
871
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
872
@end smallexample
873
@end itemize
874

    
875
@item p or print/fmt expr
876

    
877
Print expression value. Only the @var{format} part of @var{fmt} is
878
used.
879

    
880
@item sendkey keys
881

    
882
Send @var{keys} to the emulator. Use @code{-} to press several keys
883
simultaneously. Example:
884
@example
885
sendkey ctrl-alt-f1
886
@end example
887

    
888
This command is useful to send keys that your graphical user interface
889
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
890

    
891
@item system_reset
892

    
893
Reset the system.
894

    
895
@item usb_add devname
896

    
897
Add the USB device @var{devname}.  For details of available devices see
898
@ref{usb_devices}
899

    
900
@item usb_del devname
901

    
902
Remove the USB device @var{devname} from the QEMU virtual USB
903
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
904
command @code{info usb} to see the devices you can remove.
905

    
906
@end table
907

    
908
@subsection Integer expressions
909

    
910
The monitor understands integers expressions for every integer
911
argument. You can use register names to get the value of specifics
912
CPU registers by prefixing them with @emph{$}.
913

    
914
@node disk_images
915
@section Disk Images
916

    
917
Since version 0.6.1, QEMU supports many disk image formats, including
918
growable disk images (their size increase as non empty sectors are
919
written), compressed and encrypted disk images. Version 0.8.3 added
920
the new qcow2 disk image format which is essential to support VM
921
snapshots.
922

    
923
@menu
924
* disk_images_quickstart::    Quick start for disk image creation
925
* disk_images_snapshot_mode:: Snapshot mode
926
* vm_snapshots::              VM snapshots
927
* qemu_img_invocation::       qemu-img Invocation
928
* host_drives::               Using host drives
929
* disk_images_fat_images::    Virtual FAT disk images
930
@end menu
931

    
932
@node disk_images_quickstart
933
@subsection Quick start for disk image creation
934

    
935
You can create a disk image with the command:
936
@example
937
qemu-img create myimage.img mysize
938
@end example
939
where @var{myimage.img} is the disk image filename and @var{mysize} is its
940
size in kilobytes. You can add an @code{M} suffix to give the size in
941
megabytes and a @code{G} suffix for gigabytes.
942

    
943
See @ref{qemu_img_invocation} for more information.
944

    
945
@node disk_images_snapshot_mode
946
@subsection Snapshot mode
947

    
948
If you use the option @option{-snapshot}, all disk images are
949
considered as read only. When sectors in written, they are written in
950
a temporary file created in @file{/tmp}. You can however force the
951
write back to the raw disk images by using the @code{commit} monitor
952
command (or @key{C-a s} in the serial console).
953

    
954
@node vm_snapshots
955
@subsection VM snapshots
956

    
957
VM snapshots are snapshots of the complete virtual machine including
958
CPU state, RAM, device state and the content of all the writable
959
disks. In order to use VM snapshots, you must have at least one non
960
removable and writable block device using the @code{qcow2} disk image
961
format. Normally this device is the first virtual hard drive.
962

    
963
Use the monitor command @code{savevm} to create a new VM snapshot or
964
replace an existing one. A human readable name can be assigned to each
965
snapshot in addition to its numerical ID.
966

    
967
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
968
a VM snapshot. @code{info snapshots} lists the available snapshots
969
with their associated information:
970

    
971
@example
972
(qemu) info snapshots
973
Snapshot devices: hda
974
Snapshot list (from hda):
975
ID        TAG                 VM SIZE                DATE       VM CLOCK
976
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
977
2                                 40M 2006-08-06 12:43:29   00:00:18.633
978
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
979
@end example
980

    
981
A VM snapshot is made of a VM state info (its size is shown in
982
@code{info snapshots}) and a snapshot of every writable disk image.
983
The VM state info is stored in the first @code{qcow2} non removable
984
and writable block device. The disk image snapshots are stored in
985
every disk image. The size of a snapshot in a disk image is difficult
986
to evaluate and is not shown by @code{info snapshots} because the
987
associated disk sectors are shared among all the snapshots to save
988
disk space (otherwise each snapshot would need a full copy of all the
989
disk images).
990

    
991
When using the (unrelated) @code{-snapshot} option
992
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
993
but they are deleted as soon as you exit QEMU.
994

    
995
VM snapshots currently have the following known limitations:
996
@itemize
997
@item 
998
They cannot cope with removable devices if they are removed or
999
inserted after a snapshot is done.
1000
@item 
1001
A few device drivers still have incomplete snapshot support so their
1002
state is not saved or restored properly (in particular USB).
1003
@end itemize
1004

    
1005
@node qemu_img_invocation
1006
@subsection @code{qemu-img} Invocation
1007

    
1008
@include qemu-img.texi
1009

    
1010
@node host_drives
1011
@subsection Using host drives
1012

    
1013
In addition to disk image files, QEMU can directly access host
1014
devices. We describe here the usage for QEMU version >= 0.8.3.
1015

    
1016
@subsubsection Linux
1017

    
1018
On Linux, you can directly use the host device filename instead of a
1019
disk image filename provided you have enough proviledge to access
1020
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1021
@file{/dev/fd0} for the floppy.
1022

    
1023
@table @code
1024
@item CD
1025
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1026
specific code to detect CDROM insertion or removal. CDROM ejection by
1027
the guest OS is supported. Currently only data CDs are supported.
1028
@item Floppy
1029
You can specify a floppy device even if no floppy is loaded. Floppy
1030
removal is currently not detected accurately (if you change floppy
1031
without doing floppy access while the floppy is not loaded, the guest
1032
OS will think that the same floppy is loaded).
1033
@item Hard disks
1034
Hard disks can be used. Normally you must specify the whole disk
1035
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1036
see it as a partitioned disk. WARNING: unless you know what you do, it
1037
is better to only make READ-ONLY accesses to the hard disk otherwise
1038
you may corrupt your host data (use the @option{-snapshot} command
1039
line option or modify the device permissions accordingly).
1040
@end table
1041

    
1042
@subsubsection Windows
1043

    
1044
On Windows you can use any host drives as QEMU drive. The prefered
1045
syntax is the driver letter (e.g. @file{d:}). The alternate syntax
1046
@file{\\.\d:} is supported. @file{/dev/cdrom} is supported as an alias
1047
to the first CDROM drive.
1048

    
1049
Currently there is no specific code to handle removable medias, so it
1050
is better to use the @code{change} or @code{eject} monitor commands to
1051
change or eject media.
1052

    
1053
@subsubsection Mac OS X
1054

    
1055
@file{/dev/cdrom} is an alias to the first CDROM. 
1056

    
1057
Currently there is no specific code to handle removable medias, so it
1058
is better to use the @code{change} or @code{eject} monitor commands to
1059
change or eject media.
1060

    
1061
@node disk_images_fat_images
1062
@subsection Virtual FAT disk images
1063

    
1064
QEMU can automatically create a virtual FAT disk image from a
1065
directory tree. In order to use it, just type:
1066

    
1067
@example 
1068
qemu linux.img -hdb fat:/my_directory
1069
@end example
1070

    
1071
Then you access access to all the files in the @file{/my_directory}
1072
directory without having to copy them in a disk image or to export
1073
them via SAMBA or NFS. The default access is @emph{read-only}.
1074

    
1075
Floppies can be emulated with the @code{:floppy:} option:
1076

    
1077
@example 
1078
qemu linux.img -fda fat:floppy:/my_directory
1079
@end example
1080

    
1081
A read/write support is available for testing (beta stage) with the
1082
@code{:rw:} option:
1083

    
1084
@example 
1085
qemu linux.img -fda fat:floppy:rw:/my_directory
1086
@end example
1087

    
1088
What you should @emph{never} do:
1089
@itemize
1090
@item use non-ASCII filenames ;
1091
@item use "-snapshot" together with ":rw:" ;
1092
@item expect it to work when loadvm'ing ;
1093
@item write to the FAT directory on the host system while accessing it with the guest system.
1094
@end itemize
1095

    
1096
@node pcsys_network
1097
@section Network emulation
1098

    
1099
QEMU can simulate several networks cards (NE2000 boards on the PC
1100
target) and can connect them to an arbitrary number of Virtual Local
1101
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1102
VLAN. VLAN can be connected between separate instances of QEMU to
1103
simulate large networks. For simpler usage, a non priviledged user mode
1104
network stack can replace the TAP device to have a basic network
1105
connection.
1106

    
1107
@subsection VLANs
1108

    
1109
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1110
connection between several network devices. These devices can be for
1111
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1112
(TAP devices).
1113

    
1114
@subsection Using TAP network interfaces
1115

    
1116
This is the standard way to connect QEMU to a real network. QEMU adds
1117
a virtual network device on your host (called @code{tapN}), and you
1118
can then configure it as if it was a real ethernet card.
1119

    
1120
@subsubsection Linux host
1121

    
1122
As an example, you can download the @file{linux-test-xxx.tar.gz}
1123
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1124
configure properly @code{sudo} so that the command @code{ifconfig}
1125
contained in @file{qemu-ifup} can be executed as root. You must verify
1126
that your host kernel supports the TAP network interfaces: the
1127
device @file{/dev/net/tun} must be present.
1128

    
1129
See @ref{sec_invocation} to have examples of command lines using the
1130
TAP network interfaces.
1131

    
1132
@subsubsection Windows host
1133

    
1134
There is a virtual ethernet driver for Windows 2000/XP systems, called
1135
TAP-Win32. But it is not included in standard QEMU for Windows,
1136
so you will need to get it separately. It is part of OpenVPN package,
1137
so download OpenVPN from : @url{http://openvpn.net/}.
1138

    
1139
@subsection Using the user mode network stack
1140

    
1141
By using the option @option{-net user} (default configuration if no
1142
@option{-net} option is specified), QEMU uses a completely user mode
1143
network stack (you don't need root priviledge to use the virtual
1144
network). The virtual network configuration is the following:
1145

    
1146
@example
1147

    
1148
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1149
                           |          (10.0.2.2)
1150
                           |
1151
                           ---->  DNS server (10.0.2.3)
1152
                           |     
1153
                           ---->  SMB server (10.0.2.4)
1154
@end example
1155

    
1156
The QEMU VM behaves as if it was behind a firewall which blocks all
1157
incoming connections. You can use a DHCP client to automatically
1158
configure the network in the QEMU VM. The DHCP server assign addresses
1159
to the hosts starting from 10.0.2.15.
1160

    
1161
In order to check that the user mode network is working, you can ping
1162
the address 10.0.2.2 and verify that you got an address in the range
1163
10.0.2.x from the QEMU virtual DHCP server.
1164

    
1165
Note that @code{ping} is not supported reliably to the internet as it
1166
would require root priviledges. It means you can only ping the local
1167
router (10.0.2.2).
1168

    
1169
When using the built-in TFTP server, the router is also the TFTP
1170
server.
1171

    
1172
When using the @option{-redir} option, TCP or UDP connections can be
1173
redirected from the host to the guest. It allows for example to
1174
redirect X11, telnet or SSH connections.
1175

    
1176
@subsection Connecting VLANs between QEMU instances
1177

    
1178
Using the @option{-net socket} option, it is possible to make VLANs
1179
that span several QEMU instances. See @ref{sec_invocation} to have a
1180
basic example.
1181

    
1182
@node direct_linux_boot
1183
@section Direct Linux Boot
1184

    
1185
This section explains how to launch a Linux kernel inside QEMU without
1186
having to make a full bootable image. It is very useful for fast Linux
1187
kernel testing.
1188

    
1189
The syntax is:
1190
@example
1191
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1192
@end example
1193

    
1194
Use @option{-kernel} to provide the Linux kernel image and
1195
@option{-append} to give the kernel command line arguments. The
1196
@option{-initrd} option can be used to provide an INITRD image.
1197

    
1198
When using the direct Linux boot, a disk image for the first hard disk
1199
@file{hda} is required because its boot sector is used to launch the
1200
Linux kernel.
1201

    
1202
If you do not need graphical output, you can disable it and redirect
1203
the virtual serial port and the QEMU monitor to the console with the
1204
@option{-nographic} option. The typical command line is:
1205
@example
1206
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1207
     -append "root=/dev/hda console=ttyS0" -nographic
1208
@end example
1209

    
1210
Use @key{Ctrl-a c} to switch between the serial console and the
1211
monitor (@pxref{pcsys_keys}).
1212

    
1213
@node pcsys_usb
1214
@section USB emulation
1215

    
1216
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1217
virtual USB devices or real host USB devices (experimental, works only
1218
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1219
as necessary to connect multiple USB devices.
1220

    
1221
@menu
1222
* usb_devices::
1223
* host_usb_devices::
1224
@end menu
1225
@node usb_devices
1226
@subsection Connecting USB devices
1227

    
1228
USB devices can be connected with the @option{-usbdevice} commandline option
1229
or the @code{usb_add} monitor command.  Available devices are:
1230

    
1231
@table @var
1232
@item @code{mouse}
1233
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1234
@item @code{tablet}
1235
Pointer device that uses absolute coordinates (like a touchscreen).
1236
This means qemu is able to report the mouse position without having
1237
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1238
@item @code{disk:file}
1239
Mass storage device based on @var{file} (@pxref{disk_images})
1240
@item @code{host:bus.addr}
1241
Pass through the host device identified by @var{bus.addr}
1242
(Linux only)
1243
@item @code{host:vendor_id:product_id}
1244
Pass through the host device identified by @var{vendor_id:product_id}
1245
(Linux only)
1246
@end table
1247

    
1248
@node host_usb_devices
1249
@subsection Using host USB devices on a Linux host
1250

    
1251
WARNING: this is an experimental feature. QEMU will slow down when
1252
using it. USB devices requiring real time streaming (i.e. USB Video
1253
Cameras) are not supported yet.
1254

    
1255
@enumerate
1256
@item If you use an early Linux 2.4 kernel, verify that no Linux driver 
1257
is actually using the USB device. A simple way to do that is simply to
1258
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1259
to @file{mydriver.o.disabled}.
1260

    
1261
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1262
@example
1263
ls /proc/bus/usb
1264
001  devices  drivers
1265
@end example
1266

    
1267
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1268
@example
1269
chown -R myuid /proc/bus/usb
1270
@end example
1271

    
1272
@item Launch QEMU and do in the monitor:
1273
@example 
1274
info usbhost
1275
  Device 1.2, speed 480 Mb/s
1276
    Class 00: USB device 1234:5678, USB DISK
1277
@end example
1278
You should see the list of the devices you can use (Never try to use
1279
hubs, it won't work).
1280

    
1281
@item Add the device in QEMU by using:
1282
@example 
1283
usb_add host:1234:5678
1284
@end example
1285

    
1286
Normally the guest OS should report that a new USB device is
1287
plugged. You can use the option @option{-usbdevice} to do the same.
1288

    
1289
@item Now you can try to use the host USB device in QEMU.
1290

    
1291
@end enumerate
1292

    
1293
When relaunching QEMU, you may have to unplug and plug again the USB
1294
device to make it work again (this is a bug).
1295

    
1296
@node gdb_usage
1297
@section GDB usage
1298

    
1299
QEMU has a primitive support to work with gdb, so that you can do
1300
'Ctrl-C' while the virtual machine is running and inspect its state.
1301

    
1302
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1303
gdb connection:
1304
@example
1305
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1306
       -append "root=/dev/hda"
1307
Connected to host network interface: tun0
1308
Waiting gdb connection on port 1234
1309
@end example
1310

    
1311
Then launch gdb on the 'vmlinux' executable:
1312
@example
1313
> gdb vmlinux
1314
@end example
1315

    
1316
In gdb, connect to QEMU:
1317
@example
1318
(gdb) target remote localhost:1234
1319
@end example
1320

    
1321
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1322
@example
1323
(gdb) c
1324
@end example
1325

    
1326
Here are some useful tips in order to use gdb on system code:
1327

    
1328
@enumerate
1329
@item
1330
Use @code{info reg} to display all the CPU registers.
1331
@item
1332
Use @code{x/10i $eip} to display the code at the PC position.
1333
@item
1334
Use @code{set architecture i8086} to dump 16 bit code. Then use
1335
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1336
@end enumerate
1337

    
1338
@node pcsys_os_specific
1339
@section Target OS specific information
1340

    
1341
@subsection Linux
1342

    
1343
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1344
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1345
color depth in the guest and the host OS.
1346

    
1347
When using a 2.6 guest Linux kernel, you should add the option
1348
@code{clock=pit} on the kernel command line because the 2.6 Linux
1349
kernels make very strict real time clock checks by default that QEMU
1350
cannot simulate exactly.
1351

    
1352
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1353
not activated because QEMU is slower with this patch. The QEMU
1354
Accelerator Module is also much slower in this case. Earlier Fedora
1355
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporte this
1356
patch by default. Newer kernels don't have it.
1357

    
1358
@subsection Windows
1359

    
1360
If you have a slow host, using Windows 95 is better as it gives the
1361
best speed. Windows 2000 is also a good choice.
1362

    
1363
@subsubsection SVGA graphic modes support
1364

    
1365
QEMU emulates a Cirrus Logic GD5446 Video
1366
card. All Windows versions starting from Windows 95 should recognize
1367
and use this graphic card. For optimal performances, use 16 bit color
1368
depth in the guest and the host OS.
1369

    
1370
If you are using Windows XP as guest OS and if you want to use high
1371
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1372
1280x1024x16), then you should use the VESA VBE virtual graphic card
1373
(option @option{-std-vga}).
1374

    
1375
@subsubsection CPU usage reduction
1376

    
1377
Windows 9x does not correctly use the CPU HLT
1378
instruction. The result is that it takes host CPU cycles even when
1379
idle. You can install the utility from
1380
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1381
problem. Note that no such tool is needed for NT, 2000 or XP.
1382

    
1383
@subsubsection Windows 2000 disk full problem
1384

    
1385
Windows 2000 has a bug which gives a disk full problem during its
1386
installation. When installing it, use the @option{-win2k-hack} QEMU
1387
option to enable a specific workaround. After Windows 2000 is
1388
installed, you no longer need this option (this option slows down the
1389
IDE transfers).
1390

    
1391
@subsubsection Windows 2000 shutdown
1392

    
1393
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1394
can. It comes from the fact that Windows 2000 does not automatically
1395
use the APM driver provided by the BIOS.
1396

    
1397
In order to correct that, do the following (thanks to Struan
1398
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1399
Add/Troubleshoot a device => Add a new device & Next => No, select the
1400
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1401
(again) a few times. Now the driver is installed and Windows 2000 now
1402
correctly instructs QEMU to shutdown at the appropriate moment. 
1403

    
1404
@subsubsection Share a directory between Unix and Windows
1405

    
1406
See @ref{sec_invocation} about the help of the option @option{-smb}.
1407

    
1408
@subsubsection Windows XP security problem
1409

    
1410
Some releases of Windows XP install correctly but give a security
1411
error when booting:
1412
@example
1413
A problem is preventing Windows from accurately checking the
1414
license for this computer. Error code: 0x800703e6.
1415
@end example
1416

    
1417
The workaround is to install a service pack for XP after a boot in safe
1418
mode. Then reboot, and the problem should go away. Since there is no
1419
network while in safe mode, its recommended to download the full
1420
installation of SP1 or SP2 and transfer that via an ISO or using the
1421
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1422

    
1423
@subsection MS-DOS and FreeDOS
1424

    
1425
@subsubsection CPU usage reduction
1426

    
1427
DOS does not correctly use the CPU HLT instruction. The result is that
1428
it takes host CPU cycles even when idle. You can install the utility
1429
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1430
problem.
1431

    
1432
@node QEMU System emulator for non PC targets
1433
@chapter QEMU System emulator for non PC targets
1434

    
1435
QEMU is a generic emulator and it emulates many non PC
1436
machines. Most of the options are similar to the PC emulator. The
1437
differences are mentionned in the following sections.
1438

    
1439
@menu
1440
* QEMU PowerPC System emulator::
1441
* Sparc32 System emulator invocation::
1442
* Sparc64 System emulator invocation::
1443
* MIPS System emulator invocation::
1444
* ARM System emulator invocation::
1445
@end menu
1446

    
1447
@node QEMU PowerPC System emulator
1448
@section QEMU PowerPC System emulator
1449

    
1450
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1451
or PowerMac PowerPC system.
1452

    
1453
QEMU emulates the following PowerMac peripherals:
1454

    
1455
@itemize @minus
1456
@item 
1457
UniNorth PCI Bridge 
1458
@item
1459
PCI VGA compatible card with VESA Bochs Extensions
1460
@item 
1461
2 PMAC IDE interfaces with hard disk and CD-ROM support
1462
@item 
1463
NE2000 PCI adapters
1464
@item
1465
Non Volatile RAM
1466
@item
1467
VIA-CUDA with ADB keyboard and mouse.
1468
@end itemize
1469

    
1470
QEMU emulates the following PREP peripherals:
1471

    
1472
@itemize @minus
1473
@item 
1474
PCI Bridge
1475
@item
1476
PCI VGA compatible card with VESA Bochs Extensions
1477
@item 
1478
2 IDE interfaces with hard disk and CD-ROM support
1479
@item
1480
Floppy disk
1481
@item 
1482
NE2000 network adapters
1483
@item
1484
Serial port
1485
@item
1486
PREP Non Volatile RAM
1487
@item
1488
PC compatible keyboard and mouse.
1489
@end itemize
1490

    
1491
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1492
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1493

    
1494
@c man begin OPTIONS
1495

    
1496
The following options are specific to the PowerPC emulation:
1497

    
1498
@table @option
1499

    
1500
@item -g WxH[xDEPTH]  
1501

    
1502
Set the initial VGA graphic mode. The default is 800x600x15.
1503

    
1504
@end table
1505

    
1506
@c man end 
1507

    
1508

    
1509
More information is available at
1510
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1511

    
1512
@node Sparc32 System emulator invocation
1513
@section Sparc32 System emulator invocation
1514

    
1515
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1516
(sun4m architecture). The emulation is somewhat complete.
1517

    
1518
QEMU emulates the following sun4m peripherals:
1519

    
1520
@itemize @minus
1521
@item
1522
IOMMU
1523
@item
1524
TCX Frame buffer
1525
@item 
1526
Lance (Am7990) Ethernet
1527
@item
1528
Non Volatile RAM M48T08
1529
@item
1530
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1531
and power/reset logic
1532
@item
1533
ESP SCSI controller with hard disk and CD-ROM support
1534
@item
1535
Floppy drive
1536
@end itemize
1537

    
1538
The number of peripherals is fixed in the architecture.
1539

    
1540
Since version 0.8.2, QEMU uses OpenBIOS
1541
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1542
firmware implementation. The goal is to implement a 100% IEEE
1543
1275-1994 (referred to as Open Firmware) compliant firmware.
1544

    
1545
A sample Linux 2.6 series kernel and ram disk image are available on
1546
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1547
Solaris kernels don't work.
1548

    
1549
@c man begin OPTIONS
1550

    
1551
The following options are specific to the Sparc emulation:
1552

    
1553
@table @option
1554

    
1555
@item -g WxH
1556

    
1557
Set the initial TCX graphic mode. The default is 1024x768.
1558

    
1559
@end table
1560

    
1561
@c man end 
1562

    
1563
@node Sparc64 System emulator invocation
1564
@section Sparc64 System emulator invocation
1565

    
1566
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
1567
The emulator is not usable for anything yet.
1568

    
1569
QEMU emulates the following sun4u peripherals:
1570

    
1571
@itemize @minus
1572
@item
1573
UltraSparc IIi APB PCI Bridge 
1574
@item
1575
PCI VGA compatible card with VESA Bochs Extensions
1576
@item
1577
Non Volatile RAM M48T59
1578
@item
1579
PC-compatible serial ports
1580
@end itemize
1581

    
1582
@node MIPS System emulator invocation
1583
@section MIPS System emulator invocation
1584

    
1585
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
1586
The emulator is able to boot a Linux kernel and to run a Linux Debian
1587
installation from NFS. The following devices are emulated:
1588

    
1589
@itemize @minus
1590
@item 
1591
MIPS R4K CPU
1592
@item
1593
PC style serial port
1594
@item
1595
NE2000 network card
1596
@end itemize
1597

    
1598
More information is available in the QEMU mailing-list archive.
1599

    
1600
@node ARM System emulator invocation
1601
@section ARM System emulator invocation
1602

    
1603
Use the executable @file{qemu-system-arm} to simulate a ARM
1604
machine. The ARM Integrator/CP board is emulated with the following
1605
devices:
1606

    
1607
@itemize @minus
1608
@item
1609
ARM926E or ARM1026E CPU
1610
@item
1611
Two PL011 UARTs
1612
@item 
1613
SMC 91c111 Ethernet adapter
1614
@item
1615
PL110 LCD controller
1616
@item
1617
PL050 KMI with PS/2 keyboard and mouse.
1618
@end itemize
1619

    
1620
The ARM Versatile baseboard is emulated with the following devices:
1621

    
1622
@itemize @minus
1623
@item
1624
ARM926E CPU
1625
@item
1626
PL190 Vectored Interrupt Controller
1627
@item
1628
Four PL011 UARTs
1629
@item 
1630
SMC 91c111 Ethernet adapter
1631
@item
1632
PL110 LCD controller
1633
@item
1634
PL050 KMI with PS/2 keyboard and mouse.
1635
@item
1636
PCI host bridge.  Note the emulated PCI bridge only provides access to
1637
PCI memory space.  It does not provide access to PCI IO space.
1638
This means some devices (eg. ne2k_pci NIC) are not useable, and others
1639
(eg. rtl8139 NIC) are only useable when the guest drivers use the memory
1640
mapped control registers.
1641
@item
1642
PCI OHCI USB controller.
1643
@item
1644
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1645
@end itemize
1646

    
1647
A Linux 2.6 test image is available on the QEMU web site. More
1648
information is available in the QEMU mailing-list archive.
1649

    
1650
@node QEMU Linux User space emulator 
1651
@chapter QEMU Linux User space emulator 
1652

    
1653
@menu
1654
* Quick Start::
1655
* Wine launch::
1656
* Command line options::
1657
* Other binaries::
1658
@end menu
1659

    
1660
@node Quick Start
1661
@section Quick Start
1662

    
1663
In order to launch a Linux process, QEMU needs the process executable
1664
itself and all the target (x86) dynamic libraries used by it. 
1665

    
1666
@itemize
1667

    
1668
@item On x86, you can just try to launch any process by using the native
1669
libraries:
1670

    
1671
@example 
1672
qemu-i386 -L / /bin/ls
1673
@end example
1674

    
1675
@code{-L /} tells that the x86 dynamic linker must be searched with a
1676
@file{/} prefix.
1677

    
1678
@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1679

    
1680
@example 
1681
qemu-i386 -L / qemu-i386 -L / /bin/ls
1682
@end example
1683

    
1684
@item On non x86 CPUs, you need first to download at least an x86 glibc
1685
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1686
@code{LD_LIBRARY_PATH} is not set:
1687

    
1688
@example
1689
unset LD_LIBRARY_PATH 
1690
@end example
1691

    
1692
Then you can launch the precompiled @file{ls} x86 executable:
1693

    
1694
@example
1695
qemu-i386 tests/i386/ls
1696
@end example
1697
You can look at @file{qemu-binfmt-conf.sh} so that
1698
QEMU is automatically launched by the Linux kernel when you try to
1699
launch x86 executables. It requires the @code{binfmt_misc} module in the
1700
Linux kernel.
1701

    
1702
@item The x86 version of QEMU is also included. You can try weird things such as:
1703
@example
1704
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1705
          /usr/local/qemu-i386/bin/ls-i386
1706
@end example
1707

    
1708
@end itemize
1709

    
1710
@node Wine launch
1711
@section Wine launch
1712

    
1713
@itemize
1714

    
1715
@item Ensure that you have a working QEMU with the x86 glibc
1716
distribution (see previous section). In order to verify it, you must be
1717
able to do:
1718

    
1719
@example
1720
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
1721
@end example
1722

    
1723
@item Download the binary x86 Wine install
1724
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
1725

    
1726
@item Configure Wine on your account. Look at the provided script
1727
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1728
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
1729

    
1730
@item Then you can try the example @file{putty.exe}:
1731

    
1732
@example
1733
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
1734
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1735
@end example
1736

    
1737
@end itemize
1738

    
1739
@node Command line options
1740
@section Command line options
1741

    
1742
@example
1743
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
1744
@end example
1745

    
1746
@table @option
1747
@item -h
1748
Print the help
1749
@item -L path   
1750
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
1751
@item -s size
1752
Set the x86 stack size in bytes (default=524288)
1753
@end table
1754

    
1755
Debug options:
1756

    
1757
@table @option
1758
@item -d
1759
Activate log (logfile=/tmp/qemu.log)
1760
@item -p pagesize
1761
Act as if the host page size was 'pagesize' bytes
1762
@end table
1763

    
1764
@node Other binaries
1765
@section Other binaries
1766

    
1767
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
1768
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
1769
configurations), and arm-uclinux bFLT format binaries.
1770

    
1771
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
1772
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
1773
coldfire uClinux bFLT format binaries.
1774

    
1775
The binary format is detected automatically.
1776

    
1777
@node compilation
1778
@chapter Compilation from the sources
1779

    
1780
@menu
1781
* Linux/Unix::
1782
* Windows::
1783
* Cross compilation for Windows with Linux::
1784
* Mac OS X::
1785
@end menu
1786

    
1787
@node Linux/Unix
1788
@section Linux/Unix
1789

    
1790
@subsection Compilation
1791

    
1792
First you must decompress the sources:
1793
@example
1794
cd /tmp
1795
tar zxvf qemu-x.y.z.tar.gz
1796
cd qemu-x.y.z
1797
@end example
1798

    
1799
Then you configure QEMU and build it (usually no options are needed):
1800
@example
1801
./configure
1802
make
1803
@end example
1804

    
1805
Then type as root user:
1806
@example
1807
make install
1808
@end example
1809
to install QEMU in @file{/usr/local}.
1810

    
1811
@subsection Tested tool versions
1812

    
1813
In order to compile QEMU succesfully, it is very important that you
1814
have the right tools. The most important one is gcc. I cannot guaranty
1815
that QEMU works if you do not use a tested gcc version. Look at
1816
'configure' and 'Makefile' if you want to make a different gcc
1817
version work.
1818

    
1819
@example
1820
host      gcc      binutils      glibc    linux       distribution
1821
----------------------------------------------------------------------
1822
x86       3.2      2.13.2        2.1.3    2.4.18
1823
          2.96     2.11.93.0.2   2.2.5    2.4.18      Red Hat 7.3
1824
          3.2.2    2.13.90.0.18  2.3.2    2.4.20      Red Hat 9
1825

    
1826
PowerPC   3.3 [4]  2.13.90.0.18  2.3.1    2.4.20briq
1827
          3.2
1828

    
1829
Alpha     3.3 [1]  2.14.90.0.4   2.2.5    2.2.20 [2]  Debian 3.0
1830

    
1831
Sparc32   2.95.4   2.12.90.0.1   2.2.5    2.4.18      Debian 3.0
1832

    
1833
ARM       2.95.4   2.12.90.0.1   2.2.5    2.4.9 [3]   Debian 3.0
1834

    
1835
[1] On Alpha, QEMU needs the gcc 'visibility' attribute only available
1836
    for gcc version >= 3.3.
1837
[2] Linux >= 2.4.20 is necessary for precise exception support
1838
    (untested).
1839
[3] 2.4.9-ac10-rmk2-np1-cerf2
1840

    
1841
[4] gcc 2.95.x generates invalid code when using too many register
1842
variables. You must use gcc 3.x on PowerPC.
1843
@end example
1844

    
1845
@node Windows
1846
@section Windows
1847

    
1848
@itemize
1849
@item Install the current versions of MSYS and MinGW from
1850
@url{http://www.mingw.org/}. You can find detailed installation
1851
instructions in the download section and the FAQ.
1852

    
1853
@item Download 
1854
the MinGW development library of SDL 1.2.x
1855
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
1856
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
1857
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
1858
directory. Edit the @file{sdl-config} script so that it gives the
1859
correct SDL directory when invoked.
1860

    
1861
@item Extract the current version of QEMU.
1862
 
1863
@item Start the MSYS shell (file @file{msys.bat}).
1864

    
1865
@item Change to the QEMU directory. Launch @file{./configure} and 
1866
@file{make}.  If you have problems using SDL, verify that
1867
@file{sdl-config} can be launched from the MSYS command line.
1868

    
1869
@item You can install QEMU in @file{Program Files/Qemu} by typing 
1870
@file{make install}. Don't forget to copy @file{SDL.dll} in
1871
@file{Program Files/Qemu}.
1872

    
1873
@end itemize
1874

    
1875
@node Cross compilation for Windows with Linux
1876
@section Cross compilation for Windows with Linux
1877

    
1878
@itemize
1879
@item
1880
Install the MinGW cross compilation tools available at
1881
@url{http://www.mingw.org/}.
1882

    
1883
@item 
1884
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
1885
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
1886
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
1887
the QEMU configuration script.
1888

    
1889
@item 
1890
Configure QEMU for Windows cross compilation:
1891
@example
1892
./configure --enable-mingw32
1893
@end example
1894
If necessary, you can change the cross-prefix according to the prefix
1895
choosen for the MinGW tools with --cross-prefix. You can also use
1896
--prefix to set the Win32 install path.
1897

    
1898
@item You can install QEMU in the installation directory by typing 
1899
@file{make install}. Don't forget to copy @file{SDL.dll} in the
1900
installation directory. 
1901

    
1902
@end itemize
1903

    
1904
Note: Currently, Wine does not seem able to launch
1905
QEMU for Win32.
1906

    
1907
@node Mac OS X
1908
@section Mac OS X
1909

    
1910
The Mac OS X patches are not fully merged in QEMU, so you should look
1911
at the QEMU mailing list archive to have all the necessary
1912
information.
1913

    
1914
@node Index
1915
@chapter Index
1916
@printindex cp
1917

    
1918
@bye