Revision e80cfcfc hw/sun4m.c

b/hw/sun4m.c
25 25
#include "m48t08.h"
26 26

  
27 27
#define KERNEL_LOAD_ADDR     0x00004000
28
#define MMU_CONTEXT_TBL      0x00003000
29
#define MMU_L1PTP            (MMU_CONTEXT_TBL + 0x0400)
30
#define MMU_L2PTP            (MMU_CONTEXT_TBL + 0x0800)
31
#define PROM_ADDR	     0xffd04000
28
#define PROM_ADDR	     0xffd00000
32 29
#define PROM_FILENAMEB	     "proll.bin"
33 30
#define PROM_FILENAMEE	     "proll.elf"
34
#define PROLL_MAGIC_ADDR 0x20000000
35
#define PHYS_JJ_EEPROM	0x71200000	/* [2000] MK48T08 */
31
#define PHYS_JJ_EEPROM	0x71200000	/* m48t08 */
36 32
#define PHYS_JJ_IDPROM_OFF	0x1FD8
37 33
#define PHYS_JJ_EEPROM_SIZE	0x2000
38
#define PHYS_JJ_IOMMU	0x10000000	/* First page of sun4m IOMMU */
34
// IRQs are not PIL ones, but master interrupt controller register
35
// bits
36
#define PHYS_JJ_IOMMU	0x10000000	/* I/O MMU */
39 37
#define PHYS_JJ_TCX_FB	0x50800000	/* Start address, frame buffer body */
40
#define PHYS_JJ_TCX_0E	0x5E000000	/* Top address, one byte used. */
41
#define PHYS_JJ_IOMMU	0x10000000	/* First page of sun4m IOMMU */
42
#define PHYS_JJ_LEDMA   0x78400010      /* ledma, off by 10 from unused SCSI */
43
#define PHYS_JJ_LE      0x78C00000      /* LANCE, typical sun4m */
44
#define PHYS_JJ_LE_IRQ  6
45
#define PHYS_JJ_CLOCK	0x71D00000
46
#define PHYS_JJ_CLOCK_IRQ  10
47
#define PHYS_JJ_CLOCK1	0x71D10000
48
#define PHYS_JJ_CLOCK1_IRQ  14
49
#define PHYS_JJ_INTR0	0x71E00000	/* CPU0 interrupt control registers */
38
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
39
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
40
#define PHYS_JJ_LE_IRQ     16
41
#define PHYS_JJ_CLOCK	0x71D00000      /* Per-CPU timer/counter, L14 */
42
#define PHYS_JJ_CLOCK_IRQ  7
43
#define PHYS_JJ_CLOCK1	0x71D10000      /* System timer/counter, L10 */
44
#define PHYS_JJ_CLOCK1_IRQ 19
45
#define PHYS_JJ_INTR0	0x71E00000	/* Per-CPU interrupt control registers */
50 46
#define PHYS_JJ_INTR_G	0x71E10000	/* Master interrupt control registers */
47
#define PHYS_JJ_MS_KBD	0x71000000	/* Mouse and keyboard */
48
#define PHYS_JJ_MS_KBD_IRQ    14
49
#define PHYS_JJ_SER	0x71100000	/* Serial */
50
#define PHYS_JJ_SER_IRQ    15
51
#define PHYS_JJ_SCSI_IRQ   18
52
#define PHYS_JJ_FDC	0x71400000	/* Floppy */
53
#define PHYS_JJ_FLOPPY_IRQ 22
51 54

  
52 55
/* TSC handling */
53 56

  
......
57 60
}
58 61

  
59 62
void DMA_run() {}
60
void SB16_run() {}
61
int serial_can_receive(SerialState *s) { return 0; }
62
void serial_receive_byte(SerialState *s, int ch) {}
63
void serial_receive_break(SerialState *s) {}
64 63

  
65 64
static m48t08_t *nvram;
66 65

  
66
static void nvram_init(m48t08_t *nvram, uint8_t *macaddr)
67
{
68
    unsigned char tmp = 0;
69
    int i, j;
70

  
71
    i = 0x1fd8;
72
    m48t08_write(nvram, i++, 0x01);
73
    m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
74
    j = 0;
75
    m48t08_write(nvram, i++, macaddr[j++]);
76
    m48t08_write(nvram, i++, macaddr[j++]);
77
    m48t08_write(nvram, i++, macaddr[j++]);
78
    m48t08_write(nvram, i++, macaddr[j++]);
79
    m48t08_write(nvram, i++, macaddr[j++]);
80
    m48t08_write(nvram, i, macaddr[j]);
81

  
82
    /* Calculate checksum */
83
    for (i = 0x1fd8; i < 0x1fe7; i++) {
84
	tmp ^= m48t08_read(nvram, i);
85
    }
86
    m48t08_write(nvram, 0x1fe7, tmp);
87
}
88

  
89
static void *slavio_intctl;
90

  
91
void pic_info()
92
{
93
    slavio_pic_info(slavio_intctl);
94
}
95

  
96
void irq_info()
97
{
98
    slavio_irq_info(slavio_intctl);
99
}
100

  
101
void pic_set_irq(int irq, int level)
102
{
103
    slavio_pic_set_irq(slavio_intctl, irq, level);
104
}
105

  
106
static void *tcx;
107

  
108
void vga_update_display()
109
{
110
    tcx_update_display(tcx);
111
}
112

  
113
void vga_invalidate_display()
114
{
115
    tcx_invalidate_display(tcx);
116
}
117

  
118
void vga_screen_dump(const char *filename)
119
{
120
    tcx_screen_dump(tcx, filename);
121
}
122

  
123
static void *iommu;
124

  
125
uint32_t iommu_translate(uint32_t addr)
126
{
127
    return iommu_translate_local(iommu, addr);
128
}
129

  
67 130
/* Sun4m hardware initialisation */
68 131
void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
69 132
             DisplayState *ds, const char **fd_filename, int snapshot,
......
72 135
{
73 136
    char buf[1024];
74 137
    int ret, linux_boot;
75
    unsigned long bios_offset;
138
    unsigned long vram_size = 0x100000, prom_offset;
76 139

  
77 140
    linux_boot = (kernel_filename != NULL);
78 141

  
79 142
    /* allocate RAM */
80 143
    cpu_register_physical_memory(0, ram_size, 0);
81
    bios_offset = ram_size;
82 144

  
83
    iommu_init(PHYS_JJ_IOMMU);
84
    sched_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
85
    tcx_init(ds, PHYS_JJ_TCX_FB);
145
    iommu = iommu_init(PHYS_JJ_IOMMU);
146
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
147
    tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size);
86 148
    lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
87
    nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE, &nd_table[0].macaddr);
88
    timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ);
89
    timer_init(PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
90
    magic_init(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR, PROLL_MAGIC_ADDR);
149
    nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
150
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr);
151
    slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
152
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
153
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[0], serial_hds[1]);
154
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
91 155

  
92
    /* We load Proll as the kernel and start it. It will issue a magic
93
       IO to load the real kernel */
94
    if (linux_boot) {
156
    prom_offset = ram_size + vram_size;
157

  
158
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
159
    ret = load_elf(buf, phys_ram_base + prom_offset);
160
    if (ret < 0) {
95 161
	snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
96
        ret = load_kernel(buf, 
97
		       phys_ram_base + KERNEL_LOAD_ADDR);
162
	ret = load_image(buf, phys_ram_base + prom_offset);
163
    }
164
    if (ret < 0) {
165
	fprintf(stderr, "qemu: could not load prom '%s'\n", 
166
		buf);
167
	exit(1);
168
    }
169
    cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, 
170
                                 prom_offset | IO_MEM_ROM);
171

  
172
    if (linux_boot) {
173
        ret = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
174
        if (ret < 0)
175
	    ret = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
176
	if (ret < 0)
177
	    ret = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
98 178
        if (ret < 0) {
99 179
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
100
                    buf);
101
            exit(1);
180
                    kernel_filename);
181
	    exit(1);
102 182
        }
103 183
    }
104
    /* Setup a MMU entry for entire address space */
105
    stl_raw(phys_ram_base + MMU_CONTEXT_TBL, (MMU_L1PTP >> 4) | 1);
106
    stl_raw(phys_ram_base + MMU_L1PTP, (MMU_L2PTP >> 4) | 1);
107
    stl_raw(phys_ram_base + MMU_L1PTP + (0x01 << 2), (MMU_L2PTP >> 4) | 1); // 01.. == 00..
108
    stl_raw(phys_ram_base + MMU_L1PTP + (0xff << 2), (MMU_L2PTP >> 4) | 1); // ff.. == 00..
109
    stl_raw(phys_ram_base + MMU_L1PTP + (0xf0 << 2), (MMU_L2PTP >> 4) | 1); // f0.. == 00..
110
    /* 3 = U:RWX S:RWX */
111
    stl_raw(phys_ram_base + MMU_L2PTP, (3 << PTE_ACCESS_SHIFT) | 2);
112
    stl_raw(phys_ram_base + MMU_L2PTP, ((0x01 << PTE_PPN_SHIFT) >> 4 ) | (3 << PTE_ACCESS_SHIFT) | 2);
113 184
}

Also available in: Unified diff