Statistics
| Branch: | Revision:

root / target-mips / op_helper.c @ e9c71dd1

History | View | Annotate | Download (45.1 kB)

1
/*
2
 *  MIPS emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include <stdlib.h>
21
#include "exec.h"
22

    
23
#include "host-utils.h"
24

    
25
#ifdef __s390__
26
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
27
#else
28
# define GETPC() (__builtin_return_address(0))
29
#endif
30

    
31
/*****************************************************************************/
32
/* Exceptions processing helpers */
33

    
34
void do_raise_exception_err (uint32_t exception, int error_code)
35
{
36
#if 1
37
    if (logfile && exception < 0x100)
38
        fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
39
#endif
40
    env->exception_index = exception;
41
    env->error_code = error_code;
42
    T0 = 0;
43
    cpu_loop_exit();
44
}
45

    
46
void do_raise_exception (uint32_t exception)
47
{
48
    do_raise_exception_err(exception, 0);
49
}
50

    
51
void do_restore_state (void *pc_ptr)
52
{
53
  TranslationBlock *tb;
54
  unsigned long pc = (unsigned long) pc_ptr;
55

    
56
  tb = tb_find_pc (pc);
57
  cpu_restore_state (tb, env, pc, NULL);
58
}
59

    
60
void do_raise_exception_direct_err (uint32_t exception, int error_code)
61
{
62
    do_restore_state (GETPC ());
63
    do_raise_exception_err (exception, error_code);
64
}
65

    
66
void do_raise_exception_direct (uint32_t exception)
67
{
68
    do_raise_exception_direct_err (exception, 0);
69
}
70

    
71
#if defined(TARGET_MIPS64)
72
#if TARGET_LONG_BITS > HOST_LONG_BITS
73
/* Those might call libgcc functions.  */
74
void do_dsll (void)
75
{
76
    T0 = T0 << T1;
77
}
78

    
79
void do_dsll32 (void)
80
{
81
    T0 = T0 << (T1 + 32);
82
}
83

    
84
void do_dsra (void)
85
{
86
    T0 = (int64_t)T0 >> T1;
87
}
88

    
89
void do_dsra32 (void)
90
{
91
    T0 = (int64_t)T0 >> (T1 + 32);
92
}
93

    
94
void do_dsrl (void)
95
{
96
    T0 = T0 >> T1;
97
}
98

    
99
void do_dsrl32 (void)
100
{
101
    T0 = T0 >> (T1 + 32);
102
}
103

    
104
void do_drotr (void)
105
{
106
    target_ulong tmp;
107

    
108
    if (T1) {
109
        tmp = T0 << (0x40 - T1);
110
        T0 = (T0 >> T1) | tmp;
111
    }
112
}
113

    
114
void do_drotr32 (void)
115
{
116
    target_ulong tmp;
117

    
118
    tmp = T0 << (0x40 - (32 + T1));
119
    T0 = (T0 >> (32 + T1)) | tmp;
120
}
121

    
122
void do_dsllv (void)
123
{
124
    T0 = T1 << (T0 & 0x3F);
125
}
126

    
127
void do_dsrav (void)
128
{
129
    T0 = (int64_t)T1 >> (T0 & 0x3F);
130
}
131

    
132
void do_dsrlv (void)
133
{
134
    T0 = T1 >> (T0 & 0x3F);
135
}
136

    
137
void do_drotrv (void)
138
{
139
    target_ulong tmp;
140

    
141
    T0 &= 0x3F;
142
    if (T0) {
143
        tmp = T1 << (0x40 - T0);
144
        T0 = (T1 >> T0) | tmp;
145
    } else
146
        T0 = T1;
147
}
148

    
149
void do_dclo (void)
150
{
151
    T0 = clo64(T0);
152
}
153

    
154
void do_dclz (void)
155
{
156
    T0 = clz64(T0);
157
}
158

    
159
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
160
#endif /* TARGET_MIPS64 */
161

    
162
/* 64 bits arithmetic for 32 bits hosts */
163
#if TARGET_LONG_BITS > HOST_LONG_BITS
164
static always_inline uint64_t get_HILO (void)
165
{
166
    return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
167
}
168

    
169
static always_inline void set_HILO (uint64_t HILO)
170
{
171
    env->LO[0][env->current_tc] = (int32_t)HILO;
172
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
173
}
174

    
175
static always_inline void set_HIT0_LO (uint64_t HILO)
176
{
177
    env->LO[0][env->current_tc] = (int32_t)(HILO & 0xFFFFFFFF);
178
    T0 = env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
179
}
180

    
181
static always_inline void set_HI_LOT0 (uint64_t HILO)
182
{
183
    T0 = env->LO[0][env->current_tc] = (int32_t)(HILO & 0xFFFFFFFF);
184
    env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
185
}
186

    
187
void do_mult (void)
188
{
189
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
190
}
191

    
192
void do_multu (void)
193
{
194
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
195
}
196

    
197
void do_madd (void)
198
{
199
    int64_t tmp;
200

    
201
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
202
    set_HILO((int64_t)get_HILO() + tmp);
203
}
204

    
205
void do_maddu (void)
206
{
207
    uint64_t tmp;
208

    
209
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
210
    set_HILO(get_HILO() + tmp);
211
}
212

    
213
void do_msub (void)
214
{
215
    int64_t tmp;
216

    
217
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
218
    set_HILO((int64_t)get_HILO() - tmp);
219
}
220

    
221
void do_msubu (void)
222
{
223
    uint64_t tmp;
224

    
225
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
226
    set_HILO(get_HILO() - tmp);
227
}
228

    
229
/* Multiplication variants of the vr54xx. */
230
void do_muls (void)
231
{
232
    set_HI_LOT0(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
233
}
234

    
235
void do_mulsu (void)
236
{
237
    set_HI_LOT0(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
238
}
239

    
240
void do_macc (void)
241
{
242
    set_HI_LOT0(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
243
}
244

    
245
void do_macchi (void)
246
{
247
    set_HIT0_LO(((int64_t)get_HILO()) + ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
248
}
249

    
250
void do_maccu (void)
251
{
252
    set_HI_LOT0(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
253
}
254

    
255
void do_macchiu (void)
256
{
257
    set_HIT0_LO(((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
258
}
259

    
260
void do_msac (void)
261
{
262
    set_HI_LOT0(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
263
}
264

    
265
void do_msachi (void)
266
{
267
    set_HIT0_LO(((int64_t)get_HILO()) - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
268
}
269

    
270
void do_msacu (void)
271
{
272
    set_HI_LOT0(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
273
}
274

    
275
void do_msachiu (void)
276
{
277
    set_HIT0_LO(((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
278
}
279

    
280
void do_mulhi (void)
281
{
282
    set_HIT0_LO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
283
}
284

    
285
void do_mulhiu (void)
286
{
287
    set_HIT0_LO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
288
}
289

    
290
void do_mulshi (void)
291
{
292
    set_HIT0_LO(0 - ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1));
293
}
294

    
295
void do_mulshiu (void)
296
{
297
    set_HIT0_LO(0 - ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1));
298
}
299
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
300

    
301
#if HOST_LONG_BITS < 64
302
void do_div (void)
303
{
304
    /* 64bit datatypes because we may see overflow/underflow. */
305
    if (T1 != 0) {
306
        env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
307
        env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
308
    }
309
}
310
#endif
311

    
312
#if defined(TARGET_MIPS64)
313
void do_ddiv (void)
314
{
315
    if (T1 != 0) {
316
        int64_t arg0 = (int64_t)T0;
317
        int64_t arg1 = (int64_t)T1;
318
        if (arg0 == ((int64_t)-1 << 63) && arg1 == (int64_t)-1) {
319
            env->LO[0][env->current_tc] = arg0;
320
            env->HI[0][env->current_tc] = 0;
321
        } else {
322
            lldiv_t res = lldiv(arg0, arg1);
323
            env->LO[0][env->current_tc] = res.quot;
324
            env->HI[0][env->current_tc] = res.rem;
325
        }
326
    }
327
}
328

    
329
#if TARGET_LONG_BITS > HOST_LONG_BITS
330
void do_ddivu (void)
331
{
332
    if (T1 != 0) {
333
        env->LO[0][env->current_tc] = T0 / T1;
334
        env->HI[0][env->current_tc] = T0 % T1;
335
    }
336
}
337
#endif
338
#endif /* TARGET_MIPS64 */
339

    
340
#if defined(CONFIG_USER_ONLY)
341
void do_mfc0_random (void)
342
{
343
    cpu_abort(env, "mfc0 random\n");
344
}
345

    
346
void do_mfc0_count (void)
347
{
348
    cpu_abort(env, "mfc0 count\n");
349
}
350

    
351
void cpu_mips_store_count(CPUState *env, uint32_t value)
352
{
353
    cpu_abort(env, "mtc0 count\n");
354
}
355

    
356
void cpu_mips_store_compare(CPUState *env, uint32_t value)
357
{
358
    cpu_abort(env, "mtc0 compare\n");
359
}
360

    
361
void cpu_mips_start_count(CPUState *env)
362
{
363
    cpu_abort(env, "start count\n");
364
}
365

    
366
void cpu_mips_stop_count(CPUState *env)
367
{
368
    cpu_abort(env, "stop count\n");
369
}
370

    
371
void cpu_mips_update_irq(CPUState *env)
372
{
373
    cpu_abort(env, "mtc0 status / mtc0 cause\n");
374
}
375

    
376
void do_mtc0_status_debug(uint32_t old, uint32_t val)
377
{
378
    cpu_abort(env, "mtc0 status debug\n");
379
}
380

    
381
void do_mtc0_status_irqraise_debug (void)
382
{
383
    cpu_abort(env, "mtc0 status irqraise debug\n");
384
}
385

    
386
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
387
{
388
    cpu_abort(env, "mips_tlb_flush\n");
389
}
390

    
391
#else
392

    
393
/* CP0 helpers */
394
void do_mfc0_random (void)
395
{
396
    T0 = (int32_t)cpu_mips_get_random(env);
397
}
398

    
399
void do_mfc0_count (void)
400
{
401
    T0 = (int32_t)cpu_mips_get_count(env);
402
}
403

    
404
void do_mtc0_status_debug(uint32_t old, uint32_t val)
405
{
406
    fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
407
            old, old & env->CP0_Cause & CP0Ca_IP_mask,
408
            val, val & env->CP0_Cause & CP0Ca_IP_mask,
409
            env->CP0_Cause);
410
    switch (env->hflags & MIPS_HFLAG_KSU) {
411
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
412
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
413
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
414
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
415
    }
416
}
417

    
418
void do_mtc0_status_irqraise_debug(void)
419
{
420
    fprintf(logfile, "Raise pending IRQs\n");
421
}
422

    
423
void fpu_handle_exception(void)
424
{
425
#ifdef CONFIG_SOFTFLOAT
426
    int flags = get_float_exception_flags(&env->fpu->fp_status);
427
    unsigned int cpuflags = 0, enable, cause = 0;
428

    
429
    enable = GET_FP_ENABLE(env->fpu->fcr31);
430

    
431
    /* determine current flags */
432
    if (flags & float_flag_invalid) {
433
        cpuflags |= FP_INVALID;
434
        cause |= FP_INVALID & enable;
435
    }
436
    if (flags & float_flag_divbyzero) {
437
        cpuflags |= FP_DIV0;
438
        cause |= FP_DIV0 & enable;
439
    }
440
    if (flags & float_flag_overflow) {
441
        cpuflags |= FP_OVERFLOW;
442
        cause |= FP_OVERFLOW & enable;
443
    }
444
    if (flags & float_flag_underflow) {
445
        cpuflags |= FP_UNDERFLOW;
446
        cause |= FP_UNDERFLOW & enable;
447
    }
448
    if (flags & float_flag_inexact) {
449
        cpuflags |= FP_INEXACT;
450
        cause |= FP_INEXACT & enable;
451
    }
452
    SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
453
    SET_FP_CAUSE(env->fpu->fcr31, cause);
454
#else
455
    SET_FP_FLAGS(env->fpu->fcr31, 0);
456
    SET_FP_CAUSE(env->fpu->fcr31, 0);
457
#endif
458
}
459

    
460
/* TLB management */
461
void cpu_mips_tlb_flush (CPUState *env, int flush_global)
462
{
463
    /* Flush qemu's TLB and discard all shadowed entries.  */
464
    tlb_flush (env, flush_global);
465
    env->tlb->tlb_in_use = env->tlb->nb_tlb;
466
}
467

    
468
static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
469
{
470
    /* Discard entries from env->tlb[first] onwards.  */
471
    while (env->tlb->tlb_in_use > first) {
472
        r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
473
    }
474
}
475

    
476
static void r4k_fill_tlb (int idx)
477
{
478
    r4k_tlb_t *tlb;
479

    
480
    /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
481
    tlb = &env->tlb->mmu.r4k.tlb[idx];
482
    tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
483
#if defined(TARGET_MIPS64)
484
    tlb->VPN &= env->SEGMask;
485
#endif
486
    tlb->ASID = env->CP0_EntryHi & 0xFF;
487
    tlb->PageMask = env->CP0_PageMask;
488
    tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
489
    tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
490
    tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
491
    tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
492
    tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
493
    tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
494
    tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
495
    tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
496
    tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
497
}
498

    
499
void r4k_do_tlbwi (void)
500
{
501
    /* Discard cached TLB entries.  We could avoid doing this if the
502
       tlbwi is just upgrading access permissions on the current entry;
503
       that might be a further win.  */
504
    r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
505

    
506
    r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
507
    r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
508
}
509

    
510
void r4k_do_tlbwr (void)
511
{
512
    int r = cpu_mips_get_random(env);
513

    
514
    r4k_invalidate_tlb(env, r, 1);
515
    r4k_fill_tlb(r);
516
}
517

    
518
void r4k_do_tlbp (void)
519
{
520
    r4k_tlb_t *tlb;
521
    target_ulong mask;
522
    target_ulong tag;
523
    target_ulong VPN;
524
    uint8_t ASID;
525
    int i;
526

    
527
    ASID = env->CP0_EntryHi & 0xFF;
528
    for (i = 0; i < env->tlb->nb_tlb; i++) {
529
        tlb = &env->tlb->mmu.r4k.tlb[i];
530
        /* 1k pages are not supported. */
531
        mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
532
        tag = env->CP0_EntryHi & ~mask;
533
        VPN = tlb->VPN & ~mask;
534
        /* Check ASID, virtual page number & size */
535
        if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
536
            /* TLB match */
537
            env->CP0_Index = i;
538
            break;
539
        }
540
    }
541
    if (i == env->tlb->nb_tlb) {
542
        /* No match.  Discard any shadow entries, if any of them match.  */
543
        for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
544
            tlb = &env->tlb->mmu.r4k.tlb[i];
545
            /* 1k pages are not supported. */
546
            mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
547
            tag = env->CP0_EntryHi & ~mask;
548
            VPN = tlb->VPN & ~mask;
549
            /* Check ASID, virtual page number & size */
550
            if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
551
                r4k_mips_tlb_flush_extra (env, i);
552
                break;
553
            }
554
        }
555

    
556
        env->CP0_Index |= 0x80000000;
557
    }
558
}
559

    
560
void r4k_do_tlbr (void)
561
{
562
    r4k_tlb_t *tlb;
563
    uint8_t ASID;
564

    
565
    ASID = env->CP0_EntryHi & 0xFF;
566
    tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
567

    
568
    /* If this will change the current ASID, flush qemu's TLB.  */
569
    if (ASID != tlb->ASID)
570
        cpu_mips_tlb_flush (env, 1);
571

    
572
    r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
573

    
574
    env->CP0_EntryHi = tlb->VPN | tlb->ASID;
575
    env->CP0_PageMask = tlb->PageMask;
576
    env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
577
                        (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
578
    env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
579
                        (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
580
}
581

    
582
#endif /* !CONFIG_USER_ONLY */
583

    
584
void dump_ldst (const unsigned char *func)
585
{
586
    if (loglevel)
587
        fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
588
}
589

    
590
void dump_sc (void)
591
{
592
    if (loglevel) {
593
        fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
594
                T1, T0, env->CP0_LLAddr);
595
    }
596
}
597

    
598
void debug_pre_eret (void)
599
{
600
    fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
601
            env->PC[env->current_tc], env->CP0_EPC);
602
    if (env->CP0_Status & (1 << CP0St_ERL))
603
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
604
    if (env->hflags & MIPS_HFLAG_DM)
605
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
606
    fputs("\n", logfile);
607
}
608

    
609
void debug_post_eret (void)
610
{
611
    fprintf(logfile, "  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
612
            env->PC[env->current_tc], env->CP0_EPC);
613
    if (env->CP0_Status & (1 << CP0St_ERL))
614
        fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
615
    if (env->hflags & MIPS_HFLAG_DM)
616
        fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
617
    switch (env->hflags & MIPS_HFLAG_KSU) {
618
    case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
619
    case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
620
    case MIPS_HFLAG_KM: fputs("\n", logfile); break;
621
    default: cpu_abort(env, "Invalid MMU mode!\n"); break;
622
    }
623
}
624

    
625
void do_pmon (int function)
626
{
627
    function /= 2;
628
    switch (function) {
629
    case 2: /* TODO: char inbyte(int waitflag); */
630
        if (env->gpr[4][env->current_tc] == 0)
631
            env->gpr[2][env->current_tc] = -1;
632
        /* Fall through */
633
    case 11: /* TODO: char inbyte (void); */
634
        env->gpr[2][env->current_tc] = -1;
635
        break;
636
    case 3:
637
    case 12:
638
        printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
639
        break;
640
    case 17:
641
        break;
642
    case 158:
643
        {
644
            unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
645
            printf("%s", fmt);
646
        }
647
        break;
648
    }
649
}
650

    
651
#if !defined(CONFIG_USER_ONLY)
652

    
653
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
654

    
655
#define MMUSUFFIX _mmu
656
#define ALIGNED_ONLY
657

    
658
#define SHIFT 0
659
#include "softmmu_template.h"
660

    
661
#define SHIFT 1
662
#include "softmmu_template.h"
663

    
664
#define SHIFT 2
665
#include "softmmu_template.h"
666

    
667
#define SHIFT 3
668
#include "softmmu_template.h"
669

    
670
static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
671
{
672
    env->CP0_BadVAddr = addr;
673
    do_restore_state (retaddr);
674
    do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
675
}
676

    
677
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
678
{
679
    TranslationBlock *tb;
680
    CPUState *saved_env;
681
    unsigned long pc;
682
    int ret;
683

    
684
    /* XXX: hack to restore env in all cases, even if not called from
685
       generated code */
686
    saved_env = env;
687
    env = cpu_single_env;
688
    ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
689
    if (ret) {
690
        if (retaddr) {
691
            /* now we have a real cpu fault */
692
            pc = (unsigned long)retaddr;
693
            tb = tb_find_pc(pc);
694
            if (tb) {
695
                /* the PC is inside the translated code. It means that we have
696
                   a virtual CPU fault */
697
                cpu_restore_state(tb, env, pc, NULL);
698
            }
699
        }
700
        do_raise_exception_err(env->exception_index, env->error_code);
701
    }
702
    env = saved_env;
703
}
704

    
705
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
706
                          int unused)
707
{
708
    if (is_exec)
709
        do_raise_exception(EXCP_IBE);
710
    else
711
        do_raise_exception(EXCP_DBE);
712
}
713
#endif
714

    
715
/* Complex FPU operations which may need stack space. */
716

    
717
#define FLOAT_ONE32 make_float32(0x3f8 << 20)
718
#define FLOAT_ONE64 make_float64(0x3ffULL << 52)
719
#define FLOAT_TWO32 make_float32(1 << 30)
720
#define FLOAT_TWO64 make_float64(1ULL << 62)
721
#define FLOAT_QNAN32 0x7fbfffff
722
#define FLOAT_QNAN64 0x7ff7ffffffffffffULL
723
#define FLOAT_SNAN32 0x7fffffff
724
#define FLOAT_SNAN64 0x7fffffffffffffffULL
725

    
726
/* convert MIPS rounding mode in FCR31 to IEEE library */
727
unsigned int ieee_rm[] = {
728
    float_round_nearest_even,
729
    float_round_to_zero,
730
    float_round_up,
731
    float_round_down
732
};
733

    
734
#define RESTORE_ROUNDING_MODE \
735
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
736

    
737
void do_cfc1 (int reg)
738
{
739
    switch (reg) {
740
    case 0:
741
        T0 = (int32_t)env->fpu->fcr0;
742
        break;
743
    case 25:
744
        T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
745
        break;
746
    case 26:
747
        T0 = env->fpu->fcr31 & 0x0003f07c;
748
        break;
749
    case 28:
750
        T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
751
        break;
752
    default:
753
        T0 = (int32_t)env->fpu->fcr31;
754
        break;
755
    }
756
}
757

    
758
void do_ctc1 (int reg)
759
{
760
    switch(reg) {
761
    case 25:
762
        if (T0 & 0xffffff00)
763
            return;
764
        env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
765
                     ((T0 & 0x1) << 23);
766
        break;
767
    case 26:
768
        if (T0 & 0x007c0000)
769
            return;
770
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
771
        break;
772
    case 28:
773
        if (T0 & 0x007c0000)
774
            return;
775
        env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
776
                     ((T0 & 0x4) << 22);
777
        break;
778
    case 31:
779
        if (T0 & 0x007c0000)
780
            return;
781
        env->fpu->fcr31 = T0;
782
        break;
783
    default:
784
        return;
785
    }
786
    /* set rounding mode */
787
    RESTORE_ROUNDING_MODE;
788
    set_float_exception_flags(0, &env->fpu->fp_status);
789
    if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
790
        do_raise_exception(EXCP_FPE);
791
}
792

    
793
static always_inline char ieee_ex_to_mips(char xcpt)
794
{
795
    return (xcpt & float_flag_inexact) >> 5 |
796
           (xcpt & float_flag_underflow) >> 3 |
797
           (xcpt & float_flag_overflow) >> 1 |
798
           (xcpt & float_flag_divbyzero) << 1 |
799
           (xcpt & float_flag_invalid) << 4;
800
}
801

    
802
static always_inline char mips_ex_to_ieee(char xcpt)
803
{
804
    return (xcpt & FP_INEXACT) << 5 |
805
           (xcpt & FP_UNDERFLOW) << 3 |
806
           (xcpt & FP_OVERFLOW) << 1 |
807
           (xcpt & FP_DIV0) >> 1 |
808
           (xcpt & FP_INVALID) >> 4;
809
}
810

    
811
static always_inline void update_fcr31(void)
812
{
813
    int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
814

    
815
    SET_FP_CAUSE(env->fpu->fcr31, tmp);
816
    if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
817
        do_raise_exception(EXCP_FPE);
818
    else
819
        UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
820
}
821

    
822
#define FLOAT_OP(name, p) void do_float_##name##_##p(void)
823

    
824
FLOAT_OP(cvtd, s)
825
{
826
    set_float_exception_flags(0, &env->fpu->fp_status);
827
    FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
828
    update_fcr31();
829
}
830
FLOAT_OP(cvtd, w)
831
{
832
    set_float_exception_flags(0, &env->fpu->fp_status);
833
    FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
834
    update_fcr31();
835
}
836
FLOAT_OP(cvtd, l)
837
{
838
    set_float_exception_flags(0, &env->fpu->fp_status);
839
    FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
840
    update_fcr31();
841
}
842
FLOAT_OP(cvtl, d)
843
{
844
    set_float_exception_flags(0, &env->fpu->fp_status);
845
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
846
    update_fcr31();
847
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
848
        DT2 = FLOAT_SNAN64;
849
}
850
FLOAT_OP(cvtl, s)
851
{
852
    set_float_exception_flags(0, &env->fpu->fp_status);
853
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
854
    update_fcr31();
855
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
856
        DT2 = FLOAT_SNAN64;
857
}
858

    
859
FLOAT_OP(cvtps, pw)
860
{
861
    set_float_exception_flags(0, &env->fpu->fp_status);
862
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
863
    FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
864
    update_fcr31();
865
}
866
FLOAT_OP(cvtpw, ps)
867
{
868
    set_float_exception_flags(0, &env->fpu->fp_status);
869
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
870
    WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
871
    update_fcr31();
872
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
873
        WT2 = FLOAT_SNAN32;
874
}
875
FLOAT_OP(cvts, d)
876
{
877
    set_float_exception_flags(0, &env->fpu->fp_status);
878
    FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
879
    update_fcr31();
880
}
881
FLOAT_OP(cvts, w)
882
{
883
    set_float_exception_flags(0, &env->fpu->fp_status);
884
    FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
885
    update_fcr31();
886
}
887
FLOAT_OP(cvts, l)
888
{
889
    set_float_exception_flags(0, &env->fpu->fp_status);
890
    FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
891
    update_fcr31();
892
}
893
FLOAT_OP(cvts, pl)
894
{
895
    set_float_exception_flags(0, &env->fpu->fp_status);
896
    WT2 = WT0;
897
    update_fcr31();
898
}
899
FLOAT_OP(cvts, pu)
900
{
901
    set_float_exception_flags(0, &env->fpu->fp_status);
902
    WT2 = WTH0;
903
    update_fcr31();
904
}
905
FLOAT_OP(cvtw, s)
906
{
907
    set_float_exception_flags(0, &env->fpu->fp_status);
908
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
909
    update_fcr31();
910
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
911
        WT2 = FLOAT_SNAN32;
912
}
913
FLOAT_OP(cvtw, d)
914
{
915
    set_float_exception_flags(0, &env->fpu->fp_status);
916
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
917
    update_fcr31();
918
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
919
        WT2 = FLOAT_SNAN32;
920
}
921

    
922
FLOAT_OP(roundl, d)
923
{
924
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
925
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
926
    RESTORE_ROUNDING_MODE;
927
    update_fcr31();
928
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
929
        DT2 = FLOAT_SNAN64;
930
}
931
FLOAT_OP(roundl, s)
932
{
933
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
934
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
935
    RESTORE_ROUNDING_MODE;
936
    update_fcr31();
937
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
938
        DT2 = FLOAT_SNAN64;
939
}
940
FLOAT_OP(roundw, d)
941
{
942
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
943
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
944
    RESTORE_ROUNDING_MODE;
945
    update_fcr31();
946
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
947
        WT2 = FLOAT_SNAN32;
948
}
949
FLOAT_OP(roundw, s)
950
{
951
    set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
952
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
953
    RESTORE_ROUNDING_MODE;
954
    update_fcr31();
955
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
956
        WT2 = FLOAT_SNAN32;
957
}
958

    
959
FLOAT_OP(truncl, d)
960
{
961
    DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
962
    update_fcr31();
963
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
964
        DT2 = FLOAT_SNAN64;
965
}
966
FLOAT_OP(truncl, s)
967
{
968
    DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
969
    update_fcr31();
970
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
971
        DT2 = FLOAT_SNAN64;
972
}
973
FLOAT_OP(truncw, d)
974
{
975
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
976
    update_fcr31();
977
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
978
        WT2 = FLOAT_SNAN32;
979
}
980
FLOAT_OP(truncw, s)
981
{
982
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
983
    update_fcr31();
984
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
985
        WT2 = FLOAT_SNAN32;
986
}
987

    
988
FLOAT_OP(ceill, d)
989
{
990
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
991
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
992
    RESTORE_ROUNDING_MODE;
993
    update_fcr31();
994
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
995
        DT2 = FLOAT_SNAN64;
996
}
997
FLOAT_OP(ceill, s)
998
{
999
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
1000
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
1001
    RESTORE_ROUNDING_MODE;
1002
    update_fcr31();
1003
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1004
        DT2 = FLOAT_SNAN64;
1005
}
1006
FLOAT_OP(ceilw, d)
1007
{
1008
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
1009
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
1010
    RESTORE_ROUNDING_MODE;
1011
    update_fcr31();
1012
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1013
        WT2 = FLOAT_SNAN32;
1014
}
1015
FLOAT_OP(ceilw, s)
1016
{
1017
    set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
1018
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
1019
    RESTORE_ROUNDING_MODE;
1020
    update_fcr31();
1021
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1022
        WT2 = FLOAT_SNAN32;
1023
}
1024

    
1025
FLOAT_OP(floorl, d)
1026
{
1027
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1028
    DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
1029
    RESTORE_ROUNDING_MODE;
1030
    update_fcr31();
1031
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1032
        DT2 = FLOAT_SNAN64;
1033
}
1034
FLOAT_OP(floorl, s)
1035
{
1036
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1037
    DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
1038
    RESTORE_ROUNDING_MODE;
1039
    update_fcr31();
1040
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1041
        DT2 = FLOAT_SNAN64;
1042
}
1043
FLOAT_OP(floorw, d)
1044
{
1045
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1046
    WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
1047
    RESTORE_ROUNDING_MODE;
1048
    update_fcr31();
1049
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1050
        WT2 = FLOAT_SNAN32;
1051
}
1052
FLOAT_OP(floorw, s)
1053
{
1054
    set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
1055
    WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
1056
    RESTORE_ROUNDING_MODE;
1057
    update_fcr31();
1058
    if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
1059
        WT2 = FLOAT_SNAN32;
1060
}
1061

    
1062
/* MIPS specific unary operations */
1063
FLOAT_OP(recip, d)
1064
{
1065
    set_float_exception_flags(0, &env->fpu->fp_status);
1066
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1067
    update_fcr31();
1068
}
1069
FLOAT_OP(recip, s)
1070
{
1071
    set_float_exception_flags(0, &env->fpu->fp_status);
1072
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1073
    update_fcr31();
1074
}
1075

    
1076
FLOAT_OP(rsqrt, d)
1077
{
1078
    set_float_exception_flags(0, &env->fpu->fp_status);
1079
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1080
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1081
    update_fcr31();
1082
}
1083
FLOAT_OP(rsqrt, s)
1084
{
1085
    set_float_exception_flags(0, &env->fpu->fp_status);
1086
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1087
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1088
    update_fcr31();
1089
}
1090

    
1091
FLOAT_OP(recip1, d)
1092
{
1093
    set_float_exception_flags(0, &env->fpu->fp_status);
1094
    FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1095
    update_fcr31();
1096
}
1097
FLOAT_OP(recip1, s)
1098
{
1099
    set_float_exception_flags(0, &env->fpu->fp_status);
1100
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1101
    update_fcr31();
1102
}
1103
FLOAT_OP(recip1, ps)
1104
{
1105
    set_float_exception_flags(0, &env->fpu->fp_status);
1106
    FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1107
    FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1108
    update_fcr31();
1109
}
1110

    
1111
FLOAT_OP(rsqrt1, d)
1112
{
1113
    set_float_exception_flags(0, &env->fpu->fp_status);
1114
    FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1115
    FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1116
    update_fcr31();
1117
}
1118
FLOAT_OP(rsqrt1, s)
1119
{
1120
    set_float_exception_flags(0, &env->fpu->fp_status);
1121
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1122
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1123
    update_fcr31();
1124
}
1125
FLOAT_OP(rsqrt1, ps)
1126
{
1127
    set_float_exception_flags(0, &env->fpu->fp_status);
1128
    FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1129
    FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1130
    FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1131
    FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1132
    update_fcr31();
1133
}
1134

    
1135
/* binary operations */
1136
#define FLOAT_BINOP(name) \
1137
FLOAT_OP(name, d)         \
1138
{                         \
1139
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1140
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status);    \
1141
    update_fcr31();                                                \
1142
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1143
        DT2 = FLOAT_QNAN64;                                        \
1144
}                         \
1145
FLOAT_OP(name, s)         \
1146
{                         \
1147
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1148
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1149
    update_fcr31();                                                \
1150
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID)                \
1151
        WT2 = FLOAT_QNAN32;                                        \
1152
}                         \
1153
FLOAT_OP(name, ps)        \
1154
{                         \
1155
    set_float_exception_flags(0, &env->fpu->fp_status);            \
1156
    FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status);    \
1157
    FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1158
    update_fcr31();       \
1159
    if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) {              \
1160
        WT2 = FLOAT_QNAN32;                                        \
1161
        WTH2 = FLOAT_QNAN32;                                       \
1162
    }                     \
1163
}
1164
FLOAT_BINOP(add)
1165
FLOAT_BINOP(sub)
1166
FLOAT_BINOP(mul)
1167
FLOAT_BINOP(div)
1168
#undef FLOAT_BINOP
1169

    
1170
/* MIPS specific binary operations */
1171
FLOAT_OP(recip2, d)
1172
{
1173
    set_float_exception_flags(0, &env->fpu->fp_status);
1174
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1175
    FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status));
1176
    update_fcr31();
1177
}
1178
FLOAT_OP(recip2, s)
1179
{
1180
    set_float_exception_flags(0, &env->fpu->fp_status);
1181
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1182
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1183
    update_fcr31();
1184
}
1185
FLOAT_OP(recip2, ps)
1186
{
1187
    set_float_exception_flags(0, &env->fpu->fp_status);
1188
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1189
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1190
    FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1191
    FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status));
1192
    update_fcr31();
1193
}
1194

    
1195
FLOAT_OP(rsqrt2, d)
1196
{
1197
    set_float_exception_flags(0, &env->fpu->fp_status);
1198
    FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1199
    FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1200
    FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status));
1201
    update_fcr31();
1202
}
1203
FLOAT_OP(rsqrt2, s)
1204
{
1205
    set_float_exception_flags(0, &env->fpu->fp_status);
1206
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1207
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1208
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1209
    update_fcr31();
1210
}
1211
FLOAT_OP(rsqrt2, ps)
1212
{
1213
    set_float_exception_flags(0, &env->fpu->fp_status);
1214
    FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1215
    FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1216
    FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1217
    FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1218
    FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1219
    FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status));
1220
    update_fcr31();
1221
}
1222

    
1223
FLOAT_OP(addr, ps)
1224
{
1225
    set_float_exception_flags(0, &env->fpu->fp_status);
1226
    FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1227
    FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1228
    update_fcr31();
1229
}
1230

    
1231
FLOAT_OP(mulr, ps)
1232
{
1233
    set_float_exception_flags(0, &env->fpu->fp_status);
1234
    FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1235
    FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1236
    update_fcr31();
1237
}
1238

    
1239
/* compare operations */
1240
#define FOP_COND_D(op, cond)                   \
1241
void do_cmp_d_ ## op (long cc)                 \
1242
{                                              \
1243
    int c = cond;                              \
1244
    update_fcr31();                            \
1245
    if (c)                                     \
1246
        SET_FP_COND(cc, env->fpu);             \
1247
    else                                       \
1248
        CLEAR_FP_COND(cc, env->fpu);           \
1249
}                                              \
1250
void do_cmpabs_d_ ## op (long cc)              \
1251
{                                              \
1252
    int c;                                     \
1253
    FDT0 = float64_chs(FDT0);                  \
1254
    FDT1 = float64_chs(FDT1);                  \
1255
    c = cond;                                  \
1256
    update_fcr31();                            \
1257
    if (c)                                     \
1258
        SET_FP_COND(cc, env->fpu);             \
1259
    else                                       \
1260
        CLEAR_FP_COND(cc, env->fpu);           \
1261
}
1262

    
1263
int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1264
{
1265
    if (float64_is_signaling_nan(a) ||
1266
        float64_is_signaling_nan(b) ||
1267
        (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1268
        float_raise(float_flag_invalid, status);
1269
        return 1;
1270
    } else if (float64_is_nan(a) || float64_is_nan(b)) {
1271
        return 1;
1272
    } else {
1273
        return 0;
1274
    }
1275
}
1276

    
1277
/* NOTE: the comma operator will make "cond" to eval to false,
1278
 * but float*_is_unordered() is still called. */
1279
FOP_COND_D(f,   (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1280
FOP_COND_D(un,  float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1281
FOP_COND_D(eq,  !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1282
FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1283
FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1284
FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1285
FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1286
FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1287
/* NOTE: the comma operator will make "cond" to eval to false,
1288
 * but float*_is_unordered() is still called. */
1289
FOP_COND_D(sf,  (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1290
FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1291
FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1292
FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1293
FOP_COND_D(lt,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1294
FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1295
FOP_COND_D(le,  !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1296
FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status)  || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1297

    
1298
#define FOP_COND_S(op, cond)                   \
1299
void do_cmp_s_ ## op (long cc)                 \
1300
{                                              \
1301
    int c = cond;                              \
1302
    update_fcr31();                            \
1303
    if (c)                                     \
1304
        SET_FP_COND(cc, env->fpu);             \
1305
    else                                       \
1306
        CLEAR_FP_COND(cc, env->fpu);           \
1307
}                                              \
1308
void do_cmpabs_s_ ## op (long cc)              \
1309
{                                              \
1310
    int c;                                     \
1311
    FST0 = float32_abs(FST0);                  \
1312
    FST1 = float32_abs(FST1);                  \
1313
    c = cond;                                  \
1314
    update_fcr31();                            \
1315
    if (c)                                     \
1316
        SET_FP_COND(cc, env->fpu);             \
1317
    else                                       \
1318
        CLEAR_FP_COND(cc, env->fpu);           \
1319
}
1320

    
1321
flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1322
{
1323
    if (float32_is_signaling_nan(a) ||
1324
        float32_is_signaling_nan(b) ||
1325
        (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1326
        float_raise(float_flag_invalid, status);
1327
        return 1;
1328
    } else if (float32_is_nan(a) || float32_is_nan(b)) {
1329
        return 1;
1330
    } else {
1331
        return 0;
1332
    }
1333
}
1334

    
1335
/* NOTE: the comma operator will make "cond" to eval to false,
1336
 * but float*_is_unordered() is still called. */
1337
FOP_COND_S(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1338
FOP_COND_S(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1339
FOP_COND_S(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1340
FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1341
FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1342
FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1343
FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1344
FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1345
/* NOTE: the comma operator will make "cond" to eval to false,
1346
 * but float*_is_unordered() is still called. */
1347
FOP_COND_S(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1348
FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1349
FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1350
FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_eq(FST0, FST1, &env->fpu->fp_status))
1351
FOP_COND_S(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1352
FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_lt(FST0, FST1, &env->fpu->fp_status))
1353
FOP_COND_S(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1354
FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)  || float32_le(FST0, FST1, &env->fpu->fp_status))
1355

    
1356
#define FOP_COND_PS(op, condl, condh)          \
1357
void do_cmp_ps_ ## op (long cc)                \
1358
{                                              \
1359
    int cl = condl;                            \
1360
    int ch = condh;                            \
1361
    update_fcr31();                            \
1362
    if (cl)                                    \
1363
        SET_FP_COND(cc, env->fpu);             \
1364
    else                                       \
1365
        CLEAR_FP_COND(cc, env->fpu);           \
1366
    if (ch)                                    \
1367
        SET_FP_COND(cc + 1, env->fpu);         \
1368
    else                                       \
1369
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1370
}                                              \
1371
void do_cmpabs_ps_ ## op (long cc)             \
1372
{                                              \
1373
    int cl, ch;                                \
1374
    FST0 = float32_abs(FST0);                  \
1375
    FSTH0 = float32_abs(FSTH0);                \
1376
    FST1 = float32_abs(FST1);                  \
1377
    FSTH1 = float32_abs(FSTH1);                \
1378
    cl = condl;                                \
1379
    ch = condh;                                \
1380
    update_fcr31();                            \
1381
    if (cl)                                    \
1382
        SET_FP_COND(cc, env->fpu);             \
1383
    else                                       \
1384
        CLEAR_FP_COND(cc, env->fpu);           \
1385
    if (ch)                                    \
1386
        SET_FP_COND(cc + 1, env->fpu);         \
1387
    else                                       \
1388
        CLEAR_FP_COND(cc + 1, env->fpu);       \
1389
}
1390

    
1391
/* NOTE: the comma operator will make "cond" to eval to false,
1392
 * but float*_is_unordered() is still called. */
1393
FOP_COND_PS(f,   (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1394
                 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1395
FOP_COND_PS(un,  float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1396
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1397
FOP_COND_PS(eq,  !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1398
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1399
FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1400
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1401
FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1402
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1403
FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1404
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1405
FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1406
                 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1407
FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1408
                 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1409
/* NOTE: the comma operator will make "cond" to eval to false,
1410
 * but float*_is_unordered() is still called. */
1411
FOP_COND_PS(sf,  (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1412
                 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1413
FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1414
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1415
FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_eq(FST0, FST1, &env->fpu->fp_status),
1416
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1417
FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_eq(FST0, FST1, &env->fpu->fp_status),
1418
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1419
FOP_COND_PS(lt,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_lt(FST0, FST1, &env->fpu->fp_status),
1420
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1421
FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_lt(FST0, FST1, &env->fpu->fp_status),
1422
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1423
FOP_COND_PS(le,  !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)   && float32_le(FST0, FST1, &env->fpu->fp_status),
1424
                 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1425
FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status)    || float32_le(FST0, FST1, &env->fpu->fp_status),
1426
                 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status)  || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))