Statistics
| Branch: | Revision:

root / cpu-exec.c @ e80e1cc4

History | View | Annotate | Download (42.1 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#ifndef TARGET_SPARC
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        T0 = 0;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    if (tb_invalidated_flag) {
148
        /* as some TB could have been invalidated because
149
           of memory exceptions while generating the code, we
150
           must recompute the hash index here */
151
        T0 = 0;
152
    }
153
    /* we add the TB in the virtual pc hash table */
154
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
155
    spin_unlock(&tb_lock);
156
    return tb;
157
}
158

    
159
static inline TranslationBlock *tb_find_fast(void)
160
{
161
    TranslationBlock *tb;
162
    target_ulong cs_base, pc;
163
    unsigned int flags;
164

    
165
    /* we record a subset of the CPU state. It will
166
       always be the same before a given translated block
167
       is executed. */
168
#if defined(TARGET_I386)
169
    flags = env->hflags;
170
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
171
    cs_base = env->segs[R_CS].base;
172
    pc = cs_base + env->eip;
173
#elif defined(TARGET_ARM)
174
    flags = env->thumb | (env->vfp.vec_len << 1)
175
        | (env->vfp.vec_stride << 4);
176
    cs_base = 0;
177
    pc = env->regs[15];
178
#elif defined(TARGET_SPARC)
179
#ifdef TARGET_SPARC64
180
    flags = (env->pstate << 2) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    flags = env->psrs | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1);
183
#endif
184
    cs_base = env->npc;
185
    pc = env->pc;
186
#elif defined(TARGET_PPC)
187
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
188
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
189
    cs_base = 0;
190
    pc = env->nip;
191
#elif defined(TARGET_MIPS)
192
    flags = env->hflags & MIPS_HFLAGS_TMASK;
193
    cs_base = NULL;
194
    pc = env->PC;
195
#else
196
#error unsupported CPU
197
#endif
198
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
199
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
200
                         tb->flags != flags, 0)) {
201
        tb = tb_find_slow(pc, cs_base, flags);
202
    }
203
    return tb;
204
}
205

    
206

    
207
/* main execution loop */
208

    
209
int cpu_exec(CPUState *env1)
210
{
211
    int saved_T0, saved_T1;
212
#if defined(reg_T2)
213
    int saved_T2;
214
#endif
215
    CPUState *saved_env;
216
#if defined(TARGET_I386)
217
#ifdef reg_EAX
218
    int saved_EAX;
219
#endif
220
#ifdef reg_ECX
221
    int saved_ECX;
222
#endif
223
#ifdef reg_EDX
224
    int saved_EDX;
225
#endif
226
#ifdef reg_EBX
227
    int saved_EBX;
228
#endif
229
#ifdef reg_ESP
230
    int saved_ESP;
231
#endif
232
#ifdef reg_EBP
233
    int saved_EBP;
234
#endif
235
#ifdef reg_ESI
236
    int saved_ESI;
237
#endif
238
#ifdef reg_EDI
239
    int saved_EDI;
240
#endif
241
#elif defined(TARGET_SPARC)
242
#if defined(reg_REGWPTR)
243
    uint32_t *saved_regwptr;
244
#endif
245
#endif
246
#ifdef __sparc__
247
    int saved_i7, tmp_T0;
248
#endif
249
    int ret, interrupt_request;
250
    void (*gen_func)(void);
251
    TranslationBlock *tb;
252
    uint8_t *tc_ptr;
253

    
254
#if defined(TARGET_I386)
255
    /* handle exit of HALTED state */
256
    if (env1->hflags & HF_HALTED_MASK) {
257
        /* disable halt condition */
258
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
259
            (env1->eflags & IF_MASK)) {
260
            env1->hflags &= ~HF_HALTED_MASK;
261
        } else {
262
            return EXCP_HALTED;
263
        }
264
    }
265
#elif defined(TARGET_PPC)
266
    if (env1->msr[MSR_POW]) {
267
        if (env1->msr[MSR_EE] && 
268
            (env1->interrupt_request & 
269
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
270
            env1->msr[MSR_POW] = 0;
271
        } else {
272
            return EXCP_HALTED;
273
        }
274
    }
275
#endif
276

    
277
    cpu_single_env = env1; 
278

    
279
    /* first we save global registers */
280
    saved_env = env;
281
    env = env1;
282
    saved_T0 = T0;
283
    saved_T1 = T1;
284
#if defined(reg_T2)
285
    saved_T2 = T2;
286
#endif
287
#ifdef __sparc__
288
    /* we also save i7 because longjmp may not restore it */
289
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
290
#endif
291

    
292
#if defined(TARGET_I386)
293
#ifdef reg_EAX
294
    saved_EAX = EAX;
295
#endif
296
#ifdef reg_ECX
297
    saved_ECX = ECX;
298
#endif
299
#ifdef reg_EDX
300
    saved_EDX = EDX;
301
#endif
302
#ifdef reg_EBX
303
    saved_EBX = EBX;
304
#endif
305
#ifdef reg_ESP
306
    saved_ESP = ESP;
307
#endif
308
#ifdef reg_EBP
309
    saved_EBP = EBP;
310
#endif
311
#ifdef reg_ESI
312
    saved_ESI = ESI;
313
#endif
314
#ifdef reg_EDI
315
    saved_EDI = EDI;
316
#endif
317

    
318
    env_to_regs();
319
    /* put eflags in CPU temporary format */
320
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
321
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
322
    CC_OP = CC_OP_EFLAGS;
323
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324
#elif defined(TARGET_ARM)
325
    {
326
        unsigned int psr;
327
        psr = env->cpsr;
328
        env->CF = (psr >> 29) & 1;
329
        env->NZF = (psr & 0xc0000000) ^ 0x40000000;
330
        env->VF = (psr << 3) & 0x80000000;
331
        env->QF = (psr >> 27) & 1;
332
        env->cpsr = psr & ~CACHED_CPSR_BITS;
333
    }
334
#elif defined(TARGET_SPARC)
335
#if defined(reg_REGWPTR)
336
    saved_regwptr = REGWPTR;
337
#endif
338
#elif defined(TARGET_PPC)
339
#elif defined(TARGET_MIPS)
340
#else
341
#error unsupported target CPU
342
#endif
343
    env->exception_index = -1;
344

    
345
    /* prepare setjmp context for exception handling */
346
    for(;;) {
347
        if (setjmp(env->jmp_env) == 0) {
348
            env->current_tb = NULL;
349
            /* if an exception is pending, we execute it here */
350
            if (env->exception_index >= 0) {
351
                if (env->exception_index >= EXCP_INTERRUPT) {
352
                    /* exit request from the cpu execution loop */
353
                    ret = env->exception_index;
354
                    break;
355
                } else if (env->user_mode_only) {
356
                    /* if user mode only, we simulate a fake exception
357
                       which will be hanlded outside the cpu execution
358
                       loop */
359
#if defined(TARGET_I386)
360
                    do_interrupt_user(env->exception_index, 
361
                                      env->exception_is_int, 
362
                                      env->error_code, 
363
                                      env->exception_next_eip);
364
#endif
365
                    ret = env->exception_index;
366
                    break;
367
                } else {
368
#if defined(TARGET_I386)
369
                    /* simulate a real cpu exception. On i386, it can
370
                       trigger new exceptions, but we do not handle
371
                       double or triple faults yet. */
372
                    do_interrupt(env->exception_index, 
373
                                 env->exception_is_int, 
374
                                 env->error_code, 
375
                                 env->exception_next_eip, 0);
376
#elif defined(TARGET_PPC)
377
                    do_interrupt(env);
378
#elif defined(TARGET_MIPS)
379
                    do_interrupt(env);
380
#elif defined(TARGET_SPARC)
381
                    do_interrupt(env->exception_index);
382
#endif
383
                }
384
                env->exception_index = -1;
385
            } 
386
#ifdef USE_KQEMU
387
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
388
                int ret;
389
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
390
                ret = kqemu_cpu_exec(env);
391
                /* put eflags in CPU temporary format */
392
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
393
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
394
                CC_OP = CC_OP_EFLAGS;
395
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
396
                if (ret == 1) {
397
                    /* exception */
398
                    longjmp(env->jmp_env, 1);
399
                } else if (ret == 2) {
400
                    /* softmmu execution needed */
401
                } else {
402
                    if (env->interrupt_request != 0) {
403
                        /* hardware interrupt will be executed just after */
404
                    } else {
405
                        /* otherwise, we restart */
406
                        longjmp(env->jmp_env, 1);
407
                    }
408
                }
409
            }
410
#endif
411

    
412
            T0 = 0; /* force lookup of first TB */
413
            for(;;) {
414
#ifdef __sparc__
415
                /* g1 can be modified by some libc? functions */ 
416
                tmp_T0 = T0;
417
#endif            
418
                interrupt_request = env->interrupt_request;
419
                if (__builtin_expect(interrupt_request, 0)) {
420
#if defined(TARGET_I386)
421
                    /* if hardware interrupt pending, we execute it */
422
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
423
                        (env->eflags & IF_MASK) && 
424
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
425
                        int intno;
426
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
427
                        intno = cpu_get_pic_interrupt(env);
428
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
429
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
430
                        }
431
                        do_interrupt(intno, 0, 0, 0, 1);
432
                        /* ensure that no TB jump will be modified as
433
                           the program flow was changed */
434
#ifdef __sparc__
435
                        tmp_T0 = 0;
436
#else
437
                        T0 = 0;
438
#endif
439
                    }
440
#elif defined(TARGET_PPC)
441
#if 0
442
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
443
                        cpu_ppc_reset(env);
444
                    }
445
#endif
446
                    if (msr_ee != 0) {
447
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
448
                            /* Raise it */
449
                            env->exception_index = EXCP_EXTERNAL;
450
                            env->error_code = 0;
451
                            do_interrupt(env);
452
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
453
#ifdef __sparc__
454
                            tmp_T0 = 0;
455
#else
456
                            T0 = 0;
457
#endif
458
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
459
                            /* Raise it */
460
                            env->exception_index = EXCP_DECR;
461
                            env->error_code = 0;
462
                            do_interrupt(env);
463
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
464
#ifdef __sparc__
465
                            tmp_T0 = 0;
466
#else
467
                            T0 = 0;
468
#endif
469
                        }
470
                    }
471
#elif defined(TARGET_MIPS)
472
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
473
                        (env->CP0_Status & (1 << CP0St_IE)) &&
474
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
475
                        !(env->hflags & MIPS_HFLAG_EXL) &&
476
                        !(env->hflags & MIPS_HFLAG_ERL) &&
477
                        !(env->hflags & MIPS_HFLAG_DM)) {
478
                        /* Raise it */
479
                        env->exception_index = EXCP_EXT_INTERRUPT;
480
                        env->error_code = 0;
481
                        do_interrupt(env);
482
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
483
#ifdef __sparc__
484
                        tmp_T0 = 0;
485
#else
486
                        T0 = 0;
487
#endif
488
                    }
489
#elif defined(TARGET_SPARC)
490
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
491
                        (env->psret != 0)) {
492
                        int pil = env->interrupt_index & 15;
493
                        int type = env->interrupt_index & 0xf0;
494

    
495
                        if (((type == TT_EXTINT) &&
496
                             (pil == 15 || pil > env->psrpil)) ||
497
                            type != TT_EXTINT) {
498
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
499
                            do_interrupt(env->interrupt_index);
500
                            env->interrupt_index = 0;
501
#ifdef __sparc__
502
                            tmp_T0 = 0;
503
#else
504
                            T0 = 0;
505
#endif
506
                        }
507
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
508
                        //do_interrupt(0, 0, 0, 0, 0);
509
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
510
                    }
511
#endif
512
                    if (interrupt_request & CPU_INTERRUPT_EXITTB) {
513
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
514
                        /* ensure that no TB jump will be modified as
515
                           the program flow was changed */
516
#ifdef __sparc__
517
                        tmp_T0 = 0;
518
#else
519
                        T0 = 0;
520
#endif
521
                    }
522
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
523
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
524
                        env->exception_index = EXCP_INTERRUPT;
525
                        cpu_loop_exit();
526
                    }
527
                }
528
#ifdef DEBUG_EXEC
529
                if ((loglevel & CPU_LOG_EXEC)) {
530
#if defined(TARGET_I386)
531
                    /* restore flags in standard format */
532
#ifdef reg_EAX
533
                    env->regs[R_EAX] = EAX;
534
#endif
535
#ifdef reg_EBX
536
                    env->regs[R_EBX] = EBX;
537
#endif
538
#ifdef reg_ECX
539
                    env->regs[R_ECX] = ECX;
540
#endif
541
#ifdef reg_EDX
542
                    env->regs[R_EDX] = EDX;
543
#endif
544
#ifdef reg_ESI
545
                    env->regs[R_ESI] = ESI;
546
#endif
547
#ifdef reg_EDI
548
                    env->regs[R_EDI] = EDI;
549
#endif
550
#ifdef reg_EBP
551
                    env->regs[R_EBP] = EBP;
552
#endif
553
#ifdef reg_ESP
554
                    env->regs[R_ESP] = ESP;
555
#endif
556
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
557
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
558
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
559
#elif defined(TARGET_ARM)
560
                    env->cpsr = compute_cpsr();
561
                    cpu_dump_state(env, logfile, fprintf, 0);
562
                    env->cpsr &= ~CACHED_CPSR_BITS;
563
#elif defined(TARGET_SPARC)
564
                    REGWPTR = env->regbase + (env->cwp * 16);
565
                    env->regwptr = REGWPTR;
566
                    cpu_dump_state(env, logfile, fprintf, 0);
567
#elif defined(TARGET_PPC)
568
                    cpu_dump_state(env, logfile, fprintf, 0);
569
#elif defined(TARGET_MIPS)
570
                    cpu_dump_state(env, logfile, fprintf, 0);
571
#else
572
#error unsupported target CPU 
573
#endif
574
                }
575
#endif
576
                tb = tb_find_fast();
577
#ifdef DEBUG_EXEC
578
                if ((loglevel & CPU_LOG_EXEC)) {
579
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
580
                            (long)tb->tc_ptr, tb->pc,
581
                            lookup_symbol(tb->pc));
582
                }
583
#endif
584
#ifdef __sparc__
585
                T0 = tmp_T0;
586
#endif            
587
                /* see if we can patch the calling TB. When the TB
588
                   spans two pages, we cannot safely do a direct
589
                   jump. */
590
                {
591
                    if (T0 != 0 &&
592
                        tb->page_addr[1] == -1
593
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
594
                    && (tb->cflags & CF_CODE_COPY) == 
595
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
596
#endif
597
                    ) {
598
                    spin_lock(&tb_lock);
599
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
600
#if defined(USE_CODE_COPY)
601
                    /* propagates the FP use info */
602
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
603
                        (tb->cflags & CF_FP_USED);
604
#endif
605
                    spin_unlock(&tb_lock);
606
                }
607
                }
608
                tc_ptr = tb->tc_ptr;
609
                env->current_tb = tb;
610
                /* execute the generated code */
611
                gen_func = (void *)tc_ptr;
612
#if defined(__sparc__)
613
                __asm__ __volatile__("call        %0\n\t"
614
                                     "mov        %%o7,%%i0"
615
                                     : /* no outputs */
616
                                     : "r" (gen_func) 
617
                                     : "i0", "i1", "i2", "i3", "i4", "i5");
618
#elif defined(__arm__)
619
                asm volatile ("mov pc, %0\n\t"
620
                              ".global exec_loop\n\t"
621
                              "exec_loop:\n\t"
622
                              : /* no outputs */
623
                              : "r" (gen_func)
624
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
625
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
626
{
627
    if (!(tb->cflags & CF_CODE_COPY)) {
628
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
629
            save_native_fp_state(env);
630
        }
631
        gen_func();
632
    } else {
633
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
634
            restore_native_fp_state(env);
635
        }
636
        /* we work with native eflags */
637
        CC_SRC = cc_table[CC_OP].compute_all();
638
        CC_OP = CC_OP_EFLAGS;
639
        asm(".globl exec_loop\n"
640
            "\n"
641
            "debug1:\n"
642
            "    pushl %%ebp\n"
643
            "    fs movl %10, %9\n"
644
            "    fs movl %11, %%eax\n"
645
            "    andl $0x400, %%eax\n"
646
            "    fs orl %8, %%eax\n"
647
            "    pushl %%eax\n"
648
            "    popf\n"
649
            "    fs movl %%esp, %12\n"
650
            "    fs movl %0, %%eax\n"
651
            "    fs movl %1, %%ecx\n"
652
            "    fs movl %2, %%edx\n"
653
            "    fs movl %3, %%ebx\n"
654
            "    fs movl %4, %%esp\n"
655
            "    fs movl %5, %%ebp\n"
656
            "    fs movl %6, %%esi\n"
657
            "    fs movl %7, %%edi\n"
658
            "    fs jmp *%9\n"
659
            "exec_loop:\n"
660
            "    fs movl %%esp, %4\n"
661
            "    fs movl %12, %%esp\n"
662
            "    fs movl %%eax, %0\n"
663
            "    fs movl %%ecx, %1\n"
664
            "    fs movl %%edx, %2\n"
665
            "    fs movl %%ebx, %3\n"
666
            "    fs movl %%ebp, %5\n"
667
            "    fs movl %%esi, %6\n"
668
            "    fs movl %%edi, %7\n"
669
            "    pushf\n"
670
            "    popl %%eax\n"
671
            "    movl %%eax, %%ecx\n"
672
            "    andl $0x400, %%ecx\n"
673
            "    shrl $9, %%ecx\n"
674
            "    andl $0x8d5, %%eax\n"
675
            "    fs movl %%eax, %8\n"
676
            "    movl $1, %%eax\n"
677
            "    subl %%ecx, %%eax\n"
678
            "    fs movl %%eax, %11\n"
679
            "    fs movl %9, %%ebx\n" /* get T0 value */
680
            "    popl %%ebp\n"
681
            :
682
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
683
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
684
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
685
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
686
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
687
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
688
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
689
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
690
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
691
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
692
            "a" (gen_func),
693
            "m" (*(uint8_t *)offsetof(CPUState, df)),
694
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
695
            : "%ecx", "%edx"
696
            );
697
    }
698
}
699
#elif defined(__ia64)
700
                struct fptr {
701
                        void *ip;
702
                        void *gp;
703
                } fp;
704

    
705
                fp.ip = tc_ptr;
706
                fp.gp = code_gen_buffer + 2 * (1 << 20);
707
                (*(void (*)(void)) &fp)();
708
#else
709
                gen_func();
710
#endif
711
                env->current_tb = NULL;
712
                /* reset soft MMU for next block (it can currently
713
                   only be set by a memory fault) */
714
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
715
                if (env->hflags & HF_SOFTMMU_MASK) {
716
                    env->hflags &= ~HF_SOFTMMU_MASK;
717
                    /* do not allow linking to another block */
718
                    T0 = 0;
719
                }
720
#endif
721
            }
722
        } else {
723
            env_to_regs();
724
        }
725
    } /* for(;;) */
726

    
727

    
728
#if defined(TARGET_I386)
729
#if defined(USE_CODE_COPY)
730
    if (env->native_fp_regs) {
731
        save_native_fp_state(env);
732
    }
733
#endif
734
    /* restore flags in standard format */
735
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
736

    
737
    /* restore global registers */
738
#ifdef reg_EAX
739
    EAX = saved_EAX;
740
#endif
741
#ifdef reg_ECX
742
    ECX = saved_ECX;
743
#endif
744
#ifdef reg_EDX
745
    EDX = saved_EDX;
746
#endif
747
#ifdef reg_EBX
748
    EBX = saved_EBX;
749
#endif
750
#ifdef reg_ESP
751
    ESP = saved_ESP;
752
#endif
753
#ifdef reg_EBP
754
    EBP = saved_EBP;
755
#endif
756
#ifdef reg_ESI
757
    ESI = saved_ESI;
758
#endif
759
#ifdef reg_EDI
760
    EDI = saved_EDI;
761
#endif
762
#elif defined(TARGET_ARM)
763
    env->cpsr = compute_cpsr();
764
    /* XXX: Save/restore host fpu exception state?.  */
765
#elif defined(TARGET_SPARC)
766
#if defined(reg_REGWPTR)
767
    REGWPTR = saved_regwptr;
768
#endif
769
#elif defined(TARGET_PPC)
770
#elif defined(TARGET_MIPS)
771
#else
772
#error unsupported target CPU
773
#endif
774
#ifdef __sparc__
775
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
776
#endif
777
    T0 = saved_T0;
778
    T1 = saved_T1;
779
#if defined(reg_T2)
780
    T2 = saved_T2;
781
#endif
782
    env = saved_env;
783
    /* fail safe : never use cpu_single_env outside cpu_exec() */
784
    cpu_single_env = NULL; 
785
    return ret;
786
}
787

    
788
/* must only be called from the generated code as an exception can be
789
   generated */
790
void tb_invalidate_page_range(target_ulong start, target_ulong end)
791
{
792
    /* XXX: cannot enable it yet because it yields to MMU exception
793
       where NIP != read address on PowerPC */
794
#if 0
795
    target_ulong phys_addr;
796
    phys_addr = get_phys_addr_code(env, start);
797
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
798
#endif
799
}
800

    
801
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
802

    
803
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
804
{
805
    CPUX86State *saved_env;
806

    
807
    saved_env = env;
808
    env = s;
809
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
810
        selector &= 0xffff;
811
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
812
                               (selector << 4), 0xffff, 0);
813
    } else {
814
        load_seg(seg_reg, selector);
815
    }
816
    env = saved_env;
817
}
818

    
819
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
820
{
821
    CPUX86State *saved_env;
822

    
823
    saved_env = env;
824
    env = s;
825
    
826
    helper_fsave((target_ulong)ptr, data32);
827

    
828
    env = saved_env;
829
}
830

    
831
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
832
{
833
    CPUX86State *saved_env;
834

    
835
    saved_env = env;
836
    env = s;
837
    
838
    helper_frstor((target_ulong)ptr, data32);
839

    
840
    env = saved_env;
841
}
842

    
843
#endif /* TARGET_I386 */
844

    
845
#if !defined(CONFIG_SOFTMMU)
846

    
847
#if defined(TARGET_I386)
848

    
849
/* 'pc' is the host PC at which the exception was raised. 'address' is
850
   the effective address of the memory exception. 'is_write' is 1 if a
851
   write caused the exception and otherwise 0'. 'old_set' is the
852
   signal set which should be restored */
853
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
854
                                    int is_write, sigset_t *old_set, 
855
                                    void *puc)
856
{
857
    TranslationBlock *tb;
858
    int ret;
859

    
860
    if (cpu_single_env)
861
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
862
#if defined(DEBUG_SIGNAL)
863
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
864
                pc, address, is_write, *(unsigned long *)old_set);
865
#endif
866
    /* XXX: locking issue */
867
    if (is_write && page_unprotect(address, pc, puc)) {
868
        return 1;
869
    }
870

    
871
    /* see if it is an MMU fault */
872
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
873
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
874
    if (ret < 0)
875
        return 0; /* not an MMU fault */
876
    if (ret == 0)
877
        return 1; /* the MMU fault was handled without causing real CPU fault */
878
    /* now we have a real cpu fault */
879
    tb = tb_find_pc(pc);
880
    if (tb) {
881
        /* the PC is inside the translated code. It means that we have
882
           a virtual CPU fault */
883
        cpu_restore_state(tb, env, pc, puc);
884
    }
885
    if (ret == 1) {
886
#if 0
887
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
888
               env->eip, env->cr[2], env->error_code);
889
#endif
890
        /* we restore the process signal mask as the sigreturn should
891
           do it (XXX: use sigsetjmp) */
892
        sigprocmask(SIG_SETMASK, old_set, NULL);
893
        raise_exception_err(EXCP0E_PAGE, env->error_code);
894
    } else {
895
        /* activate soft MMU for this block */
896
        env->hflags |= HF_SOFTMMU_MASK;
897
        cpu_resume_from_signal(env, puc);
898
    }
899
    /* never comes here */
900
    return 1;
901
}
902

    
903
#elif defined(TARGET_ARM)
904
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
905
                                    int is_write, sigset_t *old_set,
906
                                    void *puc)
907
{
908
    TranslationBlock *tb;
909
    int ret;
910

    
911
    if (cpu_single_env)
912
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
913
#if defined(DEBUG_SIGNAL)
914
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
915
           pc, address, is_write, *(unsigned long *)old_set);
916
#endif
917
    /* XXX: locking issue */
918
    if (is_write && page_unprotect(address, pc, puc)) {
919
        return 1;
920
    }
921
    /* see if it is an MMU fault */
922
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
923
    if (ret < 0)
924
        return 0; /* not an MMU fault */
925
    if (ret == 0)
926
        return 1; /* the MMU fault was handled without causing real CPU fault */
927
    /* now we have a real cpu fault */
928
    tb = tb_find_pc(pc);
929
    if (tb) {
930
        /* the PC is inside the translated code. It means that we have
931
           a virtual CPU fault */
932
        cpu_restore_state(tb, env, pc, puc);
933
    }
934
    /* we restore the process signal mask as the sigreturn should
935
       do it (XXX: use sigsetjmp) */
936
    sigprocmask(SIG_SETMASK, old_set, NULL);
937
    cpu_loop_exit();
938
}
939
#elif defined(TARGET_SPARC)
940
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
941
                                    int is_write, sigset_t *old_set,
942
                                    void *puc)
943
{
944
    TranslationBlock *tb;
945
    int ret;
946

    
947
    if (cpu_single_env)
948
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
949
#if defined(DEBUG_SIGNAL)
950
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
951
           pc, address, is_write, *(unsigned long *)old_set);
952
#endif
953
    /* XXX: locking issue */
954
    if (is_write && page_unprotect(address, pc, puc)) {
955
        return 1;
956
    }
957
    /* see if it is an MMU fault */
958
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
959
    if (ret < 0)
960
        return 0; /* not an MMU fault */
961
    if (ret == 0)
962
        return 1; /* the MMU fault was handled without causing real CPU fault */
963
    /* now we have a real cpu fault */
964
    tb = tb_find_pc(pc);
965
    if (tb) {
966
        /* the PC is inside the translated code. It means that we have
967
           a virtual CPU fault */
968
        cpu_restore_state(tb, env, pc, puc);
969
    }
970
    /* we restore the process signal mask as the sigreturn should
971
       do it (XXX: use sigsetjmp) */
972
    sigprocmask(SIG_SETMASK, old_set, NULL);
973
    cpu_loop_exit();
974
}
975
#elif defined (TARGET_PPC)
976
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
977
                                    int is_write, sigset_t *old_set,
978
                                    void *puc)
979
{
980
    TranslationBlock *tb;
981
    int ret;
982
    
983
    if (cpu_single_env)
984
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
985
#if defined(DEBUG_SIGNAL)
986
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
987
           pc, address, is_write, *(unsigned long *)old_set);
988
#endif
989
    /* XXX: locking issue */
990
    if (is_write && page_unprotect(address, pc, puc)) {
991
        return 1;
992
    }
993

    
994
    /* see if it is an MMU fault */
995
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
996
    if (ret < 0)
997
        return 0; /* not an MMU fault */
998
    if (ret == 0)
999
        return 1; /* the MMU fault was handled without causing real CPU fault */
1000

    
1001
    /* now we have a real cpu fault */
1002
    tb = tb_find_pc(pc);
1003
    if (tb) {
1004
        /* the PC is inside the translated code. It means that we have
1005
           a virtual CPU fault */
1006
        cpu_restore_state(tb, env, pc, puc);
1007
    }
1008
    if (ret == 1) {
1009
#if 0
1010
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1011
               env->nip, env->error_code, tb);
1012
#endif
1013
    /* we restore the process signal mask as the sigreturn should
1014
       do it (XXX: use sigsetjmp) */
1015
        sigprocmask(SIG_SETMASK, old_set, NULL);
1016
        do_raise_exception_err(env->exception_index, env->error_code);
1017
    } else {
1018
        /* activate soft MMU for this block */
1019
        cpu_resume_from_signal(env, puc);
1020
    }
1021
    /* never comes here */
1022
    return 1;
1023
}
1024

    
1025
#elif defined (TARGET_MIPS)
1026
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1027
                                    int is_write, sigset_t *old_set,
1028
                                    void *puc)
1029
{
1030
    TranslationBlock *tb;
1031
    int ret;
1032
    
1033
    if (cpu_single_env)
1034
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1035
#if defined(DEBUG_SIGNAL)
1036
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1037
           pc, address, is_write, *(unsigned long *)old_set);
1038
#endif
1039
    /* XXX: locking issue */
1040
    if (is_write && page_unprotect(address, pc, puc)) {
1041
        return 1;
1042
    }
1043

    
1044
    /* see if it is an MMU fault */
1045
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1046
    if (ret < 0)
1047
        return 0; /* not an MMU fault */
1048
    if (ret == 0)
1049
        return 1; /* the MMU fault was handled without causing real CPU fault */
1050

    
1051
    /* now we have a real cpu fault */
1052
    tb = tb_find_pc(pc);
1053
    if (tb) {
1054
        /* the PC is inside the translated code. It means that we have
1055
           a virtual CPU fault */
1056
        cpu_restore_state(tb, env, pc, puc);
1057
    }
1058
    if (ret == 1) {
1059
#if 0
1060
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1061
               env->nip, env->error_code, tb);
1062
#endif
1063
    /* we restore the process signal mask as the sigreturn should
1064
       do it (XXX: use sigsetjmp) */
1065
        sigprocmask(SIG_SETMASK, old_set, NULL);
1066
        do_raise_exception_err(env->exception_index, env->error_code);
1067
    } else {
1068
        /* activate soft MMU for this block */
1069
        cpu_resume_from_signal(env, puc);
1070
    }
1071
    /* never comes here */
1072
    return 1;
1073
}
1074

    
1075
#else
1076
#error unsupported target CPU
1077
#endif
1078

    
1079
#if defined(__i386__)
1080

    
1081
#if defined(USE_CODE_COPY)
1082
static void cpu_send_trap(unsigned long pc, int trap, 
1083
                          struct ucontext *uc)
1084
{
1085
    TranslationBlock *tb;
1086

    
1087
    if (cpu_single_env)
1088
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1089
    /* now we have a real cpu fault */
1090
    tb = tb_find_pc(pc);
1091
    if (tb) {
1092
        /* the PC is inside the translated code. It means that we have
1093
           a virtual CPU fault */
1094
        cpu_restore_state(tb, env, pc, uc);
1095
    }
1096
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1097
    raise_exception_err(trap, env->error_code);
1098
}
1099
#endif
1100

    
1101
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1102
                       void *puc)
1103
{
1104
    struct ucontext *uc = puc;
1105
    unsigned long pc;
1106
    int trapno;
1107

    
1108
#ifndef REG_EIP
1109
/* for glibc 2.1 */
1110
#define REG_EIP    EIP
1111
#define REG_ERR    ERR
1112
#define REG_TRAPNO TRAPNO
1113
#endif
1114
    pc = uc->uc_mcontext.gregs[REG_EIP];
1115
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1116
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1117
    if (trapno == 0x00 || trapno == 0x05) {
1118
        /* send division by zero or bound exception */
1119
        cpu_send_trap(pc, trapno, uc);
1120
        return 1;
1121
    } else
1122
#endif
1123
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1124
                                 trapno == 0xe ? 
1125
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1126
                                 &uc->uc_sigmask, puc);
1127
}
1128

    
1129
#elif defined(__x86_64__)
1130

    
1131
int cpu_signal_handler(int host_signum, struct siginfo *info,
1132
                       void *puc)
1133
{
1134
    struct ucontext *uc = puc;
1135
    unsigned long pc;
1136

    
1137
    pc = uc->uc_mcontext.gregs[REG_RIP];
1138
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1139
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1140
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1141
                             &uc->uc_sigmask, puc);
1142
}
1143

    
1144
#elif defined(__powerpc__)
1145

    
1146
/***********************************************************************
1147
 * signal context platform-specific definitions
1148
 * From Wine
1149
 */
1150
#ifdef linux
1151
/* All Registers access - only for local access */
1152
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1153
/* Gpr Registers access  */
1154
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1155
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1156
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1157
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1158
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1159
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1160
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1161
/* Float Registers access  */
1162
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1163
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1164
/* Exception Registers access */
1165
# define DAR_sig(context)                        REG_sig(dar, context)
1166
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1167
# define TRAP_sig(context)                        REG_sig(trap, context)
1168
#endif /* linux */
1169

    
1170
#ifdef __APPLE__
1171
# include <sys/ucontext.h>
1172
typedef struct ucontext SIGCONTEXT;
1173
/* All Registers access - only for local access */
1174
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1175
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1176
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1177
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1178
/* Gpr Registers access */
1179
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1180
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1181
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1182
# define CTR_sig(context)                        REG_sig(ctr, context)
1183
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1184
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1185
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1186
/* Float Registers access */
1187
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1188
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1189
/* Exception Registers access */
1190
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1191
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1192
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1193
#endif /* __APPLE__ */
1194

    
1195
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1196
                       void *puc)
1197
{
1198
    struct ucontext *uc = puc;
1199
    unsigned long pc;
1200
    int is_write;
1201

    
1202
    pc = IAR_sig(uc);
1203
    is_write = 0;
1204
#if 0
1205
    /* ppc 4xx case */
1206
    if (DSISR_sig(uc) & 0x00800000)
1207
        is_write = 1;
1208
#else
1209
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1210
        is_write = 1;
1211
#endif
1212
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1213
                             is_write, &uc->uc_sigmask, puc);
1214
}
1215

    
1216
#elif defined(__alpha__)
1217

    
1218
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1219
                           void *puc)
1220
{
1221
    struct ucontext *uc = puc;
1222
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1223
    uint32_t insn = *pc;
1224
    int is_write = 0;
1225

    
1226
    /* XXX: need kernel patch to get write flag faster */
1227
    switch (insn >> 26) {
1228
    case 0x0d: // stw
1229
    case 0x0e: // stb
1230
    case 0x0f: // stq_u
1231
    case 0x24: // stf
1232
    case 0x25: // stg
1233
    case 0x26: // sts
1234
    case 0x27: // stt
1235
    case 0x2c: // stl
1236
    case 0x2d: // stq
1237
    case 0x2e: // stl_c
1238
    case 0x2f: // stq_c
1239
        is_write = 1;
1240
    }
1241

    
1242
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1243
                             is_write, &uc->uc_sigmask, puc);
1244
}
1245
#elif defined(__sparc__)
1246

    
1247
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1248
                       void *puc)
1249
{
1250
    uint32_t *regs = (uint32_t *)(info + 1);
1251
    void *sigmask = (regs + 20);
1252
    unsigned long pc;
1253
    int is_write;
1254
    uint32_t insn;
1255
    
1256
    /* XXX: is there a standard glibc define ? */
1257
    pc = regs[1];
1258
    /* XXX: need kernel patch to get write flag faster */
1259
    is_write = 0;
1260
    insn = *(uint32_t *)pc;
1261
    if ((insn >> 30) == 3) {
1262
      switch((insn >> 19) & 0x3f) {
1263
      case 0x05: // stb
1264
      case 0x06: // sth
1265
      case 0x04: // st
1266
      case 0x07: // std
1267
      case 0x24: // stf
1268
      case 0x27: // stdf
1269
      case 0x25: // stfsr
1270
        is_write = 1;
1271
        break;
1272
      }
1273
    }
1274
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1275
                             is_write, sigmask, NULL);
1276
}
1277

    
1278
#elif defined(__arm__)
1279

    
1280
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1281
                       void *puc)
1282
{
1283
    struct ucontext *uc = puc;
1284
    unsigned long pc;
1285
    int is_write;
1286
    
1287
    pc = uc->uc_mcontext.gregs[R15];
1288
    /* XXX: compute is_write */
1289
    is_write = 0;
1290
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1291
                             is_write,
1292
                             &uc->uc_sigmask);
1293
}
1294

    
1295
#elif defined(__mc68000)
1296

    
1297
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1298
                       void *puc)
1299
{
1300
    struct ucontext *uc = puc;
1301
    unsigned long pc;
1302
    int is_write;
1303
    
1304
    pc = uc->uc_mcontext.gregs[16];
1305
    /* XXX: compute is_write */
1306
    is_write = 0;
1307
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1308
                             is_write,
1309
                             &uc->uc_sigmask, puc);
1310
}
1311

    
1312
#elif defined(__ia64)
1313

    
1314
#ifndef __ISR_VALID
1315
  /* This ought to be in <bits/siginfo.h>... */
1316
# define __ISR_VALID        1
1317
# define si_flags        _sifields._sigfault._si_pad0
1318
#endif
1319

    
1320
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1321
{
1322
    struct ucontext *uc = puc;
1323
    unsigned long ip;
1324
    int is_write = 0;
1325

    
1326
    ip = uc->uc_mcontext.sc_ip;
1327
    switch (host_signum) {
1328
      case SIGILL:
1329
      case SIGFPE:
1330
      case SIGSEGV:
1331
      case SIGBUS:
1332
      case SIGTRAP:
1333
          if (info->si_code && (info->si_flags & __ISR_VALID))
1334
              /* ISR.W (write-access) is bit 33:  */
1335
              is_write = (info->si_isr >> 33) & 1;
1336
          break;
1337

    
1338
      default:
1339
          break;
1340
    }
1341
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1342
                             is_write,
1343
                             &uc->uc_sigmask, puc);
1344
}
1345

    
1346
#elif defined(__s390__)
1347

    
1348
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1349
                       void *puc)
1350
{
1351
    struct ucontext *uc = puc;
1352
    unsigned long pc;
1353
    int is_write;
1354
    
1355
    pc = uc->uc_mcontext.psw.addr;
1356
    /* XXX: compute is_write */
1357
    is_write = 0;
1358
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1359
                             is_write,
1360
                             &uc->uc_sigmask, puc);
1361
}
1362

    
1363
#else
1364

    
1365
#error host CPU specific signal handler needed
1366

    
1367
#endif
1368

    
1369
#endif /* !defined(CONFIG_SOFTMMU) */