Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ e909ec2f

History | View | Annotate | Download (49.4 kB)

1
#include "exec.h"
2

    
3
//#define DEBUG_PCALL
4
//#define DEBUG_MMU
5
//#define DEBUG_MXCC
6
//#define DEBUG_UNALIGNED
7
//#define DEBUG_UNASSIGNED
8

    
9
#ifdef DEBUG_MMU
10
#define DPRINTF_MMU(fmt, args...) \
11
do { printf("MMU: " fmt , ##args); } while (0)
12
#else
13
#define DPRINTF_MMU(fmt, args...)
14
#endif
15

    
16
#ifdef DEBUG_MXCC
17
#define DPRINTF_MXCC(fmt, args...) \
18
do { printf("MXCC: " fmt , ##args); } while (0)
19
#else
20
#define DPRINTF_MXCC(fmt, args...)
21
#endif
22

    
23
void raise_exception(int tt)
24
{
25
    env->exception_index = tt;
26
    cpu_loop_exit();
27
}
28

    
29
void check_ieee_exceptions()
30
{
31
     T0 = get_float_exception_flags(&env->fp_status);
32
     if (T0)
33
     {
34
        /* Copy IEEE 754 flags into FSR */
35
        if (T0 & float_flag_invalid)
36
            env->fsr |= FSR_NVC;
37
        if (T0 & float_flag_overflow)
38
            env->fsr |= FSR_OFC;
39
        if (T0 & float_flag_underflow)
40
            env->fsr |= FSR_UFC;
41
        if (T0 & float_flag_divbyzero)
42
            env->fsr |= FSR_DZC;
43
        if (T0 & float_flag_inexact)
44
            env->fsr |= FSR_NXC;
45

    
46
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
47
        {
48
            /* Unmasked exception, generate a trap */
49
            env->fsr |= FSR_FTT_IEEE_EXCP;
50
            raise_exception(TT_FP_EXCP);
51
        }
52
        else
53
        {
54
            /* Accumulate exceptions */
55
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
56
        }
57
     }
58
}
59

    
60
#ifdef USE_INT_TO_FLOAT_HELPERS
61
void do_fitos(void)
62
{
63
    set_float_exception_flags(0, &env->fp_status);
64
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
65
    check_ieee_exceptions();
66
}
67

    
68
void do_fitod(void)
69
{
70
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
71
}
72
#endif
73

    
74
void do_fabss(void)
75
{
76
    FT0 = float32_abs(FT1);
77
}
78

    
79
#ifdef TARGET_SPARC64
80
void do_fabsd(void)
81
{
82
    DT0 = float64_abs(DT1);
83
}
84
#endif
85

    
86
void do_fsqrts(void)
87
{
88
    set_float_exception_flags(0, &env->fp_status);
89
    FT0 = float32_sqrt(FT1, &env->fp_status);
90
    check_ieee_exceptions();
91
}
92

    
93
void do_fsqrtd(void)
94
{
95
    set_float_exception_flags(0, &env->fp_status);
96
    DT0 = float64_sqrt(DT1, &env->fp_status);
97
    check_ieee_exceptions();
98
}
99

    
100
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
101
    void glue(do_, name) (void)                                         \
102
    {                                                                   \
103
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
104
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
105
        case float_relation_unordered:                                  \
106
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
107
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
108
                env->fsr |= T0;                                         \
109
                env->fsr |= FSR_NVC;                                    \
110
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
111
                raise_exception(TT_FP_EXCP);                            \
112
            } else {                                                    \
113
                env->fsr |= FSR_NVA;                                    \
114
            }                                                           \
115
            break;                                                      \
116
        case float_relation_less:                                       \
117
            T0 = FSR_FCC0 << FS;                                        \
118
            break;                                                      \
119
        case float_relation_greater:                                    \
120
            T0 = FSR_FCC1 << FS;                                        \
121
            break;                                                      \
122
        default:                                                        \
123
            T0 = 0;                                                     \
124
            break;                                                      \
125
        }                                                               \
126
        env->fsr |= T0;                                                 \
127
    }
128

    
129
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
130
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
131

    
132
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
133
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
134

    
135
#ifdef TARGET_SPARC64
136
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
137
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
138

    
139
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
140
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
141

    
142
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
143
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
144

    
145
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
146
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
147

    
148
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
149
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
150

    
151
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
152
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
153
#endif
154

    
155
#ifndef TARGET_SPARC64
156
#ifndef CONFIG_USER_ONLY
157

    
158
#ifdef DEBUG_MXCC
159
static void dump_mxcc(CPUState *env)
160
{
161
    printf("mxccdata: %016llx %016llx %016llx %016llx\n",
162
        env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
163
    printf("mxccregs: %016llx %016llx %016llx %016llx\n"
164
           "          %016llx %016llx %016llx %016llx\n",
165
        env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
166
        env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
167
}
168
#endif
169

    
170
void helper_ld_asi(int asi, int size, int sign)
171
{
172
    uint32_t ret = 0;
173
    uint64_t tmp;
174
#ifdef DEBUG_MXCC
175
    uint32_t last_T0 = T0;
176
#endif
177

    
178
    switch (asi) {
179
    case 2: /* SuperSparc MXCC registers */
180
        switch (T0) {
181
        case 0x01c00a00: /* MXCC control register */
182
            if (size == 8) {
183
                ret = env->mxccregs[3];
184
                T0 = env->mxccregs[3] >> 32;
185
            } else
186
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
187
            break;
188
        case 0x01c00a04: /* MXCC control register */
189
            if (size == 4)
190
                ret = env->mxccregs[3];
191
            else
192
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
193
            break;
194
        case 0x01c00f00: /* MBus port address register */
195
            if (size == 8) {
196
                ret = env->mxccregs[7];
197
                T0 = env->mxccregs[7] >> 32;
198
            } else
199
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
200
            break;
201
        default:
202
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
203
            break;
204
        }
205
        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, T0 = %08x -> ret = %08x,"
206
                     "T0 = %08x\n", asi, size, sign, last_T0, ret, T0);
207
#ifdef DEBUG_MXCC
208
        dump_mxcc(env);
209
#endif
210
        break;
211
    case 3: /* MMU probe */
212
        {
213
            int mmulev;
214

    
215
            mmulev = (T0 >> 8) & 15;
216
            if (mmulev > 4)
217
                ret = 0;
218
            else {
219
                ret = mmu_probe(env, T0, mmulev);
220
                //bswap32s(&ret);
221
            }
222
            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
223
        }
224
        break;
225
    case 4: /* read MMU regs */
226
        {
227
            int reg = (T0 >> 8) & 0xf;
228

    
229
            ret = env->mmuregs[reg];
230
            if (reg == 3) /* Fault status cleared on read */
231
                env->mmuregs[reg] = 0;
232
            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
233
        }
234
        break;
235
    case 9: /* Supervisor code access */
236
        switch(size) {
237
        case 1:
238
            ret = ldub_code(T0);
239
            break;
240
        case 2:
241
            ret = lduw_code(T0 & ~1);
242
            break;
243
        default:
244
        case 4:
245
            ret = ldl_code(T0 & ~3);
246
            break;
247
        case 8:
248
            tmp = ldq_code(T0 & ~7);
249
            ret = tmp >> 32;
250
            T0 = tmp & 0xffffffff;
251
            break;
252
        }
253
        break;
254
    case 0xa: /* User data access */
255
        switch(size) {
256
        case 1:
257
            ret = ldub_user(T0);
258
            break;
259
        case 2:
260
            ret = lduw_user(T0 & ~1);
261
            break;
262
        default:
263
        case 4:
264
            ret = ldl_user(T0 & ~3);
265
            break;
266
        case 8:
267
            tmp = ldq_user(T0 & ~7);
268
            ret = tmp >> 32;
269
            T0 = tmp & 0xffffffff;
270
            break;
271
        }
272
        break;
273
    case 0xb: /* Supervisor data access */
274
        switch(size) {
275
        case 1:
276
            ret = ldub_kernel(T0);
277
            break;
278
        case 2:
279
            ret = lduw_kernel(T0 & ~1);
280
            break;
281
        default:
282
        case 4:
283
            ret = ldl_kernel(T0 & ~3);
284
            break;
285
        case 8:
286
            tmp = ldq_kernel(T0 & ~7);
287
            ret = tmp >> 32;
288
            T0 = tmp & 0xffffffff;
289
            break;
290
        }
291
        break;
292
    case 0xc: /* I-cache tag */
293
    case 0xd: /* I-cache data */
294
    case 0xe: /* D-cache tag */
295
    case 0xf: /* D-cache data */
296
        break;
297
    case 0x20: /* MMU passthrough */
298
        switch(size) {
299
        case 1:
300
            ret = ldub_phys(T0);
301
            break;
302
        case 2:
303
            ret = lduw_phys(T0 & ~1);
304
            break;
305
        default:
306
        case 4:
307
            ret = ldl_phys(T0 & ~3);
308
            break;
309
        case 8:
310
            tmp = ldq_phys(T0 & ~7);
311
            ret = tmp >> 32;
312
            T0 = tmp & 0xffffffff;
313
            break;
314
        }
315
        break;
316
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
317
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
318
        switch(size) {
319
        case 1:
320
            ret = ldub_phys((target_phys_addr_t)T0
321
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
322
            break;
323
        case 2:
324
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
325
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
326
            break;
327
        default:
328
        case 4:
329
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
330
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
331
            break;
332
        case 8:
333
            tmp = ldq_phys((target_phys_addr_t)(T0 & ~7)
334
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
335
            ret = tmp >> 32;
336
            T0 = tmp & 0xffffffff;
337
            break;
338
        }
339
        break;
340
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
341
    default:
342
        do_unassigned_access(T0, 0, 0, 1);
343
        ret = 0;
344
        break;
345
    }
346
    if (sign) {
347
        switch(size) {
348
        case 1:
349
            T1 = (int8_t) ret;
350
            break;
351
        case 2:
352
            T1 = (int16_t) ret;
353
            break;
354
        default:
355
            T1 = ret;
356
            break;
357
        }
358
    }
359
    else
360
        T1 = ret;
361
}
362

    
363
void helper_st_asi(int asi, int size)
364
{
365
    switch(asi) {
366
    case 2: /* SuperSparc MXCC registers */
367
        switch (T0) {
368
        case 0x01c00000: /* MXCC stream data register 0 */
369
            if (size == 8)
370
                env->mxccdata[0] = ((uint64_t)T1 << 32) | T2;
371
            else
372
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
373
            break;
374
        case 0x01c00008: /* MXCC stream data register 1 */
375
            if (size == 8)
376
                env->mxccdata[1] = ((uint64_t)T1 << 32) | T2;
377
            else
378
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
379
            break;
380
        case 0x01c00010: /* MXCC stream data register 2 */
381
            if (size == 8)
382
                env->mxccdata[2] = ((uint64_t)T1 << 32) | T2;
383
            else
384
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
385
            break;
386
        case 0x01c00018: /* MXCC stream data register 3 */
387
            if (size == 8)
388
                env->mxccdata[3] = ((uint64_t)T1 << 32) | T2;
389
            else
390
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
391
            break;
392
        case 0x01c00100: /* MXCC stream source */
393
            if (size == 8)
394
                env->mxccregs[0] = ((uint64_t)T1 << 32) | T2;
395
            else
396
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
397
            env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  0);
398
            env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +  8);
399
            env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
400
            env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
401
            break;
402
        case 0x01c00200: /* MXCC stream destination */
403
            if (size == 8)
404
                env->mxccregs[1] = ((uint64_t)T1 << 32) | T2;
405
            else
406
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
407
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  0, env->mxccdata[0]);
408
            stq_phys((env->mxccregs[1] & 0xffffffffULL) +  8, env->mxccdata[1]);
409
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
410
            stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
411
            break;
412
        case 0x01c00a00: /* MXCC control register */
413
            if (size == 8)
414
                env->mxccregs[3] = ((uint64_t)T1 << 32) | T2;
415
            else
416
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
417
            break;
418
        case 0x01c00a04: /* MXCC control register */
419
            if (size == 4)
420
                env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000) | T1;
421
            else
422
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
423
            break;
424
        case 0x01c00e00: /* MXCC error register  */
425
            if (size == 8)
426
                env->mxccregs[6] = ((uint64_t)T1 << 32) | T2;
427
            else
428
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
429
            if (env->mxccregs[6] == 0xffffffffffffffffULL) {
430
                // this is probably a reset
431
            }
432
            break;
433
        case 0x01c00f00: /* MBus port address register */
434
            if (size == 8)
435
                env->mxccregs[7] = ((uint64_t)T1 << 32) | T2;
436
            else
437
                DPRINTF_MXCC("%08x: unimplemented access size: %d\n", T0, size);
438
            break;
439
        default:
440
            DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", T0, size);
441
            break;
442
        }
443
        DPRINTF_MXCC("asi = %d, size = %d, T0 = %08x, T1 = %08x\n", asi, size, T0, T1);
444
#ifdef DEBUG_MXCC
445
        dump_mxcc(env);
446
#endif
447
        break;
448
    case 3: /* MMU flush */
449
        {
450
            int mmulev;
451

    
452
            mmulev = (T0 >> 8) & 15;
453
            DPRINTF_MMU("mmu flush level %d\n", mmulev);
454
            switch (mmulev) {
455
            case 0: // flush page
456
                tlb_flush_page(env, T0 & 0xfffff000);
457
                break;
458
            case 1: // flush segment (256k)
459
            case 2: // flush region (16M)
460
            case 3: // flush context (4G)
461
            case 4: // flush entire
462
                tlb_flush(env, 1);
463
                break;
464
            default:
465
                break;
466
            }
467
#ifdef DEBUG_MMU
468
            dump_mmu(env);
469
#endif
470
            return;
471
        }
472
    case 4: /* write MMU regs */
473
        {
474
            int reg = (T0 >> 8) & 0xf;
475
            uint32_t oldreg;
476

    
477
            oldreg = env->mmuregs[reg];
478
            switch(reg) {
479
            case 0:
480
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
481
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
482
                // Mappings generated during no-fault mode or MMU
483
                // disabled mode are invalid in normal mode
484
                if (oldreg != env->mmuregs[reg])
485
                    tlb_flush(env, 1);
486
                break;
487
            case 2:
488
                env->mmuregs[reg] = T1;
489
                if (oldreg != env->mmuregs[reg]) {
490
                    /* we flush when the MMU context changes because
491
                       QEMU has no MMU context support */
492
                    tlb_flush(env, 1);
493
                }
494
                break;
495
            case 3:
496
            case 4:
497
                break;
498
            default:
499
                env->mmuregs[reg] = T1;
500
                break;
501
            }
502
            if (oldreg != env->mmuregs[reg]) {
503
                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
504
            }
505
#ifdef DEBUG_MMU
506
            dump_mmu(env);
507
#endif
508
            return;
509
        }
510
    case 0xa: /* User data access */
511
        switch(size) {
512
        case 1:
513
            stb_user(T0, T1);
514
            break;
515
        case 2:
516
            stw_user(T0 & ~1, T1);
517
            break;
518
        default:
519
        case 4:
520
            stl_user(T0 & ~3, T1);
521
            break;
522
        case 8:
523
            stq_user(T0 & ~7, ((uint64_t)T1 << 32) | T2);
524
            break;
525
        }
526
        break;
527
    case 0xb: /* Supervisor data access */
528
        switch(size) {
529
        case 1:
530
            stb_kernel(T0, T1);
531
            break;
532
        case 2:
533
            stw_kernel(T0 & ~1, T1);
534
            break;
535
        default:
536
        case 4:
537
            stl_kernel(T0 & ~3, T1);
538
            break;
539
        case 8:
540
            stq_kernel(T0 & ~7, ((uint64_t)T1 << 32) | T2);
541
            break;
542
        }
543
        break;
544
    case 0xc: /* I-cache tag */
545
    case 0xd: /* I-cache data */
546
    case 0xe: /* D-cache tag */
547
    case 0xf: /* D-cache data */
548
    case 0x10: /* I/D-cache flush page */
549
    case 0x11: /* I/D-cache flush segment */
550
    case 0x12: /* I/D-cache flush region */
551
    case 0x13: /* I/D-cache flush context */
552
    case 0x14: /* I/D-cache flush user */
553
        break;
554
    case 0x17: /* Block copy, sta access */
555
        {
556
            // value (T1) = src
557
            // address (T0) = dst
558
            // copy 32 bytes
559
            unsigned int i;
560
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
561

    
562
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
563
                temp = ldl_kernel(src);
564
                stl_kernel(dst, temp);
565
            }
566
        }
567
        return;
568
    case 0x1f: /* Block fill, stda access */
569
        {
570
            // value (T1, T2)
571
            // address (T0) = dst
572
            // fill 32 bytes
573
            unsigned int i;
574
            uint32_t dst = T0 & 7;
575
            uint64_t val;
576

    
577
            val = (((uint64_t)T1) << 32) | T2;
578

    
579
            for (i = 0; i < 32; i += 8, dst += 8)
580
                stq_kernel(dst, val);
581
        }
582
        return;
583
    case 0x20: /* MMU passthrough */
584
        {
585
            switch(size) {
586
            case 1:
587
                stb_phys(T0, T1);
588
                break;
589
            case 2:
590
                stw_phys(T0 & ~1, T1);
591
                break;
592
            case 4:
593
            default:
594
                stl_phys(T0 & ~3, T1);
595
                break;
596
            case 8:
597
                stq_phys(T0 & ~7, ((uint64_t)T1 << 32) | T2);
598
                break;
599
            }
600
        }
601
        return;
602
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
603
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
604
        {
605
            switch(size) {
606
            case 1:
607
                stb_phys((target_phys_addr_t)T0
608
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
609
                break;
610
            case 2:
611
                stw_phys((target_phys_addr_t)(T0 & ~1)
612
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
613
                break;
614
            case 4:
615
            default:
616
                stl_phys((target_phys_addr_t)(T0 & ~3)
617
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
618
                break;
619
            case 8:
620
                stq_phys((target_phys_addr_t)(T0 & ~7)
621
                           | ((target_phys_addr_t)(asi & 0xf) << 32),
622
                         ((uint64_t)T1 << 32) | T2);
623
                break;
624
            }
625
        }
626
        return;
627
    case 0x31: /* Ross RT620 I-cache flush */
628
    case 0x36: /* I-cache flash clear */
629
    case 0x37: /* D-cache flash clear */
630
        break;
631
    case 9: /* Supervisor code access, XXX */
632
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
633
    default:
634
        do_unassigned_access(T0, 1, 0, 1);
635
        return;
636
    }
637
}
638

    
639
#endif /* CONFIG_USER_ONLY */
640
#else /* TARGET_SPARC64 */
641

    
642
#ifdef CONFIG_USER_ONLY
643
void helper_ld_asi(int asi, int size, int sign)
644
{
645
    uint64_t ret = 0;
646

    
647
    if (asi < 0x80)
648
        raise_exception(TT_PRIV_ACT);
649

    
650
    switch (asi) {
651
    case 0x80: // Primary
652
    case 0x82: // Primary no-fault
653
    case 0x88: // Primary LE
654
    case 0x8a: // Primary no-fault LE
655
        {
656
            switch(size) {
657
            case 1:
658
                ret = ldub_raw(T0);
659
                break;
660
            case 2:
661
                ret = lduw_raw(T0 & ~1);
662
                break;
663
            case 4:
664
                ret = ldl_raw(T0 & ~3);
665
                break;
666
            default:
667
            case 8:
668
                ret = ldq_raw(T0 & ~7);
669
                break;
670
            }
671
        }
672
        break;
673
    case 0x81: // Secondary
674
    case 0x83: // Secondary no-fault
675
    case 0x89: // Secondary LE
676
    case 0x8b: // Secondary no-fault LE
677
        // XXX
678
        break;
679
    default:
680
        break;
681
    }
682

    
683
    /* Convert from little endian */
684
    switch (asi) {
685
    case 0x88: // Primary LE
686
    case 0x89: // Secondary LE
687
    case 0x8a: // Primary no-fault LE
688
    case 0x8b: // Secondary no-fault LE
689
        switch(size) {
690
        case 2:
691
            ret = bswap16(ret);
692
            break;
693
        case 4:
694
            ret = bswap32(ret);
695
            break;
696
        case 8:
697
            ret = bswap64(ret);
698
            break;
699
        default:
700
            break;
701
        }
702
    default:
703
        break;
704
    }
705

    
706
    /* Convert to signed number */
707
    if (sign) {
708
        switch(size) {
709
        case 1:
710
            ret = (int8_t) ret;
711
            break;
712
        case 2:
713
            ret = (int16_t) ret;
714
            break;
715
        case 4:
716
            ret = (int32_t) ret;
717
            break;
718
        default:
719
            break;
720
        }
721
    }
722
    T1 = ret;
723
}
724

    
725
void helper_st_asi(int asi, int size)
726
{
727
    if (asi < 0x80)
728
        raise_exception(TT_PRIV_ACT);
729

    
730
    /* Convert to little endian */
731
    switch (asi) {
732
    case 0x88: // Primary LE
733
    case 0x89: // Secondary LE
734
        switch(size) {
735
        case 2:
736
            T0 = bswap16(T0);
737
            break;
738
        case 4:
739
            T0 = bswap32(T0);
740
            break;
741
        case 8:
742
            T0 = bswap64(T0);
743
            break;
744
        default:
745
            break;
746
        }
747
    default:
748
        break;
749
    }
750

    
751
    switch(asi) {
752
    case 0x80: // Primary
753
    case 0x88: // Primary LE
754
        {
755
            switch(size) {
756
            case 1:
757
                stb_raw(T0, T1);
758
                break;
759
            case 2:
760
                stw_raw(T0 & ~1, T1);
761
                break;
762
            case 4:
763
                stl_raw(T0 & ~3, T1);
764
                break;
765
            case 8:
766
            default:
767
                stq_raw(T0 & ~7, T1);
768
                break;
769
            }
770
        }
771
        break;
772
    case 0x81: // Secondary
773
    case 0x89: // Secondary LE
774
        // XXX
775
        return;
776

    
777
    case 0x82: // Primary no-fault, RO
778
    case 0x83: // Secondary no-fault, RO
779
    case 0x8a: // Primary no-fault LE, RO
780
    case 0x8b: // Secondary no-fault LE, RO
781
    default:
782
        do_unassigned_access(T0, 1, 0, 1);
783
        return;
784
    }
785
}
786

    
787
#else /* CONFIG_USER_ONLY */
788

    
789
void helper_ld_asi(int asi, int size, int sign)
790
{
791
    uint64_t ret = 0;
792

    
793
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
794
        || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
795
        raise_exception(TT_PRIV_ACT);
796

    
797
    switch (asi) {
798
    case 0x10: // As if user primary
799
    case 0x18: // As if user primary LE
800
    case 0x80: // Primary
801
    case 0x82: // Primary no-fault
802
    case 0x88: // Primary LE
803
    case 0x8a: // Primary no-fault LE
804
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
805
            if (env->hpstate & HS_PRIV) {
806
                switch(size) {
807
                case 1:
808
                    ret = ldub_hypv(T0);
809
                    break;
810
                case 2:
811
                    ret = lduw_hypv(T0 & ~1);
812
                    break;
813
                case 4:
814
                    ret = ldl_hypv(T0 & ~3);
815
                    break;
816
                default:
817
                case 8:
818
                    ret = ldq_hypv(T0 & ~7);
819
                    break;
820
                }
821
            } else {
822
                switch(size) {
823
                case 1:
824
                    ret = ldub_kernel(T0);
825
                    break;
826
                case 2:
827
                    ret = lduw_kernel(T0 & ~1);
828
                    break;
829
                case 4:
830
                    ret = ldl_kernel(T0 & ~3);
831
                    break;
832
                default:
833
                case 8:
834
                    ret = ldq_kernel(T0 & ~7);
835
                    break;
836
                }
837
            }
838
        } else {
839
            switch(size) {
840
            case 1:
841
                ret = ldub_user(T0);
842
                break;
843
            case 2:
844
                ret = lduw_user(T0 & ~1);
845
                break;
846
            case 4:
847
                ret = ldl_user(T0 & ~3);
848
                break;
849
            default:
850
            case 8:
851
                ret = ldq_user(T0 & ~7);
852
                break;
853
            }
854
        }
855
        break;
856
    case 0x14: // Bypass
857
    case 0x15: // Bypass, non-cacheable
858
    case 0x1c: // Bypass LE
859
    case 0x1d: // Bypass, non-cacheable LE
860
        {
861
            switch(size) {
862
            case 1:
863
                ret = ldub_phys(T0);
864
                break;
865
            case 2:
866
                ret = lduw_phys(T0 & ~1);
867
                break;
868
            case 4:
869
                ret = ldl_phys(T0 & ~3);
870
                break;
871
            default:
872
            case 8:
873
                ret = ldq_phys(T0 & ~7);
874
                break;
875
            }
876
            break;
877
        }
878
    case 0x04: // Nucleus
879
    case 0x0c: // Nucleus Little Endian (LE)
880
    case 0x11: // As if user secondary
881
    case 0x19: // As if user secondary LE
882
    case 0x24: // Nucleus quad LDD 128 bit atomic
883
    case 0x2c: // Nucleus quad LDD 128 bit atomic
884
    case 0x4a: // UPA config
885
    case 0x81: // Secondary
886
    case 0x83: // Secondary no-fault
887
    case 0x89: // Secondary LE
888
    case 0x8b: // Secondary no-fault LE
889
        // XXX
890
        break;
891
    case 0x45: // LSU
892
        ret = env->lsu;
893
        break;
894
    case 0x50: // I-MMU regs
895
        {
896
            int reg = (T0 >> 3) & 0xf;
897

    
898
            ret = env->immuregs[reg];
899
            break;
900
        }
901
    case 0x51: // I-MMU 8k TSB pointer
902
    case 0x52: // I-MMU 64k TSB pointer
903
    case 0x55: // I-MMU data access
904
        // XXX
905
        break;
906
    case 0x56: // I-MMU tag read
907
        {
908
            unsigned int i;
909

    
910
            for (i = 0; i < 64; i++) {
911
                // Valid, ctx match, vaddr match
912
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
913
                    env->itlb_tag[i] == T0) {
914
                    ret = env->itlb_tag[i];
915
                    break;
916
                }
917
            }
918
            break;
919
        }
920
    case 0x58: // D-MMU regs
921
        {
922
            int reg = (T0 >> 3) & 0xf;
923

    
924
            ret = env->dmmuregs[reg];
925
            break;
926
        }
927
    case 0x5e: // D-MMU tag read
928
        {
929
            unsigned int i;
930

    
931
            for (i = 0; i < 64; i++) {
932
                // Valid, ctx match, vaddr match
933
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
934
                    env->dtlb_tag[i] == T0) {
935
                    ret = env->dtlb_tag[i];
936
                    break;
937
                }
938
            }
939
            break;
940
        }
941
    case 0x59: // D-MMU 8k TSB pointer
942
    case 0x5a: // D-MMU 64k TSB pointer
943
    case 0x5b: // D-MMU data pointer
944
    case 0x5d: // D-MMU data access
945
    case 0x48: // Interrupt dispatch, RO
946
    case 0x49: // Interrupt data receive
947
    case 0x7f: // Incoming interrupt vector, RO
948
        // XXX
949
        break;
950
    case 0x54: // I-MMU data in, WO
951
    case 0x57: // I-MMU demap, WO
952
    case 0x5c: // D-MMU data in, WO
953
    case 0x5f: // D-MMU demap, WO
954
    case 0x77: // Interrupt vector, WO
955
    default:
956
        do_unassigned_access(T0, 0, 0, 1);
957
        ret = 0;
958
        break;
959
    }
960

    
961
    /* Convert from little endian */
962
    switch (asi) {
963
    case 0x0c: // Nucleus Little Endian (LE)
964
    case 0x18: // As if user primary LE
965
    case 0x19: // As if user secondary LE
966
    case 0x1c: // Bypass LE
967
    case 0x1d: // Bypass, non-cacheable LE
968
    case 0x88: // Primary LE
969
    case 0x89: // Secondary LE
970
    case 0x8a: // Primary no-fault LE
971
    case 0x8b: // Secondary no-fault LE
972
        switch(size) {
973
        case 2:
974
            ret = bswap16(ret);
975
            break;
976
        case 4:
977
            ret = bswap32(ret);
978
            break;
979
        case 8:
980
            ret = bswap64(ret);
981
            break;
982
        default:
983
            break;
984
        }
985
    default:
986
        break;
987
    }
988

    
989
    /* Convert to signed number */
990
    if (sign) {
991
        switch(size) {
992
        case 1:
993
            ret = (int8_t) ret;
994
            break;
995
        case 2:
996
            ret = (int16_t) ret;
997
            break;
998
        case 4:
999
            ret = (int32_t) ret;
1000
            break;
1001
        default:
1002
            break;
1003
        }
1004
    }
1005
    T1 = ret;
1006
}
1007

    
1008
void helper_st_asi(int asi, int size)
1009
{
1010
    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
1011
        || (asi >= 0x30 && asi < 0x80) && !(env->hpstate & HS_PRIV))
1012
        raise_exception(TT_PRIV_ACT);
1013

    
1014
    /* Convert to little endian */
1015
    switch (asi) {
1016
    case 0x0c: // Nucleus Little Endian (LE)
1017
    case 0x18: // As if user primary LE
1018
    case 0x19: // As if user secondary LE
1019
    case 0x1c: // Bypass LE
1020
    case 0x1d: // Bypass, non-cacheable LE
1021
    case 0x88: // Primary LE
1022
    case 0x89: // Secondary LE
1023
        switch(size) {
1024
        case 2:
1025
            T0 = bswap16(T0);
1026
            break;
1027
        case 4:
1028
            T0 = bswap32(T0);
1029
            break;
1030
        case 8:
1031
            T0 = bswap64(T0);
1032
            break;
1033
        default:
1034
            break;
1035
        }
1036
    default:
1037
        break;
1038
    }
1039

    
1040
    switch(asi) {
1041
    case 0x10: // As if user primary
1042
    case 0x18: // As if user primary LE
1043
    case 0x80: // Primary
1044
    case 0x88: // Primary LE
1045
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
1046
            if (env->hpstate & HS_PRIV) {
1047
                switch(size) {
1048
                case 1:
1049
                    stb_hypv(T0, T1);
1050
                    break;
1051
                case 2:
1052
                    stw_hypv(T0 & ~1, T1);
1053
                    break;
1054
                case 4:
1055
                    stl_hypv(T0 & ~3, T1);
1056
                    break;
1057
                case 8:
1058
                default:
1059
                    stq_hypv(T0 & ~7, T1);
1060
                    break;
1061
                }
1062
            } else {
1063
                switch(size) {
1064
                case 1:
1065
                    stb_kernel(T0, T1);
1066
                    break;
1067
                case 2:
1068
                    stw_kernel(T0 & ~1, T1);
1069
                    break;
1070
                case 4:
1071
                    stl_kernel(T0 & ~3, T1);
1072
                    break;
1073
                case 8:
1074
                default:
1075
                    stq_kernel(T0 & ~7, T1);
1076
                    break;
1077
                }
1078
            }
1079
        } else {
1080
            switch(size) {
1081
            case 1:
1082
                stb_user(T0, T1);
1083
                break;
1084
            case 2:
1085
                stw_user(T0 & ~1, T1);
1086
                break;
1087
            case 4:
1088
                stl_user(T0 & ~3, T1);
1089
                break;
1090
            case 8:
1091
            default:
1092
                stq_user(T0 & ~7, T1);
1093
                break;
1094
            }
1095
        }
1096
        break;
1097
    case 0x14: // Bypass
1098
    case 0x15: // Bypass, non-cacheable
1099
    case 0x1c: // Bypass LE
1100
    case 0x1d: // Bypass, non-cacheable LE
1101
        {
1102
            switch(size) {
1103
            case 1:
1104
                stb_phys(T0, T1);
1105
                break;
1106
            case 2:
1107
                stw_phys(T0 & ~1, T1);
1108
                break;
1109
            case 4:
1110
                stl_phys(T0 & ~3, T1);
1111
                break;
1112
            case 8:
1113
            default:
1114
                stq_phys(T0 & ~7, T1);
1115
                break;
1116
            }
1117
        }
1118
        return;
1119
    case 0x04: // Nucleus
1120
    case 0x0c: // Nucleus Little Endian (LE)
1121
    case 0x11: // As if user secondary
1122
    case 0x19: // As if user secondary LE
1123
    case 0x24: // Nucleus quad LDD 128 bit atomic
1124
    case 0x2c: // Nucleus quad LDD 128 bit atomic
1125
    case 0x4a: // UPA config
1126
    case 0x81: // Secondary
1127
    case 0x89: // Secondary LE
1128
        // XXX
1129
        return;
1130
    case 0x45: // LSU
1131
        {
1132
            uint64_t oldreg;
1133

    
1134
            oldreg = env->lsu;
1135
            env->lsu = T1 & (DMMU_E | IMMU_E);
1136
            // Mappings generated during D/I MMU disabled mode are
1137
            // invalid in normal mode
1138
            if (oldreg != env->lsu) {
1139
                DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
1140
#ifdef DEBUG_MMU
1141
                dump_mmu(env);
1142
#endif
1143
                tlb_flush(env, 1);
1144
            }
1145
            return;
1146
        }
1147
    case 0x50: // I-MMU regs
1148
        {
1149
            int reg = (T0 >> 3) & 0xf;
1150
            uint64_t oldreg;
1151

    
1152
            oldreg = env->immuregs[reg];
1153
            switch(reg) {
1154
            case 0: // RO
1155
            case 4:
1156
                return;
1157
            case 1: // Not in I-MMU
1158
            case 2:
1159
            case 7:
1160
            case 8:
1161
                return;
1162
            case 3: // SFSR
1163
                if ((T1 & 1) == 0)
1164
                    T1 = 0; // Clear SFSR
1165
                break;
1166
            case 5: // TSB access
1167
            case 6: // Tag access
1168
            default:
1169
                break;
1170
            }
1171
            env->immuregs[reg] = T1;
1172
            if (oldreg != env->immuregs[reg]) {
1173
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1174
            }
1175
#ifdef DEBUG_MMU
1176
            dump_mmu(env);
1177
#endif
1178
            return;
1179
        }
1180
    case 0x54: // I-MMU data in
1181
        {
1182
            unsigned int i;
1183

    
1184
            // Try finding an invalid entry
1185
            for (i = 0; i < 64; i++) {
1186
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1187
                    env->itlb_tag[i] = env->immuregs[6];
1188
                    env->itlb_tte[i] = T1;
1189
                    return;
1190
                }
1191
            }
1192
            // Try finding an unlocked entry
1193
            for (i = 0; i < 64; i++) {
1194
                if ((env->itlb_tte[i] & 0x40) == 0) {
1195
                    env->itlb_tag[i] = env->immuregs[6];
1196
                    env->itlb_tte[i] = T1;
1197
                    return;
1198
                }
1199
            }
1200
            // error state?
1201
            return;
1202
        }
1203
    case 0x55: // I-MMU data access
1204
        {
1205
            unsigned int i = (T0 >> 3) & 0x3f;
1206

    
1207
            env->itlb_tag[i] = env->immuregs[6];
1208
            env->itlb_tte[i] = T1;
1209
            return;
1210
        }
1211
    case 0x57: // I-MMU demap
1212
        // XXX
1213
        return;
1214
    case 0x58: // D-MMU regs
1215
        {
1216
            int reg = (T0 >> 3) & 0xf;
1217
            uint64_t oldreg;
1218

    
1219
            oldreg = env->dmmuregs[reg];
1220
            switch(reg) {
1221
            case 0: // RO
1222
            case 4:
1223
                return;
1224
            case 3: // SFSR
1225
                if ((T1 & 1) == 0) {
1226
                    T1 = 0; // Clear SFSR, Fault address
1227
                    env->dmmuregs[4] = 0;
1228
                }
1229
                env->dmmuregs[reg] = T1;
1230
                break;
1231
            case 1: // Primary context
1232
            case 2: // Secondary context
1233
            case 5: // TSB access
1234
            case 6: // Tag access
1235
            case 7: // Virtual Watchpoint
1236
            case 8: // Physical Watchpoint
1237
            default:
1238
                break;
1239
            }
1240
            env->dmmuregs[reg] = T1;
1241
            if (oldreg != env->dmmuregs[reg]) {
1242
                DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1243
            }
1244
#ifdef DEBUG_MMU
1245
            dump_mmu(env);
1246
#endif
1247
            return;
1248
        }
1249
    case 0x5c: // D-MMU data in
1250
        {
1251
            unsigned int i;
1252

    
1253
            // Try finding an invalid entry
1254
            for (i = 0; i < 64; i++) {
1255
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1256
                    env->dtlb_tag[i] = env->dmmuregs[6];
1257
                    env->dtlb_tte[i] = T1;
1258
                    return;
1259
                }
1260
            }
1261
            // Try finding an unlocked entry
1262
            for (i = 0; i < 64; i++) {
1263
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1264
                    env->dtlb_tag[i] = env->dmmuregs[6];
1265
                    env->dtlb_tte[i] = T1;
1266
                    return;
1267
                }
1268
            }
1269
            // error state?
1270
            return;
1271
        }
1272
    case 0x5d: // D-MMU data access
1273
        {
1274
            unsigned int i = (T0 >> 3) & 0x3f;
1275

    
1276
            env->dtlb_tag[i] = env->dmmuregs[6];
1277
            env->dtlb_tte[i] = T1;
1278
            return;
1279
        }
1280
    case 0x5f: // D-MMU demap
1281
    case 0x49: // Interrupt data receive
1282
        // XXX
1283
        return;
1284
    case 0x51: // I-MMU 8k TSB pointer, RO
1285
    case 0x52: // I-MMU 64k TSB pointer, RO
1286
    case 0x56: // I-MMU tag read, RO
1287
    case 0x59: // D-MMU 8k TSB pointer, RO
1288
    case 0x5a: // D-MMU 64k TSB pointer, RO
1289
    case 0x5b: // D-MMU data pointer, RO
1290
    case 0x5e: // D-MMU tag read, RO
1291
    case 0x48: // Interrupt dispatch, RO
1292
    case 0x7f: // Incoming interrupt vector, RO
1293
    case 0x82: // Primary no-fault, RO
1294
    case 0x83: // Secondary no-fault, RO
1295
    case 0x8a: // Primary no-fault LE, RO
1296
    case 0x8b: // Secondary no-fault LE, RO
1297
    default:
1298
        do_unassigned_access(T0, 1, 0, 1);
1299
        return;
1300
    }
1301
}
1302
#endif /* CONFIG_USER_ONLY */
1303

    
1304
void helper_ldf_asi(int asi, int size, int rd)
1305
{
1306
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1307
    unsigned int i;
1308

    
1309
    switch (asi) {
1310
    case 0xf0: // Block load primary
1311
    case 0xf1: // Block load secondary
1312
    case 0xf8: // Block load primary LE
1313
    case 0xf9: // Block load secondary LE
1314
        if (rd & 7) {
1315
            raise_exception(TT_ILL_INSN);
1316
            return;
1317
        }
1318
        if (T0 & 0x3f) {
1319
            raise_exception(TT_UNALIGNED);
1320
            return;
1321
        }
1322
        for (i = 0; i < 16; i++) {
1323
            helper_ld_asi(asi & 0x8f, 4, 0);
1324
            *(uint32_t *)&env->fpr[rd++] = T1;
1325
            T0 += 4;
1326
        }
1327
        T0 = tmp_T0;
1328
        T1 = tmp_T1;
1329

    
1330
        return;
1331
    default:
1332
        break;
1333
    }
1334

    
1335
    helper_ld_asi(asi, size, 0);
1336
    switch(size) {
1337
    default:
1338
    case 4:
1339
        *((uint32_t *)&FT0) = T1;
1340
        break;
1341
    case 8:
1342
        *((int64_t *)&DT0) = T1;
1343
        break;
1344
    }
1345
    T1 = tmp_T1;
1346
}
1347

    
1348
void helper_stf_asi(int asi, int size, int rd)
1349
{
1350
    target_ulong tmp_T0 = T0, tmp_T1 = T1;
1351
    unsigned int i;
1352

    
1353
    switch (asi) {
1354
    case 0xf0: // Block store primary
1355
    case 0xf1: // Block store secondary
1356
    case 0xf8: // Block store primary LE
1357
    case 0xf9: // Block store secondary LE
1358
        if (rd & 7) {
1359
            raise_exception(TT_ILL_INSN);
1360
            return;
1361
        }
1362
        if (T0 & 0x3f) {
1363
            raise_exception(TT_UNALIGNED);
1364
            return;
1365
        }
1366
        for (i = 0; i < 16; i++) {
1367
            T1 = *(uint32_t *)&env->fpr[rd++];
1368
            helper_st_asi(asi & 0x8f, 4);
1369
            T0 += 4;
1370
        }
1371
        T0 = tmp_T0;
1372
        T1 = tmp_T1;
1373

    
1374
        return;
1375
    default:
1376
        break;
1377
    }
1378

    
1379
    switch(size) {
1380
    default:
1381
    case 4:
1382
        T1 = *((uint32_t *)&FT0);
1383
        break;
1384
    case 8:
1385
        T1 = *((int64_t *)&DT0);
1386
        break;
1387
    }
1388
    helper_st_asi(asi, size);
1389
    T1 = tmp_T1;
1390
}
1391

    
1392
#endif /* TARGET_SPARC64 */
1393

    
1394
#ifndef TARGET_SPARC64
1395
void helper_rett()
1396
{
1397
    unsigned int cwp;
1398

    
1399
    if (env->psret == 1)
1400
        raise_exception(TT_ILL_INSN);
1401

    
1402
    env->psret = 1;
1403
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1404
    if (env->wim & (1 << cwp)) {
1405
        raise_exception(TT_WIN_UNF);
1406
    }
1407
    set_cwp(cwp);
1408
    env->psrs = env->psrps;
1409
}
1410
#endif
1411

    
1412
void helper_ldfsr(void)
1413
{
1414
    int rnd_mode;
1415
    switch (env->fsr & FSR_RD_MASK) {
1416
    case FSR_RD_NEAREST:
1417
        rnd_mode = float_round_nearest_even;
1418
        break;
1419
    default:
1420
    case FSR_RD_ZERO:
1421
        rnd_mode = float_round_to_zero;
1422
        break;
1423
    case FSR_RD_POS:
1424
        rnd_mode = float_round_up;
1425
        break;
1426
    case FSR_RD_NEG:
1427
        rnd_mode = float_round_down;
1428
        break;
1429
    }
1430
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1431
}
1432

    
1433
void helper_debug()
1434
{
1435
    env->exception_index = EXCP_DEBUG;
1436
    cpu_loop_exit();
1437
}
1438

    
1439
#ifndef TARGET_SPARC64
1440
void do_wrpsr()
1441
{
1442
    if ((T0 & PSR_CWP) >= NWINDOWS)
1443
        raise_exception(TT_ILL_INSN);
1444
    else
1445
        PUT_PSR(env, T0);
1446
}
1447

    
1448
void do_rdpsr()
1449
{
1450
    T0 = GET_PSR(env);
1451
}
1452

    
1453
#else
1454

    
1455
void do_popc()
1456
{
1457
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
1458
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
1459
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
1460
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
1461
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
1462
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
1463
}
1464

    
1465
static inline uint64_t *get_gregset(uint64_t pstate)
1466
{
1467
    switch (pstate) {
1468
    default:
1469
    case 0:
1470
        return env->bgregs;
1471
    case PS_AG:
1472
        return env->agregs;
1473
    case PS_MG:
1474
        return env->mgregs;
1475
    case PS_IG:
1476
        return env->igregs;
1477
    }
1478
}
1479

    
1480
static inline void change_pstate(uint64_t new_pstate)
1481
{
1482
    uint64_t pstate_regs, new_pstate_regs;
1483
    uint64_t *src, *dst;
1484

    
1485
    pstate_regs = env->pstate & 0xc01;
1486
    new_pstate_regs = new_pstate & 0xc01;
1487
    if (new_pstate_regs != pstate_regs) {
1488
        // Switch global register bank
1489
        src = get_gregset(new_pstate_regs);
1490
        dst = get_gregset(pstate_regs);
1491
        memcpy32(dst, env->gregs);
1492
        memcpy32(env->gregs, src);
1493
    }
1494
    env->pstate = new_pstate;
1495
}
1496

    
1497
void do_wrpstate(void)
1498
{
1499
    change_pstate(T0 & 0xf3f);
1500
}
1501

    
1502
void do_done(void)
1503
{
1504
    env->tl--;
1505
    env->pc = env->tnpc[env->tl];
1506
    env->npc = env->tnpc[env->tl] + 4;
1507
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1508
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1509
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1510
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1511
}
1512

    
1513
void do_retry(void)
1514
{
1515
    env->tl--;
1516
    env->pc = env->tpc[env->tl];
1517
    env->npc = env->tnpc[env->tl];
1518
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1519
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1520
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1521
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1522
}
1523
#endif
1524

    
1525
void set_cwp(int new_cwp)
1526
{
1527
    /* put the modified wrap registers at their proper location */
1528
    if (env->cwp == (NWINDOWS - 1))
1529
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1530
    env->cwp = new_cwp;
1531
    /* put the wrap registers at their temporary location */
1532
    if (new_cwp == (NWINDOWS - 1))
1533
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1534
    env->regwptr = env->regbase + (new_cwp * 16);
1535
    REGWPTR = env->regwptr;
1536
}
1537

    
1538
void cpu_set_cwp(CPUState *env1, int new_cwp)
1539
{
1540
    CPUState *saved_env;
1541
#ifdef reg_REGWPTR
1542
    target_ulong *saved_regwptr;
1543
#endif
1544

    
1545
    saved_env = env;
1546
#ifdef reg_REGWPTR
1547
    saved_regwptr = REGWPTR;
1548
#endif
1549
    env = env1;
1550
    set_cwp(new_cwp);
1551
    env = saved_env;
1552
#ifdef reg_REGWPTR
1553
    REGWPTR = saved_regwptr;
1554
#endif
1555
}
1556

    
1557
#ifdef TARGET_SPARC64
1558
void do_interrupt(int intno)
1559
{
1560
#ifdef DEBUG_PCALL
1561
    if (loglevel & CPU_LOG_INT) {
1562
        static int count;
1563
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1564
                count, intno,
1565
                env->pc,
1566
                env->npc, env->regwptr[6]);
1567
        cpu_dump_state(env, logfile, fprintf, 0);
1568
#if 0
1569
        {
1570
            int i;
1571
            uint8_t *ptr;
1572

1573
            fprintf(logfile, "       code=");
1574
            ptr = (uint8_t *)env->pc;
1575
            for(i = 0; i < 16; i++) {
1576
                fprintf(logfile, " %02x", ldub(ptr + i));
1577
            }
1578
            fprintf(logfile, "\n");
1579
        }
1580
#endif
1581
        count++;
1582
    }
1583
#endif
1584
#if !defined(CONFIG_USER_ONLY)
1585
    if (env->tl == MAXTL) {
1586
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1587
        return;
1588
    }
1589
#endif
1590
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1591
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1592
    env->tpc[env->tl] = env->pc;
1593
    env->tnpc[env->tl] = env->npc;
1594
    env->tt[env->tl] = intno;
1595
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1596

    
1597
    if (intno == TT_CLRWIN)
1598
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1599
    else if ((intno & 0x1c0) == TT_SPILL)
1600
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1601
    else if ((intno & 0x1c0) == TT_FILL)
1602
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1603
    env->tbr &= ~0x7fffULL;
1604
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1605
    if (env->tl < MAXTL - 1) {
1606
        env->tl++;
1607
    } else {
1608
        env->pstate |= PS_RED;
1609
        if (env->tl != MAXTL)
1610
            env->tl++;
1611
    }
1612
    env->pc = env->tbr;
1613
    env->npc = env->pc + 4;
1614
    env->exception_index = 0;
1615
}
1616
#else
1617
void do_interrupt(int intno)
1618
{
1619
    int cwp;
1620

    
1621
#ifdef DEBUG_PCALL
1622
    if (loglevel & CPU_LOG_INT) {
1623
        static int count;
1624
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1625
                count, intno,
1626
                env->pc,
1627
                env->npc, env->regwptr[6]);
1628
        cpu_dump_state(env, logfile, fprintf, 0);
1629
#if 0
1630
        {
1631
            int i;
1632
            uint8_t *ptr;
1633

1634
            fprintf(logfile, "       code=");
1635
            ptr = (uint8_t *)env->pc;
1636
            for(i = 0; i < 16; i++) {
1637
                fprintf(logfile, " %02x", ldub(ptr + i));
1638
            }
1639
            fprintf(logfile, "\n");
1640
        }
1641
#endif
1642
        count++;
1643
    }
1644
#endif
1645
#if !defined(CONFIG_USER_ONLY)
1646
    if (env->psret == 0) {
1647
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1648
        return;
1649
    }
1650
#endif
1651
    env->psret = 0;
1652
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1653
    set_cwp(cwp);
1654
    env->regwptr[9] = env->pc;
1655
    env->regwptr[10] = env->npc;
1656
    env->psrps = env->psrs;
1657
    env->psrs = 1;
1658
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1659
    env->pc = env->tbr;
1660
    env->npc = env->pc + 4;
1661
    env->exception_index = 0;
1662
}
1663
#endif
1664

    
1665
#if !defined(CONFIG_USER_ONLY)
1666

    
1667
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1668
                                void *retaddr);
1669

    
1670
#define MMUSUFFIX _mmu
1671
#define ALIGNED_ONLY
1672
#define GETPC() (__builtin_return_address(0))
1673

    
1674
#define SHIFT 0
1675
#include "softmmu_template.h"
1676

    
1677
#define SHIFT 1
1678
#include "softmmu_template.h"
1679

    
1680
#define SHIFT 2
1681
#include "softmmu_template.h"
1682

    
1683
#define SHIFT 3
1684
#include "softmmu_template.h"
1685

    
1686
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1687
                                void *retaddr)
1688
{
1689
#ifdef DEBUG_UNALIGNED
1690
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1691
#endif
1692
    raise_exception(TT_UNALIGNED);
1693
}
1694

    
1695
/* try to fill the TLB and return an exception if error. If retaddr is
1696
   NULL, it means that the function was called in C code (i.e. not
1697
   from generated code or from helper.c) */
1698
/* XXX: fix it to restore all registers */
1699
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1700
{
1701
    TranslationBlock *tb;
1702
    int ret;
1703
    unsigned long pc;
1704
    CPUState *saved_env;
1705

    
1706
    /* XXX: hack to restore env in all cases, even if not called from
1707
       generated code */
1708
    saved_env = env;
1709
    env = cpu_single_env;
1710

    
1711
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1712
    if (ret) {
1713
        if (retaddr) {
1714
            /* now we have a real cpu fault */
1715
            pc = (unsigned long)retaddr;
1716
            tb = tb_find_pc(pc);
1717
            if (tb) {
1718
                /* the PC is inside the translated code. It means that we have
1719
                   a virtual CPU fault */
1720
                cpu_restore_state(tb, env, pc, (void *)T2);
1721
            }
1722
        }
1723
        cpu_loop_exit();
1724
    }
1725
    env = saved_env;
1726
}
1727

    
1728
#endif
1729

    
1730
#ifndef TARGET_SPARC64
1731
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1732
                          int is_asi)
1733
{
1734
    CPUState *saved_env;
1735

    
1736
    /* XXX: hack to restore env in all cases, even if not called from
1737
       generated code */
1738
    saved_env = env;
1739
    env = cpu_single_env;
1740
    if (env->mmuregs[3]) /* Fault status register */
1741
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1742
    if (is_asi)
1743
        env->mmuregs[3] |= 1 << 16;
1744
    if (env->psrs)
1745
        env->mmuregs[3] |= 1 << 5;
1746
    if (is_exec)
1747
        env->mmuregs[3] |= 1 << 6;
1748
    if (is_write)
1749
        env->mmuregs[3] |= 1 << 7;
1750
    env->mmuregs[3] |= (5 << 2) | 2;
1751
    env->mmuregs[4] = addr; /* Fault address register */
1752
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1753
#ifdef DEBUG_UNASSIGNED
1754
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1755
               "\n", addr, env->pc);
1756
#endif
1757
        if (is_exec)
1758
            raise_exception(TT_CODE_ACCESS);
1759
        else
1760
            raise_exception(TT_DATA_ACCESS);
1761
    }
1762
    env = saved_env;
1763
}
1764
#else
1765
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1766
                          int is_asi)
1767
{
1768
#ifdef DEBUG_UNASSIGNED
1769
    CPUState *saved_env;
1770

    
1771
    /* XXX: hack to restore env in all cases, even if not called from
1772
       generated code */
1773
    saved_env = env;
1774
    env = cpu_single_env;
1775
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1776
           addr, env->pc);
1777
    env = saved_env;
1778
#endif
1779
    if (is_exec)
1780
        raise_exception(TT_CODE_ACCESS);
1781
    else
1782
        raise_exception(TT_DATA_ACCESS);
1783
}
1784
#endif
1785

    
1786
#ifdef TARGET_SPARC64
1787
void do_tick_set_count(void *opaque, uint64_t count)
1788
{
1789
#if !defined(CONFIG_USER_ONLY)
1790
    ptimer_set_count(opaque, -count);
1791
#endif
1792
}
1793

    
1794
uint64_t do_tick_get_count(void *opaque)
1795
{
1796
#if !defined(CONFIG_USER_ONLY)
1797
    return -ptimer_get_count(opaque);
1798
#else
1799
    return 0;
1800
#endif
1801
}
1802

    
1803
void do_tick_set_limit(void *opaque, uint64_t limit)
1804
{
1805
#if !defined(CONFIG_USER_ONLY)
1806
    ptimer_set_limit(opaque, -limit, 0);
1807
#endif
1808
}
1809
#endif