Statistics
| Branch: | Revision:

root / cpu-exec.c @ e80cfcfc

History | View | Annotate | Download (33.7 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50

    
51
/* exit the current TB from a signal handler. The host registers are
52
   restored in a state compatible with the CPU emulator
53
 */
54
void cpu_resume_from_signal(CPUState *env1, void *puc) 
55
{
56
#if !defined(CONFIG_SOFTMMU)
57
    struct ucontext *uc = puc;
58
#endif
59

    
60
    env = env1;
61

    
62
    /* XXX: restore cpu registers saved in host registers */
63

    
64
#if !defined(CONFIG_SOFTMMU)
65
    if (puc) {
66
        /* XXX: use siglongjmp ? */
67
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
68
    }
69
#endif
70
    longjmp(env->jmp_env, 1);
71
}
72

    
73
/* main execution loop */
74

    
75
int cpu_exec(CPUState *env1)
76
{
77
    int saved_T0, saved_T1, saved_T2;
78
    CPUState *saved_env;
79
#ifdef reg_EAX
80
    int saved_EAX;
81
#endif
82
#ifdef reg_ECX
83
    int saved_ECX;
84
#endif
85
#ifdef reg_EDX
86
    int saved_EDX;
87
#endif
88
#ifdef reg_EBX
89
    int saved_EBX;
90
#endif
91
#ifdef reg_ESP
92
    int saved_ESP;
93
#endif
94
#ifdef reg_EBP
95
    int saved_EBP;
96
#endif
97
#ifdef reg_ESI
98
    int saved_ESI;
99
#endif
100
#ifdef reg_EDI
101
    int saved_EDI;
102
#endif
103
#ifdef __sparc__
104
    int saved_i7, tmp_T0;
105
#endif
106
    int code_gen_size, ret, interrupt_request;
107
    void (*gen_func)(void);
108
    TranslationBlock *tb, **ptb;
109
    uint8_t *tc_ptr, *cs_base, *pc;
110
    unsigned int flags;
111

    
112
    /* first we save global registers */
113
    saved_T0 = T0;
114
    saved_T1 = T1;
115
    saved_T2 = T2;
116
    saved_env = env;
117
    env = env1;
118
#ifdef __sparc__
119
    /* we also save i7 because longjmp may not restore it */
120
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
121
#endif
122

    
123
#if defined(TARGET_I386)
124
#ifdef reg_EAX
125
    saved_EAX = EAX;
126
#endif
127
#ifdef reg_ECX
128
    saved_ECX = ECX;
129
#endif
130
#ifdef reg_EDX
131
    saved_EDX = EDX;
132
#endif
133
#ifdef reg_EBX
134
    saved_EBX = EBX;
135
#endif
136
#ifdef reg_ESP
137
    saved_ESP = ESP;
138
#endif
139
#ifdef reg_EBP
140
    saved_EBP = EBP;
141
#endif
142
#ifdef reg_ESI
143
    saved_ESI = ESI;
144
#endif
145
#ifdef reg_EDI
146
    saved_EDI = EDI;
147
#endif
148

    
149
    env_to_regs();
150
    /* put eflags in CPU temporary format */
151
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
152
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
153
    CC_OP = CC_OP_EFLAGS;
154
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
155
#elif defined(TARGET_ARM)
156
    {
157
        unsigned int psr;
158
        psr = env->cpsr;
159
        env->CF = (psr >> 29) & 1;
160
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
161
        env->VF = (psr << 3) & 0x80000000;
162
        env->cpsr = psr & ~0xf0000000;
163
    }
164
#elif defined(TARGET_SPARC)
165
#elif defined(TARGET_PPC)
166
#else
167
#error unsupported target CPU
168
#endif
169
    env->exception_index = -1;
170

    
171
    /* prepare setjmp context for exception handling */
172
    for(;;) {
173
        if (setjmp(env->jmp_env) == 0) {
174
            env->current_tb = NULL;
175
            /* if an exception is pending, we execute it here */
176
            if (env->exception_index >= 0) {
177
                if (env->exception_index >= EXCP_INTERRUPT) {
178
                    /* exit request from the cpu execution loop */
179
                    ret = env->exception_index;
180
                    break;
181
                } else if (env->user_mode_only) {
182
                    /* if user mode only, we simulate a fake exception
183
                       which will be hanlded outside the cpu execution
184
                       loop */
185
#if defined(TARGET_I386)
186
                    do_interrupt_user(env->exception_index, 
187
                                      env->exception_is_int, 
188
                                      env->error_code, 
189
                                      env->exception_next_eip);
190
#endif
191
                    ret = env->exception_index;
192
                    break;
193
                } else {
194
#if defined(TARGET_I386)
195
                    /* simulate a real cpu exception. On i386, it can
196
                       trigger new exceptions, but we do not handle
197
                       double or triple faults yet. */
198
                    do_interrupt(env->exception_index, 
199
                                 env->exception_is_int, 
200
                                 env->error_code, 
201
                                 env->exception_next_eip, 0);
202
#elif defined(TARGET_PPC)
203
                    do_interrupt(env);
204
#elif defined(TARGET_SPARC)
205
                    do_interrupt(env->exception_index, 
206
                                 0,
207
                                 env->error_code, 
208
                                 env->exception_next_pc, 0);
209
#endif
210
                }
211
                env->exception_index = -1;
212
            }
213
            T0 = 0; /* force lookup of first TB */
214
            for(;;) {
215
#ifdef __sparc__
216
                /* g1 can be modified by some libc? functions */ 
217
                tmp_T0 = T0;
218
#endif            
219
                interrupt_request = env->interrupt_request;
220
                if (__builtin_expect(interrupt_request, 0)) {
221
#if defined(TARGET_I386)
222
                    /* if hardware interrupt pending, we execute it */
223
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
224
                        (env->eflags & IF_MASK) && 
225
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
226
                        int intno;
227
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
228
                        intno = cpu_get_pic_interrupt(env);
229
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
230
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
231
                        }
232
                        do_interrupt(intno, 0, 0, 0, 1);
233
                        /* ensure that no TB jump will be modified as
234
                           the program flow was changed */
235
#ifdef __sparc__
236
                        tmp_T0 = 0;
237
#else
238
                        T0 = 0;
239
#endif
240
                    }
241
#elif defined(TARGET_PPC)
242
#if 0
243
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
244
                        cpu_ppc_reset(env);
245
                    }
246
#endif
247
                    if (msr_ee != 0) {
248
                    if ((interrupt_request & CPU_INTERRUPT_HARD)) {
249
                            /* Raise it */
250
                            env->exception_index = EXCP_EXTERNAL;
251
                            env->error_code = 0;
252
                            do_interrupt(env);
253
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
254
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
255
                            /* Raise it */
256
                            env->exception_index = EXCP_DECR;
257
                            env->error_code = 0;
258
                            do_interrupt(env);
259
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
260
                        }
261
                    }
262
#elif defined(TARGET_SPARC)
263
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
264
                        do_interrupt(env->interrupt_index, 0, 0, 0, 0);
265
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
266
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
267
                        //do_interrupt(0, 0, 0, 0, 0);
268
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
269
                    }
270
#endif
271
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
272
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
273
                        /* ensure that no TB jump will be modified as
274
                           the program flow was changed */
275
#ifdef __sparc__
276
                        tmp_T0 = 0;
277
#else
278
                        T0 = 0;
279
#endif
280
                    }
281
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
282
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
283
                        env->exception_index = EXCP_INTERRUPT;
284
                        cpu_loop_exit();
285
                    }
286
                }
287
#ifdef DEBUG_EXEC
288
                if (loglevel & CPU_LOG_EXEC) {
289
#if defined(TARGET_I386)
290
                    /* restore flags in standard format */
291
                    env->regs[R_EAX] = EAX;
292
                    env->regs[R_EBX] = EBX;
293
                    env->regs[R_ECX] = ECX;
294
                    env->regs[R_EDX] = EDX;
295
                    env->regs[R_ESI] = ESI;
296
                    env->regs[R_EDI] = EDI;
297
                    env->regs[R_EBP] = EBP;
298
                    env->regs[R_ESP] = ESP;
299
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
300
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
301
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
302
#elif defined(TARGET_ARM)
303
                    env->cpsr = compute_cpsr();
304
                    cpu_dump_state(env, logfile, fprintf, 0);
305
                    env->cpsr &= ~0xf0000000;
306
#elif defined(TARGET_SPARC)
307
                    cpu_dump_state (env, logfile, fprintf, 0);
308
#elif defined(TARGET_PPC)
309
                    cpu_dump_state(env, logfile, fprintf, 0);
310
#else
311
#error unsupported target CPU 
312
#endif
313
                }
314
#endif
315
                /* we record a subset of the CPU state. It will
316
                   always be the same before a given translated block
317
                   is executed. */
318
#if defined(TARGET_I386)
319
                flags = env->hflags;
320
                flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
321
                cs_base = env->segs[R_CS].base;
322
                pc = cs_base + env->eip;
323
#elif defined(TARGET_ARM)
324
                flags = 0;
325
                cs_base = 0;
326
                pc = (uint8_t *)env->regs[15];
327
#elif defined(TARGET_SPARC)
328
                flags = 0;
329
                cs_base = (uint8_t *)env->npc;
330
                pc = (uint8_t *) env->pc;
331
#elif defined(TARGET_PPC)
332
                flags = 0;
333
                cs_base = 0;
334
                pc = (uint8_t *)env->nip;
335
#else
336
#error unsupported CPU
337
#endif
338
                tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base, 
339
                             flags);
340
                if (!tb) {
341
                    TranslationBlock **ptb1;
342
                    unsigned int h;
343
                    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
344
                    
345
                    
346
                    spin_lock(&tb_lock);
347

    
348
                    tb_invalidated_flag = 0;
349
                    
350
                    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
351

    
352
                    /* find translated block using physical mappings */
353
                    phys_pc = get_phys_addr_code(env, (unsigned long)pc);
354
                    phys_page1 = phys_pc & TARGET_PAGE_MASK;
355
                    phys_page2 = -1;
356
                    h = tb_phys_hash_func(phys_pc);
357
                    ptb1 = &tb_phys_hash[h];
358
                    for(;;) {
359
                        tb = *ptb1;
360
                        if (!tb)
361
                            goto not_found;
362
                        if (tb->pc == (unsigned long)pc && 
363
                            tb->page_addr[0] == phys_page1 &&
364
                            tb->cs_base == (unsigned long)cs_base && 
365
                            tb->flags == flags) {
366
                            /* check next page if needed */
367
                            if (tb->page_addr[1] != -1) {
368
                                virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) + 
369
                                    TARGET_PAGE_SIZE;
370
                                phys_page2 = get_phys_addr_code(env, virt_page2);
371
                                if (tb->page_addr[1] == phys_page2)
372
                                    goto found;
373
                            } else {
374
                                goto found;
375
                            }
376
                        }
377
                        ptb1 = &tb->phys_hash_next;
378
                    }
379
                not_found:
380
                    /* if no translated code available, then translate it now */
381
                    tb = tb_alloc((unsigned long)pc);
382
                    if (!tb) {
383
                        /* flush must be done */
384
                        tb_flush(env);
385
                        /* cannot fail at this point */
386
                        tb = tb_alloc((unsigned long)pc);
387
                        /* don't forget to invalidate previous TB info */
388
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
389
                        T0 = 0;
390
                    }
391
                    tc_ptr = code_gen_ptr;
392
                    tb->tc_ptr = tc_ptr;
393
                    tb->cs_base = (unsigned long)cs_base;
394
                    tb->flags = flags;
395
                    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
396
                    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
397
                    
398
                    /* check next page if needed */
399
                    virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
400
                    phys_page2 = -1;
401
                    if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
402
                        phys_page2 = get_phys_addr_code(env, virt_page2);
403
                    }
404
                    tb_link_phys(tb, phys_pc, phys_page2);
405

    
406
                found:
407
                    if (tb_invalidated_flag) {
408
                        /* as some TB could have been invalidated because
409
                           of memory exceptions while generating the code, we
410
                           must recompute the hash index here */
411
                        ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
412
                        while (*ptb != NULL)
413
                            ptb = &(*ptb)->hash_next;
414
                        T0 = 0;
415
                    }
416
                    /* we add the TB in the virtual pc hash table */
417
                    *ptb = tb;
418
                    tb->hash_next = NULL;
419
                    tb_link(tb);
420
                    spin_unlock(&tb_lock);
421
                }
422
#ifdef DEBUG_EXEC
423
                if (loglevel & CPU_LOG_EXEC) {
424
                    fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
425
                            (long)tb->tc_ptr, (long)tb->pc,
426
                            lookup_symbol((void *)tb->pc));
427
                }
428
#endif
429
#ifdef __sparc__
430
                T0 = tmp_T0;
431
#endif            
432
                /* see if we can patch the calling TB. */
433
                if (T0 != 0
434
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
435
                    && (tb->cflags & CF_CODE_COPY) == 
436
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
437
#endif
438
                    ) {
439
                    spin_lock(&tb_lock);
440
                    tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
441
#if defined(USE_CODE_COPY)
442
                    /* propagates the FP use info */
443
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
444
                        (tb->cflags & CF_FP_USED);
445
#endif
446
                    spin_unlock(&tb_lock);
447
                }
448
                tc_ptr = tb->tc_ptr;
449
                env->current_tb = tb;
450
                /* execute the generated code */
451
                gen_func = (void *)tc_ptr;
452
#if defined(__sparc__)
453
                __asm__ __volatile__("call        %0\n\t"
454
                                     "mov        %%o7,%%i0"
455
                                     : /* no outputs */
456
                                     : "r" (gen_func) 
457
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
458
#elif defined(__arm__)
459
                asm volatile ("mov pc, %0\n\t"
460
                              ".global exec_loop\n\t"
461
                              "exec_loop:\n\t"
462
                              : /* no outputs */
463
                              : "r" (gen_func)
464
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
465
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
466
{
467
    if (!(tb->cflags & CF_CODE_COPY)) {
468
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
469
            save_native_fp_state(env);
470
        }
471
        gen_func();
472
    } else {
473
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
474
            restore_native_fp_state(env);
475
        }
476
        /* we work with native eflags */
477
        CC_SRC = cc_table[CC_OP].compute_all();
478
        CC_OP = CC_OP_EFLAGS;
479
        asm(".globl exec_loop\n"
480
            "\n"
481
            "debug1:\n"
482
            "    pushl %%ebp\n"
483
            "    fs movl %10, %9\n"
484
            "    fs movl %11, %%eax\n"
485
            "    andl $0x400, %%eax\n"
486
            "    fs orl %8, %%eax\n"
487
            "    pushl %%eax\n"
488
            "    popf\n"
489
            "    fs movl %%esp, %12\n"
490
            "    fs movl %0, %%eax\n"
491
            "    fs movl %1, %%ecx\n"
492
            "    fs movl %2, %%edx\n"
493
            "    fs movl %3, %%ebx\n"
494
            "    fs movl %4, %%esp\n"
495
            "    fs movl %5, %%ebp\n"
496
            "    fs movl %6, %%esi\n"
497
            "    fs movl %7, %%edi\n"
498
            "    fs jmp *%9\n"
499
            "exec_loop:\n"
500
            "    fs movl %%esp, %4\n"
501
            "    fs movl %12, %%esp\n"
502
            "    fs movl %%eax, %0\n"
503
            "    fs movl %%ecx, %1\n"
504
            "    fs movl %%edx, %2\n"
505
            "    fs movl %%ebx, %3\n"
506
            "    fs movl %%ebp, %5\n"
507
            "    fs movl %%esi, %6\n"
508
            "    fs movl %%edi, %7\n"
509
            "    pushf\n"
510
            "    popl %%eax\n"
511
            "    movl %%eax, %%ecx\n"
512
            "    andl $0x400, %%ecx\n"
513
            "    shrl $9, %%ecx\n"
514
            "    andl $0x8d5, %%eax\n"
515
            "    fs movl %%eax, %8\n"
516
            "    movl $1, %%eax\n"
517
            "    subl %%ecx, %%eax\n"
518
            "    fs movl %%eax, %11\n"
519
            "    fs movl %9, %%ebx\n" /* get T0 value */
520
            "    popl %%ebp\n"
521
            :
522
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
523
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
524
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
525
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
526
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
527
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
528
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
529
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
530
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
531
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
532
            "a" (gen_func),
533
            "m" (*(uint8_t *)offsetof(CPUState, df)),
534
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
535
            : "%ecx", "%edx"
536
            );
537
    }
538
}
539
#else
540
                gen_func();
541
#endif
542
                env->current_tb = NULL;
543
                /* reset soft MMU for next block (it can currently
544
                   only be set by a memory fault) */
545
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
546
                if (env->hflags & HF_SOFTMMU_MASK) {
547
                    env->hflags &= ~HF_SOFTMMU_MASK;
548
                    /* do not allow linking to another block */
549
                    T0 = 0;
550
                }
551
#endif
552
            }
553
        } else {
554
            env_to_regs();
555
        }
556
    } /* for(;;) */
557

    
558

    
559
#if defined(TARGET_I386)
560
#if defined(USE_CODE_COPY)
561
    if (env->native_fp_regs) {
562
        save_native_fp_state(env);
563
    }
564
#endif
565
    /* restore flags in standard format */
566
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
567

    
568
    /* restore global registers */
569
#ifdef reg_EAX
570
    EAX = saved_EAX;
571
#endif
572
#ifdef reg_ECX
573
    ECX = saved_ECX;
574
#endif
575
#ifdef reg_EDX
576
    EDX = saved_EDX;
577
#endif
578
#ifdef reg_EBX
579
    EBX = saved_EBX;
580
#endif
581
#ifdef reg_ESP
582
    ESP = saved_ESP;
583
#endif
584
#ifdef reg_EBP
585
    EBP = saved_EBP;
586
#endif
587
#ifdef reg_ESI
588
    ESI = saved_ESI;
589
#endif
590
#ifdef reg_EDI
591
    EDI = saved_EDI;
592
#endif
593
#elif defined(TARGET_ARM)
594
    env->cpsr = compute_cpsr();
595
#elif defined(TARGET_SPARC)
596
#elif defined(TARGET_PPC)
597
#else
598
#error unsupported target CPU
599
#endif
600
#ifdef __sparc__
601
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
602
#endif
603
    T0 = saved_T0;
604
    T1 = saved_T1;
605
    T2 = saved_T2;
606
    env = saved_env;
607
    return ret;
608
}
609

    
610
/* must only be called from the generated code as an exception can be
611
   generated */
612
void tb_invalidate_page_range(target_ulong start, target_ulong end)
613
{
614
    /* XXX: cannot enable it yet because it yields to MMU exception
615
       where NIP != read address on PowerPC */
616
#if 0
617
    target_ulong phys_addr;
618
    phys_addr = get_phys_addr_code(env, start);
619
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
620
#endif
621
}
622

    
623
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
624

    
625
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
626
{
627
    CPUX86State *saved_env;
628

    
629
    saved_env = env;
630
    env = s;
631
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
632
        selector &= 0xffff;
633
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
634
                               (uint8_t *)(selector << 4), 0xffff, 0);
635
    } else {
636
        load_seg(seg_reg, selector);
637
    }
638
    env = saved_env;
639
}
640

    
641
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
642
{
643
    CPUX86State *saved_env;
644

    
645
    saved_env = env;
646
    env = s;
647
    
648
    helper_fsave(ptr, data32);
649

    
650
    env = saved_env;
651
}
652

    
653
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
654
{
655
    CPUX86State *saved_env;
656

    
657
    saved_env = env;
658
    env = s;
659
    
660
    helper_frstor(ptr, data32);
661

    
662
    env = saved_env;
663
}
664

    
665
#endif /* TARGET_I386 */
666

    
667
#if !defined(CONFIG_SOFTMMU)
668

    
669
#if defined(TARGET_I386)
670

    
671
/* 'pc' is the host PC at which the exception was raised. 'address' is
672
   the effective address of the memory exception. 'is_write' is 1 if a
673
   write caused the exception and otherwise 0'. 'old_set' is the
674
   signal set which should be restored */
675
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
676
                                    int is_write, sigset_t *old_set, 
677
                                    void *puc)
678
{
679
    TranslationBlock *tb;
680
    int ret;
681

    
682
    if (cpu_single_env)
683
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
684
#if defined(DEBUG_SIGNAL)
685
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
686
                pc, address, is_write, *(unsigned long *)old_set);
687
#endif
688
    /* XXX: locking issue */
689
    if (is_write && page_unprotect(address, pc, puc)) {
690
        return 1;
691
    }
692

    
693
    /* see if it is an MMU fault */
694
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
695
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
696
    if (ret < 0)
697
        return 0; /* not an MMU fault */
698
    if (ret == 0)
699
        return 1; /* the MMU fault was handled without causing real CPU fault */
700
    /* now we have a real cpu fault */
701
    tb = tb_find_pc(pc);
702
    if (tb) {
703
        /* the PC is inside the translated code. It means that we have
704
           a virtual CPU fault */
705
        cpu_restore_state(tb, env, pc, puc);
706
    }
707
    if (ret == 1) {
708
#if 0
709
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
710
               env->eip, env->cr[2], env->error_code);
711
#endif
712
        /* we restore the process signal mask as the sigreturn should
713
           do it (XXX: use sigsetjmp) */
714
        sigprocmask(SIG_SETMASK, old_set, NULL);
715
        raise_exception_err(EXCP0E_PAGE, env->error_code);
716
    } else {
717
        /* activate soft MMU for this block */
718
        env->hflags |= HF_SOFTMMU_MASK;
719
        cpu_resume_from_signal(env, puc);
720
    }
721
    /* never comes here */
722
    return 1;
723
}
724

    
725
#elif defined(TARGET_ARM)
726
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
727
                                    int is_write, sigset_t *old_set,
728
                                    void *puc)
729
{
730
    /* XXX: do more */
731
    return 0;
732
}
733
#elif defined(TARGET_SPARC)
734
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
735
                                    int is_write, sigset_t *old_set,
736
                                    void *puc)
737
{
738
    /* XXX: locking issue */
739
    if (is_write && page_unprotect(address, pc, puc)) {
740
        return 1;
741
    }
742
    return 0;
743
}
744
#elif defined (TARGET_PPC)
745
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
746
                                    int is_write, sigset_t *old_set,
747
                                    void *puc)
748
{
749
    TranslationBlock *tb;
750
    int ret;
751
    
752
#if 1
753
    if (cpu_single_env)
754
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
755
#endif
756
#if defined(DEBUG_SIGNAL)
757
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
758
           pc, address, is_write, *(unsigned long *)old_set);
759
#endif
760
    /* XXX: locking issue */
761
    if (is_write && page_unprotect(address, pc, puc)) {
762
        return 1;
763
    }
764

    
765
    /* see if it is an MMU fault */
766
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
767
    if (ret < 0)
768
        return 0; /* not an MMU fault */
769
    if (ret == 0)
770
        return 1; /* the MMU fault was handled without causing real CPU fault */
771

    
772
    /* now we have a real cpu fault */
773
    tb = tb_find_pc(pc);
774
    if (tb) {
775
        /* the PC is inside the translated code. It means that we have
776
           a virtual CPU fault */
777
        cpu_restore_state(tb, env, pc, puc);
778
    }
779
    if (ret == 1) {
780
#if 0
781
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
782
               env->nip, env->error_code, tb);
783
#endif
784
    /* we restore the process signal mask as the sigreturn should
785
       do it (XXX: use sigsetjmp) */
786
        sigprocmask(SIG_SETMASK, old_set, NULL);
787
        do_raise_exception_err(env->exception_index, env->error_code);
788
    } else {
789
        /* activate soft MMU for this block */
790
        cpu_resume_from_signal(env, puc);
791
    }
792
    /* never comes here */
793
    return 1;
794
}
795
#else
796
#error unsupported target CPU
797
#endif
798

    
799
#if defined(__i386__)
800

    
801
#if defined(USE_CODE_COPY)
802
static void cpu_send_trap(unsigned long pc, int trap, 
803
                          struct ucontext *uc)
804
{
805
    TranslationBlock *tb;
806

    
807
    if (cpu_single_env)
808
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
809
    /* now we have a real cpu fault */
810
    tb = tb_find_pc(pc);
811
    if (tb) {
812
        /* the PC is inside the translated code. It means that we have
813
           a virtual CPU fault */
814
        cpu_restore_state(tb, env, pc, uc);
815
    }
816
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
817
    raise_exception_err(trap, env->error_code);
818
}
819
#endif
820

    
821
int cpu_signal_handler(int host_signum, struct siginfo *info, 
822
                       void *puc)
823
{
824
    struct ucontext *uc = puc;
825
    unsigned long pc;
826
    int trapno;
827

    
828
#ifndef REG_EIP
829
/* for glibc 2.1 */
830
#define REG_EIP    EIP
831
#define REG_ERR    ERR
832
#define REG_TRAPNO TRAPNO
833
#endif
834
    pc = uc->uc_mcontext.gregs[REG_EIP];
835
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
836
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
837
    if (trapno == 0x00 || trapno == 0x05) {
838
        /* send division by zero or bound exception */
839
        cpu_send_trap(pc, trapno, uc);
840
        return 1;
841
    } else
842
#endif
843
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
844
                                 trapno == 0xe ? 
845
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
846
                                 &uc->uc_sigmask, puc);
847
}
848

    
849
#elif defined(__x86_64__)
850

    
851
int cpu_signal_handler(int host_signum, struct siginfo *info,
852
                       void *puc)
853
{
854
    struct ucontext *uc = puc;
855
    unsigned long pc;
856

    
857
    pc = uc->uc_mcontext.gregs[REG_RIP];
858
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
859
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
860
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
861
                             &uc->uc_sigmask, puc);
862
}
863

    
864
#elif defined(__powerpc__)
865

    
866
/***********************************************************************
867
 * signal context platform-specific definitions
868
 * From Wine
869
 */
870
#ifdef linux
871
/* All Registers access - only for local access */
872
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
873
/* Gpr Registers access  */
874
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
875
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
876
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
877
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
878
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
879
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
880
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
881
/* Float Registers access  */
882
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
883
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
884
/* Exception Registers access */
885
# define DAR_sig(context)                        REG_sig(dar, context)
886
# define DSISR_sig(context)                        REG_sig(dsisr, context)
887
# define TRAP_sig(context)                        REG_sig(trap, context)
888
#endif /* linux */
889

    
890
#ifdef __APPLE__
891
# include <sys/ucontext.h>
892
typedef struct ucontext SIGCONTEXT;
893
/* All Registers access - only for local access */
894
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
895
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
896
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
897
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
898
/* Gpr Registers access */
899
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
900
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
901
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
902
# define CTR_sig(context)                        REG_sig(ctr, context)
903
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
904
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
905
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
906
/* Float Registers access */
907
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
908
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
909
/* Exception Registers access */
910
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
911
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
912
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
913
#endif /* __APPLE__ */
914

    
915
int cpu_signal_handler(int host_signum, struct siginfo *info, 
916
                       void *puc)
917
{
918
    struct ucontext *uc = puc;
919
    unsigned long pc;
920
    int is_write;
921

    
922
    pc = IAR_sig(uc);
923
    is_write = 0;
924
#if 0
925
    /* ppc 4xx case */
926
    if (DSISR_sig(uc) & 0x00800000)
927
        is_write = 1;
928
#else
929
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
930
        is_write = 1;
931
#endif
932
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
933
                             is_write, &uc->uc_sigmask, puc);
934
}
935

    
936
#elif defined(__alpha__)
937

    
938
int cpu_signal_handler(int host_signum, struct siginfo *info, 
939
                           void *puc)
940
{
941
    struct ucontext *uc = puc;
942
    uint32_t *pc = uc->uc_mcontext.sc_pc;
943
    uint32_t insn = *pc;
944
    int is_write = 0;
945

    
946
    /* XXX: need kernel patch to get write flag faster */
947
    switch (insn >> 26) {
948
    case 0x0d: // stw
949
    case 0x0e: // stb
950
    case 0x0f: // stq_u
951
    case 0x24: // stf
952
    case 0x25: // stg
953
    case 0x26: // sts
954
    case 0x27: // stt
955
    case 0x2c: // stl
956
    case 0x2d: // stq
957
    case 0x2e: // stl_c
958
    case 0x2f: // stq_c
959
        is_write = 1;
960
    }
961

    
962
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
963
                             is_write, &uc->uc_sigmask, puc);
964
}
965
#elif defined(__sparc__)
966

    
967
int cpu_signal_handler(int host_signum, struct siginfo *info, 
968
                       void *puc)
969
{
970
    uint32_t *regs = (uint32_t *)(info + 1);
971
    void *sigmask = (regs + 20);
972
    unsigned long pc;
973
    int is_write;
974
    uint32_t insn;
975
    
976
    /* XXX: is there a standard glibc define ? */
977
    pc = regs[1];
978
    /* XXX: need kernel patch to get write flag faster */
979
    is_write = 0;
980
    insn = *(uint32_t *)pc;
981
    if ((insn >> 30) == 3) {
982
      switch((insn >> 19) & 0x3f) {
983
      case 0x05: // stb
984
      case 0x06: // sth
985
      case 0x04: // st
986
      case 0x07: // std
987
      case 0x24: // stf
988
      case 0x27: // stdf
989
      case 0x25: // stfsr
990
        is_write = 1;
991
        break;
992
      }
993
    }
994
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
995
                             is_write, sigmask, NULL);
996
}
997

    
998
#elif defined(__arm__)
999

    
1000
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1001
                       void *puc)
1002
{
1003
    struct ucontext *uc = puc;
1004
    unsigned long pc;
1005
    int is_write;
1006
    
1007
    pc = uc->uc_mcontext.gregs[R15];
1008
    /* XXX: compute is_write */
1009
    is_write = 0;
1010
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1011
                             is_write,
1012
                             &uc->uc_sigmask);
1013
}
1014

    
1015
#elif defined(__mc68000)
1016

    
1017
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1018
                       void *puc)
1019
{
1020
    struct ucontext *uc = puc;
1021
    unsigned long pc;
1022
    int is_write;
1023
    
1024
    pc = uc->uc_mcontext.gregs[16];
1025
    /* XXX: compute is_write */
1026
    is_write = 0;
1027
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1028
                             is_write,
1029
                             &uc->uc_sigmask, puc);
1030
}
1031

    
1032
#else
1033

    
1034
#error host CPU specific signal handler needed
1035

    
1036
#endif
1037

    
1038
#endif /* !defined(CONFIG_SOFTMMU) */