Statistics
| Branch: | Revision:

root / cpu-exec.c @ e9df014c

History | View | Annotate | Download (50.3 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44
    defined(TARGET_ALPHA)
45
/* XXX: unify with i386 target */
46
void cpu_loop_exit(void)
47
{
48
    longjmp(env->jmp_env, 1);
49
}
50
#endif
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc) 
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      unsigned int flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87
    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91
    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc && 
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base && 
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146
    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    unsigned int flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    cs_base = env->segs[R_CS].base;
167
    pc = cs_base + env->eip;
168
#elif defined(TARGET_ARM)
169
    flags = env->thumb | (env->vfp.vec_len << 1)
170
            | (env->vfp.vec_stride << 4);
171
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172
        flags |= (1 << 6);
173
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174
        flags |= (1 << 7);
175
    cs_base = 0;
176
    pc = env->regs[15];
177
#elif defined(TARGET_SPARC)
178
#ifdef TARGET_SPARC64
179
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182
#else
183
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
184
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185
        | env->psrs;
186
#endif
187
    cs_base = env->npc;
188
    pc = env->pc;
189
#elif defined(TARGET_PPC)
190
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
192
    cs_base = 0;
193
    pc = env->nip;
194
#elif defined(TARGET_MIPS)
195
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196
    cs_base = 0;
197
    pc = env->PC;
198
#elif defined(TARGET_M68K)
199
    flags = env->fpcr & M68K_FPCR_PREC;
200
    cs_base = 0;
201
    pc = env->pc;
202
#elif defined(TARGET_SH4)
203
    flags = env->sr & (SR_MD | SR_RB);
204
    cs_base = 0;         /* XXXXX */
205
    pc = env->pc;
206
#elif defined(TARGET_ALPHA)
207
    flags = env->ps;
208
    cs_base = 0;
209
    pc = env->pc;
210
#else
211
#error unsupported CPU
212
#endif
213
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215
                         tb->flags != flags, 0)) {
216
        tb = tb_find_slow(pc, cs_base, flags);
217
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
218
           doing it in tb_find_slow */
219
        if (tb_invalidated_flag) {
220
            /* as some TB could have been invalidated because
221
               of memory exceptions while generating the code, we
222
               must recompute the hash index here */
223
            T0 = 0;
224
        }
225
    }
226
    return tb;
227
}
228

    
229

    
230
/* main execution loop */
231

    
232
int cpu_exec(CPUState *env1)
233
{
234
#define DECLARE_HOST_REGS 1
235
#include "hostregs_helper.h"
236
#if defined(TARGET_SPARC)
237
#if defined(reg_REGWPTR)
238
    uint32_t *saved_regwptr;
239
#endif
240
#endif
241
#if defined(__sparc__) && !defined(HOST_SOLARIS)
242
    int saved_i7;
243
    target_ulong tmp_T0;
244
#endif
245
    int ret, interrupt_request;
246
    void (*gen_func)(void);
247
    TranslationBlock *tb;
248
    uint8_t *tc_ptr;
249

    
250
#if defined(TARGET_I386)
251
    /* handle exit of HALTED state */
252
    if (env1->hflags & HF_HALTED_MASK) {
253
        /* disable halt condition */
254
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255
            (env1->eflags & IF_MASK)) {
256
            env1->hflags &= ~HF_HALTED_MASK;
257
        } else {
258
            return EXCP_HALTED;
259
        }
260
    }
261
#elif defined(TARGET_PPC)
262
    if (env1->halted) {
263
        if (env1->msr[MSR_EE] && 
264
            (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265
            env1->halted = 0;
266
        } else {
267
            return EXCP_HALTED;
268
        }
269
    }
270
#elif defined(TARGET_SPARC)
271
    if (env1->halted) {
272
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273
            (env1->psret != 0)) {
274
            env1->halted = 0;
275
        } else {
276
            return EXCP_HALTED;
277
        }
278
    }
279
#elif defined(TARGET_ARM)
280
    if (env1->halted) {
281
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
282
           set.  */
283
        if (env1->interrupt_request
284
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
285
            env1->halted = 0;
286
        } else {
287
            return EXCP_HALTED;
288
        }
289
    }
290
#elif defined(TARGET_MIPS)
291
    if (env1->halted) {
292
        if (env1->interrupt_request &
293
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
294
            env1->halted = 0;
295
        } else {
296
            return EXCP_HALTED;
297
        }
298
    }
299
#elif defined(TARGET_ALPHA)
300
    if (env1->halted) {
301
        if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
302
            env1->halted = 0;
303
        } else {
304
            return EXCP_HALTED;
305
        }
306
    }
307
#endif
308

    
309
    cpu_single_env = env1; 
310

    
311
    /* first we save global registers */
312
#define SAVE_HOST_REGS 1
313
#include "hostregs_helper.h"
314
    env = env1;
315
#if defined(__sparc__) && !defined(HOST_SOLARIS)
316
    /* we also save i7 because longjmp may not restore it */
317
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
318
#endif
319

    
320
#if defined(TARGET_I386)
321
    env_to_regs();
322
    /* put eflags in CPU temporary format */
323
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
325
    CC_OP = CC_OP_EFLAGS;
326
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327
#elif defined(TARGET_ARM)
328
#elif defined(TARGET_SPARC)
329
#if defined(reg_REGWPTR)
330
    saved_regwptr = REGWPTR;
331
#endif
332
#elif defined(TARGET_PPC)
333
#elif defined(TARGET_M68K)
334
    env->cc_op = CC_OP_FLAGS;
335
    env->cc_dest = env->sr & 0xf;
336
    env->cc_x = (env->sr >> 4) & 1;
337
#elif defined(TARGET_MIPS)
338
#elif defined(TARGET_SH4)
339
    /* XXXXX */
340
#elif defined(TARGET_ALPHA)
341
    env_to_regs();
342
#else
343
#error unsupported target CPU
344
#endif
345
    env->exception_index = -1;
346

    
347
    /* prepare setjmp context for exception handling */
348
    for(;;) {
349
        if (setjmp(env->jmp_env) == 0) {
350
            env->current_tb = NULL;
351
            /* if an exception is pending, we execute it here */
352
            if (env->exception_index >= 0) {
353
                if (env->exception_index >= EXCP_INTERRUPT) {
354
                    /* exit request from the cpu execution loop */
355
                    ret = env->exception_index;
356
                    break;
357
                } else if (env->user_mode_only) {
358
                    /* if user mode only, we simulate a fake exception
359
                       which will be handled outside the cpu execution
360
                       loop */
361
#if defined(TARGET_I386)
362
                    do_interrupt_user(env->exception_index, 
363
                                      env->exception_is_int, 
364
                                      env->error_code, 
365
                                      env->exception_next_eip);
366
#endif
367
                    ret = env->exception_index;
368
                    break;
369
                } else {
370
#if defined(TARGET_I386)
371
                    /* simulate a real cpu exception. On i386, it can
372
                       trigger new exceptions, but we do not handle
373
                       double or triple faults yet. */
374
                    do_interrupt(env->exception_index, 
375
                                 env->exception_is_int, 
376
                                 env->error_code, 
377
                                 env->exception_next_eip, 0);
378
                    /* successfully delivered */
379
                    env->old_exception = -1;
380
#elif defined(TARGET_PPC)
381
                    do_interrupt(env);
382
#elif defined(TARGET_MIPS)
383
                    do_interrupt(env);
384
#elif defined(TARGET_SPARC)
385
                    do_interrupt(env->exception_index);
386
#elif defined(TARGET_ARM)
387
                    do_interrupt(env);
388
#elif defined(TARGET_SH4)
389
                    do_interrupt(env);
390
#elif defined(TARGET_ALPHA)
391
                    do_interrupt(env);
392
#endif
393
                }
394
                env->exception_index = -1;
395
            } 
396
#ifdef USE_KQEMU
397
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
398
                int ret;
399
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
400
                ret = kqemu_cpu_exec(env);
401
                /* put eflags in CPU temporary format */
402
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
403
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
404
                CC_OP = CC_OP_EFLAGS;
405
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406
                if (ret == 1) {
407
                    /* exception */
408
                    longjmp(env->jmp_env, 1);
409
                } else if (ret == 2) {
410
                    /* softmmu execution needed */
411
                } else {
412
                    if (env->interrupt_request != 0) {
413
                        /* hardware interrupt will be executed just after */
414
                    } else {
415
                        /* otherwise, we restart */
416
                        longjmp(env->jmp_env, 1);
417
                    }
418
                }
419
            }
420
#endif
421

    
422
            T0 = 0; /* force lookup of first TB */
423
            for(;;) {
424
#if defined(__sparc__) && !defined(HOST_SOLARIS)
425
                /* g1 can be modified by some libc? functions */ 
426
                tmp_T0 = T0;
427
#endif            
428
                interrupt_request = env->interrupt_request;
429
                if (__builtin_expect(interrupt_request, 0)) {
430
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
431
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
432
                        env->exception_index = EXCP_DEBUG;
433
                        cpu_loop_exit();
434
                    }
435
#if defined(TARGET_I386)
436
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
437
                        !(env->hflags & HF_SMM_MASK)) {
438
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
439
                        do_smm_enter();
440
#if defined(__sparc__) && !defined(HOST_SOLARIS)
441
                        tmp_T0 = 0;
442
#else
443
                        T0 = 0;
444
#endif
445
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
446
                        (env->eflags & IF_MASK) && 
447
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
448
                        int intno;
449
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450
                        intno = cpu_get_pic_interrupt(env);
451
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
452
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
453
                        }
454
                        do_interrupt(intno, 0, 0, 0, 1);
455
                        /* ensure that no TB jump will be modified as
456
                           the program flow was changed */
457
#if defined(__sparc__) && !defined(HOST_SOLARIS)
458
                        tmp_T0 = 0;
459
#else
460
                        T0 = 0;
461
#endif
462
                    }
463
#elif defined(TARGET_PPC)
464
#if 0
465
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
466
                        cpu_ppc_reset(env);
467
                    }
468
#endif
469
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
470
                        ppc_hw_interrupt(env);
471
                        if (env->pending_interrupts == 0)
472
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
473
#if defined(__sparc__) && !defined(HOST_SOLARIS)
474
                        tmp_T0 = 0;
475
#else
476
                        T0 = 0;
477
#endif
478
                    }
479
#elif defined(TARGET_MIPS)
480
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
481
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
482
                        (env->CP0_Status & (1 << CP0St_IE)) &&
483
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
484
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
485
                        !(env->hflags & MIPS_HFLAG_DM)) {
486
                        /* Raise it */
487
                        env->exception_index = EXCP_EXT_INTERRUPT;
488
                        env->error_code = 0;
489
                        do_interrupt(env);
490
#if defined(__sparc__) && !defined(HOST_SOLARIS)
491
                        tmp_T0 = 0;
492
#else
493
                        T0 = 0;
494
#endif
495
                    }
496
#elif defined(TARGET_SPARC)
497
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
498
                        (env->psret != 0)) {
499
                        int pil = env->interrupt_index & 15;
500
                        int type = env->interrupt_index & 0xf0;
501

    
502
                        if (((type == TT_EXTINT) &&
503
                             (pil == 15 || pil > env->psrpil)) ||
504
                            type != TT_EXTINT) {
505
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
506
                            do_interrupt(env->interrupt_index);
507
                            env->interrupt_index = 0;
508
#if defined(__sparc__) && !defined(HOST_SOLARIS)
509
                            tmp_T0 = 0;
510
#else
511
                            T0 = 0;
512
#endif
513
                        }
514
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
515
                        //do_interrupt(0, 0, 0, 0, 0);
516
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
517
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
518
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
519
                        env->halted = 1;
520
                        env->exception_index = EXCP_HLT;
521
                        cpu_loop_exit();
522
                    }
523
#elif defined(TARGET_ARM)
524
                    if (interrupt_request & CPU_INTERRUPT_FIQ
525
                        && !(env->uncached_cpsr & CPSR_F)) {
526
                        env->exception_index = EXCP_FIQ;
527
                        do_interrupt(env);
528
                    }
529
                    if (interrupt_request & CPU_INTERRUPT_HARD
530
                        && !(env->uncached_cpsr & CPSR_I)) {
531
                        env->exception_index = EXCP_IRQ;
532
                        do_interrupt(env);
533
                    }
534
#elif defined(TARGET_SH4)
535
                    /* XXXXX */
536
#elif defined(TARGET_ALPHA)
537
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
538
                        do_interrupt(env);
539
                    }
540
#endif
541
                   /* Don't use the cached interupt_request value,
542
                      do_interrupt may have updated the EXITTB flag. */
543
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
544
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
545
                        /* ensure that no TB jump will be modified as
546
                           the program flow was changed */
547
#if defined(__sparc__) && !defined(HOST_SOLARIS)
548
                        tmp_T0 = 0;
549
#else
550
                        T0 = 0;
551
#endif
552
                    }
553
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
554
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
555
                        env->exception_index = EXCP_INTERRUPT;
556
                        cpu_loop_exit();
557
                    }
558
                }
559
#ifdef DEBUG_EXEC
560
                if ((loglevel & CPU_LOG_TB_CPU)) {
561
#if defined(TARGET_I386)
562
                    /* restore flags in standard format */
563
#ifdef reg_EAX
564
                    env->regs[R_EAX] = EAX;
565
#endif
566
#ifdef reg_EBX
567
                    env->regs[R_EBX] = EBX;
568
#endif
569
#ifdef reg_ECX
570
                    env->regs[R_ECX] = ECX;
571
#endif
572
#ifdef reg_EDX
573
                    env->regs[R_EDX] = EDX;
574
#endif
575
#ifdef reg_ESI
576
                    env->regs[R_ESI] = ESI;
577
#endif
578
#ifdef reg_EDI
579
                    env->regs[R_EDI] = EDI;
580
#endif
581
#ifdef reg_EBP
582
                    env->regs[R_EBP] = EBP;
583
#endif
584
#ifdef reg_ESP
585
                    env->regs[R_ESP] = ESP;
586
#endif
587
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
588
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
589
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
590
#elif defined(TARGET_ARM)
591
                    cpu_dump_state(env, logfile, fprintf, 0);
592
#elif defined(TARGET_SPARC)
593
                    REGWPTR = env->regbase + (env->cwp * 16);
594
                    env->regwptr = REGWPTR;
595
                    cpu_dump_state(env, logfile, fprintf, 0);
596
#elif defined(TARGET_PPC)
597
                    cpu_dump_state(env, logfile, fprintf, 0);
598
#elif defined(TARGET_M68K)
599
                    cpu_m68k_flush_flags(env, env->cc_op);
600
                    env->cc_op = CC_OP_FLAGS;
601
                    env->sr = (env->sr & 0xffe0)
602
                              | env->cc_dest | (env->cc_x << 4);
603
                    cpu_dump_state(env, logfile, fprintf, 0);
604
#elif defined(TARGET_MIPS)
605
                    cpu_dump_state(env, logfile, fprintf, 0);
606
#elif defined(TARGET_SH4)
607
                    cpu_dump_state(env, logfile, fprintf, 0);
608
#elif defined(TARGET_ALPHA)
609
                    cpu_dump_state(env, logfile, fprintf, 0);
610
#else
611
#error unsupported target CPU 
612
#endif
613
                }
614
#endif
615
                tb = tb_find_fast();
616
#ifdef DEBUG_EXEC
617
                if ((loglevel & CPU_LOG_EXEC)) {
618
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
619
                            (long)tb->tc_ptr, tb->pc,
620
                            lookup_symbol(tb->pc));
621
                }
622
#endif
623
#if defined(__sparc__) && !defined(HOST_SOLARIS)
624
                T0 = tmp_T0;
625
#endif            
626
                /* see if we can patch the calling TB. When the TB
627
                   spans two pages, we cannot safely do a direct
628
                   jump. */
629
                {
630
                    if (T0 != 0 &&
631
#if USE_KQEMU
632
                        (env->kqemu_enabled != 2) &&
633
#endif
634
                        tb->page_addr[1] == -1
635
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
636
                    && (tb->cflags & CF_CODE_COPY) == 
637
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
638
#endif
639
                    ) {
640
                    spin_lock(&tb_lock);
641
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
642
#if defined(USE_CODE_COPY)
643
                    /* propagates the FP use info */
644
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
645
                        (tb->cflags & CF_FP_USED);
646
#endif
647
                    spin_unlock(&tb_lock);
648
                }
649
                }
650
                tc_ptr = tb->tc_ptr;
651
                env->current_tb = tb;
652
                /* execute the generated code */
653
                gen_func = (void *)tc_ptr;
654
#if defined(__sparc__)
655
                __asm__ __volatile__("call        %0\n\t"
656
                                     "mov        %%o7,%%i0"
657
                                     : /* no outputs */
658
                                     : "r" (gen_func) 
659
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
660
                                       "o0", "o1", "o2", "o3", "o4", "o5",
661
                                       "l0", "l1", "l2", "l3", "l4", "l5",
662
                                       "l6", "l7");
663
#elif defined(__arm__)
664
                asm volatile ("mov pc, %0\n\t"
665
                              ".global exec_loop\n\t"
666
                              "exec_loop:\n\t"
667
                              : /* no outputs */
668
                              : "r" (gen_func)
669
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
670
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
671
{
672
    if (!(tb->cflags & CF_CODE_COPY)) {
673
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
674
            save_native_fp_state(env);
675
        }
676
        gen_func();
677
    } else {
678
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
679
            restore_native_fp_state(env);
680
        }
681
        /* we work with native eflags */
682
        CC_SRC = cc_table[CC_OP].compute_all();
683
        CC_OP = CC_OP_EFLAGS;
684
        asm(".globl exec_loop\n"
685
            "\n"
686
            "debug1:\n"
687
            "    pushl %%ebp\n"
688
            "    fs movl %10, %9\n"
689
            "    fs movl %11, %%eax\n"
690
            "    andl $0x400, %%eax\n"
691
            "    fs orl %8, %%eax\n"
692
            "    pushl %%eax\n"
693
            "    popf\n"
694
            "    fs movl %%esp, %12\n"
695
            "    fs movl %0, %%eax\n"
696
            "    fs movl %1, %%ecx\n"
697
            "    fs movl %2, %%edx\n"
698
            "    fs movl %3, %%ebx\n"
699
            "    fs movl %4, %%esp\n"
700
            "    fs movl %5, %%ebp\n"
701
            "    fs movl %6, %%esi\n"
702
            "    fs movl %7, %%edi\n"
703
            "    fs jmp *%9\n"
704
            "exec_loop:\n"
705
            "    fs movl %%esp, %4\n"
706
            "    fs movl %12, %%esp\n"
707
            "    fs movl %%eax, %0\n"
708
            "    fs movl %%ecx, %1\n"
709
            "    fs movl %%edx, %2\n"
710
            "    fs movl %%ebx, %3\n"
711
            "    fs movl %%ebp, %5\n"
712
            "    fs movl %%esi, %6\n"
713
            "    fs movl %%edi, %7\n"
714
            "    pushf\n"
715
            "    popl %%eax\n"
716
            "    movl %%eax, %%ecx\n"
717
            "    andl $0x400, %%ecx\n"
718
            "    shrl $9, %%ecx\n"
719
            "    andl $0x8d5, %%eax\n"
720
            "    fs movl %%eax, %8\n"
721
            "    movl $1, %%eax\n"
722
            "    subl %%ecx, %%eax\n"
723
            "    fs movl %%eax, %11\n"
724
            "    fs movl %9, %%ebx\n" /* get T0 value */
725
            "    popl %%ebp\n"
726
            :
727
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
728
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
729
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
730
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
731
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
732
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
733
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
734
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
735
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
736
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
737
            "a" (gen_func),
738
            "m" (*(uint8_t *)offsetof(CPUState, df)),
739
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
740
            : "%ecx", "%edx"
741
            );
742
    }
743
}
744
#elif defined(__ia64)
745
                struct fptr {
746
                        void *ip;
747
                        void *gp;
748
                } fp;
749

    
750
                fp.ip = tc_ptr;
751
                fp.gp = code_gen_buffer + 2 * (1 << 20);
752
                (*(void (*)(void)) &fp)();
753
#else
754
                gen_func();
755
#endif
756
                env->current_tb = NULL;
757
                /* reset soft MMU for next block (it can currently
758
                   only be set by a memory fault) */
759
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
760
                if (env->hflags & HF_SOFTMMU_MASK) {
761
                    env->hflags &= ~HF_SOFTMMU_MASK;
762
                    /* do not allow linking to another block */
763
                    T0 = 0;
764
                }
765
#endif
766
#if defined(USE_KQEMU)
767
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
768
                if (kqemu_is_ok(env) &&
769
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
770
                    cpu_loop_exit();
771
                }
772
#endif
773
            }
774
        } else {
775
            env_to_regs();
776
        }
777
    } /* for(;;) */
778

    
779

    
780
#if defined(TARGET_I386)
781
#if defined(USE_CODE_COPY)
782
    if (env->native_fp_regs) {
783
        save_native_fp_state(env);
784
    }
785
#endif
786
    /* restore flags in standard format */
787
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
788
#elif defined(TARGET_ARM)
789
    /* XXX: Save/restore host fpu exception state?.  */
790
#elif defined(TARGET_SPARC)
791
#if defined(reg_REGWPTR)
792
    REGWPTR = saved_regwptr;
793
#endif
794
#elif defined(TARGET_PPC)
795
#elif defined(TARGET_M68K)
796
    cpu_m68k_flush_flags(env, env->cc_op);
797
    env->cc_op = CC_OP_FLAGS;
798
    env->sr = (env->sr & 0xffe0)
799
              | env->cc_dest | (env->cc_x << 4);
800
#elif defined(TARGET_MIPS)
801
#elif defined(TARGET_SH4)
802
#elif defined(TARGET_ALPHA)
803
    /* XXXXX */
804
#else
805
#error unsupported target CPU
806
#endif
807

    
808
    /* restore global registers */
809
#if defined(__sparc__) && !defined(HOST_SOLARIS)
810
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
811
#endif
812
#include "hostregs_helper.h"
813

    
814
    /* fail safe : never use cpu_single_env outside cpu_exec() */
815
    cpu_single_env = NULL; 
816
    return ret;
817
}
818

    
819
/* must only be called from the generated code as an exception can be
820
   generated */
821
void tb_invalidate_page_range(target_ulong start, target_ulong end)
822
{
823
    /* XXX: cannot enable it yet because it yields to MMU exception
824
       where NIP != read address on PowerPC */
825
#if 0
826
    target_ulong phys_addr;
827
    phys_addr = get_phys_addr_code(env, start);
828
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
829
#endif
830
}
831

    
832
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
833

    
834
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
835
{
836
    CPUX86State *saved_env;
837

    
838
    saved_env = env;
839
    env = s;
840
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
841
        selector &= 0xffff;
842
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
843
                               (selector << 4), 0xffff, 0);
844
    } else {
845
        load_seg(seg_reg, selector);
846
    }
847
    env = saved_env;
848
}
849

    
850
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
851
{
852
    CPUX86State *saved_env;
853

    
854
    saved_env = env;
855
    env = s;
856
    
857
    helper_fsave((target_ulong)ptr, data32);
858

    
859
    env = saved_env;
860
}
861

    
862
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
863
{
864
    CPUX86State *saved_env;
865

    
866
    saved_env = env;
867
    env = s;
868
    
869
    helper_frstor((target_ulong)ptr, data32);
870

    
871
    env = saved_env;
872
}
873

    
874
#endif /* TARGET_I386 */
875

    
876
#if !defined(CONFIG_SOFTMMU)
877

    
878
#if defined(TARGET_I386)
879

    
880
/* 'pc' is the host PC at which the exception was raised. 'address' is
881
   the effective address of the memory exception. 'is_write' is 1 if a
882
   write caused the exception and otherwise 0'. 'old_set' is the
883
   signal set which should be restored */
884
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
885
                                    int is_write, sigset_t *old_set, 
886
                                    void *puc)
887
{
888
    TranslationBlock *tb;
889
    int ret;
890

    
891
    if (cpu_single_env)
892
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
893
#if defined(DEBUG_SIGNAL)
894
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
895
                pc, address, is_write, *(unsigned long *)old_set);
896
#endif
897
    /* XXX: locking issue */
898
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
899
        return 1;
900
    }
901

    
902
    /* see if it is an MMU fault */
903
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
904
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
905
    if (ret < 0)
906
        return 0; /* not an MMU fault */
907
    if (ret == 0)
908
        return 1; /* the MMU fault was handled without causing real CPU fault */
909
    /* now we have a real cpu fault */
910
    tb = tb_find_pc(pc);
911
    if (tb) {
912
        /* the PC is inside the translated code. It means that we have
913
           a virtual CPU fault */
914
        cpu_restore_state(tb, env, pc, puc);
915
    }
916
    if (ret == 1) {
917
#if 0
918
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
919
               env->eip, env->cr[2], env->error_code);
920
#endif
921
        /* we restore the process signal mask as the sigreturn should
922
           do it (XXX: use sigsetjmp) */
923
        sigprocmask(SIG_SETMASK, old_set, NULL);
924
        raise_exception_err(env->exception_index, env->error_code);
925
    } else {
926
        /* activate soft MMU for this block */
927
        env->hflags |= HF_SOFTMMU_MASK;
928
        cpu_resume_from_signal(env, puc);
929
    }
930
    /* never comes here */
931
    return 1;
932
}
933

    
934
#elif defined(TARGET_ARM)
935
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
936
                                    int is_write, sigset_t *old_set,
937
                                    void *puc)
938
{
939
    TranslationBlock *tb;
940
    int ret;
941

    
942
    if (cpu_single_env)
943
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
944
#if defined(DEBUG_SIGNAL)
945
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
946
           pc, address, is_write, *(unsigned long *)old_set);
947
#endif
948
    /* XXX: locking issue */
949
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
950
        return 1;
951
    }
952
    /* see if it is an MMU fault */
953
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
954
    if (ret < 0)
955
        return 0; /* not an MMU fault */
956
    if (ret == 0)
957
        return 1; /* the MMU fault was handled without causing real CPU fault */
958
    /* now we have a real cpu fault */
959
    tb = tb_find_pc(pc);
960
    if (tb) {
961
        /* the PC is inside the translated code. It means that we have
962
           a virtual CPU fault */
963
        cpu_restore_state(tb, env, pc, puc);
964
    }
965
    /* we restore the process signal mask as the sigreturn should
966
       do it (XXX: use sigsetjmp) */
967
    sigprocmask(SIG_SETMASK, old_set, NULL);
968
    cpu_loop_exit();
969
}
970
#elif defined(TARGET_SPARC)
971
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
972
                                    int is_write, sigset_t *old_set,
973
                                    void *puc)
974
{
975
    TranslationBlock *tb;
976
    int ret;
977

    
978
    if (cpu_single_env)
979
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
980
#if defined(DEBUG_SIGNAL)
981
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
982
           pc, address, is_write, *(unsigned long *)old_set);
983
#endif
984
    /* XXX: locking issue */
985
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
986
        return 1;
987
    }
988
    /* see if it is an MMU fault */
989
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
990
    if (ret < 0)
991
        return 0; /* not an MMU fault */
992
    if (ret == 0)
993
        return 1; /* the MMU fault was handled without causing real CPU fault */
994
    /* now we have a real cpu fault */
995
    tb = tb_find_pc(pc);
996
    if (tb) {
997
        /* the PC is inside the translated code. It means that we have
998
           a virtual CPU fault */
999
        cpu_restore_state(tb, env, pc, puc);
1000
    }
1001
    /* we restore the process signal mask as the sigreturn should
1002
       do it (XXX: use sigsetjmp) */
1003
    sigprocmask(SIG_SETMASK, old_set, NULL);
1004
    cpu_loop_exit();
1005
}
1006
#elif defined (TARGET_PPC)
1007
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1008
                                    int is_write, sigset_t *old_set,
1009
                                    void *puc)
1010
{
1011
    TranslationBlock *tb;
1012
    int ret;
1013
    
1014
    if (cpu_single_env)
1015
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1016
#if defined(DEBUG_SIGNAL)
1017
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1018
           pc, address, is_write, *(unsigned long *)old_set);
1019
#endif
1020
    /* XXX: locking issue */
1021
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1022
        return 1;
1023
    }
1024

    
1025
    /* see if it is an MMU fault */
1026
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1027
    if (ret < 0)
1028
        return 0; /* not an MMU fault */
1029
    if (ret == 0)
1030
        return 1; /* the MMU fault was handled without causing real CPU fault */
1031

    
1032
    /* now we have a real cpu fault */
1033
    tb = tb_find_pc(pc);
1034
    if (tb) {
1035
        /* the PC is inside the translated code. It means that we have
1036
           a virtual CPU fault */
1037
        cpu_restore_state(tb, env, pc, puc);
1038
    }
1039
    if (ret == 1) {
1040
#if 0
1041
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1042
               env->nip, env->error_code, tb);
1043
#endif
1044
    /* we restore the process signal mask as the sigreturn should
1045
       do it (XXX: use sigsetjmp) */
1046
        sigprocmask(SIG_SETMASK, old_set, NULL);
1047
        do_raise_exception_err(env->exception_index, env->error_code);
1048
    } else {
1049
        /* activate soft MMU for this block */
1050
        cpu_resume_from_signal(env, puc);
1051
    }
1052
    /* never comes here */
1053
    return 1;
1054
}
1055

    
1056
#elif defined(TARGET_M68K)
1057
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1058
                                    int is_write, sigset_t *old_set,
1059
                                    void *puc)
1060
{
1061
    TranslationBlock *tb;
1062
    int ret;
1063

    
1064
    if (cpu_single_env)
1065
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1066
#if defined(DEBUG_SIGNAL)
1067
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1068
           pc, address, is_write, *(unsigned long *)old_set);
1069
#endif
1070
    /* XXX: locking issue */
1071
    if (is_write && page_unprotect(address, pc, puc)) {
1072
        return 1;
1073
    }
1074
    /* see if it is an MMU fault */
1075
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1076
    if (ret < 0)
1077
        return 0; /* not an MMU fault */
1078
    if (ret == 0)
1079
        return 1; /* the MMU fault was handled without causing real CPU fault */
1080
    /* now we have a real cpu fault */
1081
    tb = tb_find_pc(pc);
1082
    if (tb) {
1083
        /* the PC is inside the translated code. It means that we have
1084
           a virtual CPU fault */
1085
        cpu_restore_state(tb, env, pc, puc);
1086
    }
1087
    /* we restore the process signal mask as the sigreturn should
1088
       do it (XXX: use sigsetjmp) */
1089
    sigprocmask(SIG_SETMASK, old_set, NULL);
1090
    cpu_loop_exit();
1091
    /* never comes here */
1092
    return 1;
1093
}
1094

    
1095
#elif defined (TARGET_MIPS)
1096
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1097
                                    int is_write, sigset_t *old_set,
1098
                                    void *puc)
1099
{
1100
    TranslationBlock *tb;
1101
    int ret;
1102
    
1103
    if (cpu_single_env)
1104
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1105
#if defined(DEBUG_SIGNAL)
1106
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1107
           pc, address, is_write, *(unsigned long *)old_set);
1108
#endif
1109
    /* XXX: locking issue */
1110
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1111
        return 1;
1112
    }
1113

    
1114
    /* see if it is an MMU fault */
1115
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1116
    if (ret < 0)
1117
        return 0; /* not an MMU fault */
1118
    if (ret == 0)
1119
        return 1; /* the MMU fault was handled without causing real CPU fault */
1120

    
1121
    /* now we have a real cpu fault */
1122
    tb = tb_find_pc(pc);
1123
    if (tb) {
1124
        /* the PC is inside the translated code. It means that we have
1125
           a virtual CPU fault */
1126
        cpu_restore_state(tb, env, pc, puc);
1127
    }
1128
    if (ret == 1) {
1129
#if 0
1130
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1131
               env->nip, env->error_code, tb);
1132
#endif
1133
    /* we restore the process signal mask as the sigreturn should
1134
       do it (XXX: use sigsetjmp) */
1135
        sigprocmask(SIG_SETMASK, old_set, NULL);
1136
        do_raise_exception_err(env->exception_index, env->error_code);
1137
    } else {
1138
        /* activate soft MMU for this block */
1139
        cpu_resume_from_signal(env, puc);
1140
    }
1141
    /* never comes here */
1142
    return 1;
1143
}
1144

    
1145
#elif defined (TARGET_SH4)
1146
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1147
                                    int is_write, sigset_t *old_set,
1148
                                    void *puc)
1149
{
1150
    TranslationBlock *tb;
1151
    int ret;
1152
    
1153
    if (cpu_single_env)
1154
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1155
#if defined(DEBUG_SIGNAL)
1156
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1157
           pc, address, is_write, *(unsigned long *)old_set);
1158
#endif
1159
    /* XXX: locking issue */
1160
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1161
        return 1;
1162
    }
1163

    
1164
    /* see if it is an MMU fault */
1165
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1166
    if (ret < 0)
1167
        return 0; /* not an MMU fault */
1168
    if (ret == 0)
1169
        return 1; /* the MMU fault was handled without causing real CPU fault */
1170

    
1171
    /* now we have a real cpu fault */
1172
    tb = tb_find_pc(pc);
1173
    if (tb) {
1174
        /* the PC is inside the translated code. It means that we have
1175
           a virtual CPU fault */
1176
        cpu_restore_state(tb, env, pc, puc);
1177
    }
1178
#if 0
1179
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1180
               env->nip, env->error_code, tb);
1181
#endif
1182
    /* we restore the process signal mask as the sigreturn should
1183
       do it (XXX: use sigsetjmp) */
1184
    sigprocmask(SIG_SETMASK, old_set, NULL);
1185
    cpu_loop_exit();
1186
    /* never comes here */
1187
    return 1;
1188
}
1189

    
1190
#elif defined (TARGET_ALPHA)
1191
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1192
                                    int is_write, sigset_t *old_set,
1193
                                    void *puc)
1194
{
1195
    TranslationBlock *tb;
1196
    int ret;
1197
    
1198
    if (cpu_single_env)
1199
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1200
#if defined(DEBUG_SIGNAL)
1201
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1202
           pc, address, is_write, *(unsigned long *)old_set);
1203
#endif
1204
    /* XXX: locking issue */
1205
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1206
        return 1;
1207
    }
1208

    
1209
    /* see if it is an MMU fault */
1210
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1211
    if (ret < 0)
1212
        return 0; /* not an MMU fault */
1213
    if (ret == 0)
1214
        return 1; /* the MMU fault was handled without causing real CPU fault */
1215

    
1216
    /* now we have a real cpu fault */
1217
    tb = tb_find_pc(pc);
1218
    if (tb) {
1219
        /* the PC is inside the translated code. It means that we have
1220
           a virtual CPU fault */
1221
        cpu_restore_state(tb, env, pc, puc);
1222
    }
1223
#if 0
1224
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1225
               env->nip, env->error_code, tb);
1226
#endif
1227
    /* we restore the process signal mask as the sigreturn should
1228
       do it (XXX: use sigsetjmp) */
1229
    sigprocmask(SIG_SETMASK, old_set, NULL);
1230
    cpu_loop_exit();
1231
    /* never comes here */
1232
    return 1;
1233
}
1234
#else
1235
#error unsupported target CPU
1236
#endif
1237

    
1238
#if defined(__i386__)
1239

    
1240
#if defined(__APPLE__)
1241
# include <sys/ucontext.h>
1242

    
1243
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1244
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1245
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1246
#else
1247
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1248
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1249
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1250
#endif
1251

    
1252
#if defined(USE_CODE_COPY)
1253
static void cpu_send_trap(unsigned long pc, int trap, 
1254
                          struct ucontext *uc)
1255
{
1256
    TranslationBlock *tb;
1257

    
1258
    if (cpu_single_env)
1259
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1260
    /* now we have a real cpu fault */
1261
    tb = tb_find_pc(pc);
1262
    if (tb) {
1263
        /* the PC is inside the translated code. It means that we have
1264
           a virtual CPU fault */
1265
        cpu_restore_state(tb, env, pc, uc);
1266
    }
1267
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1268
    raise_exception_err(trap, env->error_code);
1269
}
1270
#endif
1271

    
1272
int cpu_signal_handler(int host_signum, void *pinfo, 
1273
                       void *puc)
1274
{
1275
    siginfo_t *info = pinfo;
1276
    struct ucontext *uc = puc;
1277
    unsigned long pc;
1278
    int trapno;
1279

    
1280
#ifndef REG_EIP
1281
/* for glibc 2.1 */
1282
#define REG_EIP    EIP
1283
#define REG_ERR    ERR
1284
#define REG_TRAPNO TRAPNO
1285
#endif
1286
    pc = EIP_sig(uc);
1287
    trapno = TRAP_sig(uc);
1288
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1289
    if (trapno == 0x00 || trapno == 0x05) {
1290
        /* send division by zero or bound exception */
1291
        cpu_send_trap(pc, trapno, uc);
1292
        return 1;
1293
    } else
1294
#endif
1295
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1296
                                 trapno == 0xe ? 
1297
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1298
                                 &uc->uc_sigmask, puc);
1299
}
1300

    
1301
#elif defined(__x86_64__)
1302

    
1303
int cpu_signal_handler(int host_signum, void *pinfo,
1304
                       void *puc)
1305
{
1306
    siginfo_t *info = pinfo;
1307
    struct ucontext *uc = puc;
1308
    unsigned long pc;
1309

    
1310
    pc = uc->uc_mcontext.gregs[REG_RIP];
1311
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1312
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1313
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1314
                             &uc->uc_sigmask, puc);
1315
}
1316

    
1317
#elif defined(__powerpc__)
1318

    
1319
/***********************************************************************
1320
 * signal context platform-specific definitions
1321
 * From Wine
1322
 */
1323
#ifdef linux
1324
/* All Registers access - only for local access */
1325
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1326
/* Gpr Registers access  */
1327
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1328
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1329
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1330
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1331
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1332
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1333
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1334
/* Float Registers access  */
1335
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1336
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1337
/* Exception Registers access */
1338
# define DAR_sig(context)                        REG_sig(dar, context)
1339
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1340
# define TRAP_sig(context)                        REG_sig(trap, context)
1341
#endif /* linux */
1342

    
1343
#ifdef __APPLE__
1344
# include <sys/ucontext.h>
1345
typedef struct ucontext SIGCONTEXT;
1346
/* All Registers access - only for local access */
1347
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1348
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1349
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1350
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1351
/* Gpr Registers access */
1352
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1353
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1354
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1355
# define CTR_sig(context)                        REG_sig(ctr, context)
1356
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1357
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1358
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1359
/* Float Registers access */
1360
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1361
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1362
/* Exception Registers access */
1363
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1364
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1365
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1366
#endif /* __APPLE__ */
1367

    
1368
int cpu_signal_handler(int host_signum, void *pinfo, 
1369
                       void *puc)
1370
{
1371
    siginfo_t *info = pinfo;
1372
    struct ucontext *uc = puc;
1373
    unsigned long pc;
1374
    int is_write;
1375

    
1376
    pc = IAR_sig(uc);
1377
    is_write = 0;
1378
#if 0
1379
    /* ppc 4xx case */
1380
    if (DSISR_sig(uc) & 0x00800000)
1381
        is_write = 1;
1382
#else
1383
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1384
        is_write = 1;
1385
#endif
1386
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1387
                             is_write, &uc->uc_sigmask, puc);
1388
}
1389

    
1390
#elif defined(__alpha__)
1391

    
1392
int cpu_signal_handler(int host_signum, void *pinfo, 
1393
                           void *puc)
1394
{
1395
    siginfo_t *info = pinfo;
1396
    struct ucontext *uc = puc;
1397
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1398
    uint32_t insn = *pc;
1399
    int is_write = 0;
1400

    
1401
    /* XXX: need kernel patch to get write flag faster */
1402
    switch (insn >> 26) {
1403
    case 0x0d: // stw
1404
    case 0x0e: // stb
1405
    case 0x0f: // stq_u
1406
    case 0x24: // stf
1407
    case 0x25: // stg
1408
    case 0x26: // sts
1409
    case 0x27: // stt
1410
    case 0x2c: // stl
1411
    case 0x2d: // stq
1412
    case 0x2e: // stl_c
1413
    case 0x2f: // stq_c
1414
        is_write = 1;
1415
    }
1416

    
1417
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1418
                             is_write, &uc->uc_sigmask, puc);
1419
}
1420
#elif defined(__sparc__)
1421

    
1422
int cpu_signal_handler(int host_signum, void *pinfo, 
1423
                       void *puc)
1424
{
1425
    siginfo_t *info = pinfo;
1426
    uint32_t *regs = (uint32_t *)(info + 1);
1427
    void *sigmask = (regs + 20);
1428
    unsigned long pc;
1429
    int is_write;
1430
    uint32_t insn;
1431
    
1432
    /* XXX: is there a standard glibc define ? */
1433
    pc = regs[1];
1434
    /* XXX: need kernel patch to get write flag faster */
1435
    is_write = 0;
1436
    insn = *(uint32_t *)pc;
1437
    if ((insn >> 30) == 3) {
1438
      switch((insn >> 19) & 0x3f) {
1439
      case 0x05: // stb
1440
      case 0x06: // sth
1441
      case 0x04: // st
1442
      case 0x07: // std
1443
      case 0x24: // stf
1444
      case 0x27: // stdf
1445
      case 0x25: // stfsr
1446
        is_write = 1;
1447
        break;
1448
      }
1449
    }
1450
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1451
                             is_write, sigmask, NULL);
1452
}
1453

    
1454
#elif defined(__arm__)
1455

    
1456
int cpu_signal_handler(int host_signum, void *pinfo, 
1457
                       void *puc)
1458
{
1459
    siginfo_t *info = pinfo;
1460
    struct ucontext *uc = puc;
1461
    unsigned long pc;
1462
    int is_write;
1463
    
1464
    pc = uc->uc_mcontext.gregs[R15];
1465
    /* XXX: compute is_write */
1466
    is_write = 0;
1467
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1468
                             is_write,
1469
                             &uc->uc_sigmask, puc);
1470
}
1471

    
1472
#elif defined(__mc68000)
1473

    
1474
int cpu_signal_handler(int host_signum, void *pinfo, 
1475
                       void *puc)
1476
{
1477
    siginfo_t *info = pinfo;
1478
    struct ucontext *uc = puc;
1479
    unsigned long pc;
1480
    int is_write;
1481
    
1482
    pc = uc->uc_mcontext.gregs[16];
1483
    /* XXX: compute is_write */
1484
    is_write = 0;
1485
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1486
                             is_write,
1487
                             &uc->uc_sigmask, puc);
1488
}
1489

    
1490
#elif defined(__ia64)
1491

    
1492
#ifndef __ISR_VALID
1493
  /* This ought to be in <bits/siginfo.h>... */
1494
# define __ISR_VALID        1
1495
#endif
1496

    
1497
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1498
{
1499
    siginfo_t *info = pinfo;
1500
    struct ucontext *uc = puc;
1501
    unsigned long ip;
1502
    int is_write = 0;
1503

    
1504
    ip = uc->uc_mcontext.sc_ip;
1505
    switch (host_signum) {
1506
      case SIGILL:
1507
      case SIGFPE:
1508
      case SIGSEGV:
1509
      case SIGBUS:
1510
      case SIGTRAP:
1511
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1512
              /* ISR.W (write-access) is bit 33:  */
1513
              is_write = (info->si_isr >> 33) & 1;
1514
          break;
1515

    
1516
      default:
1517
          break;
1518
    }
1519
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1520
                             is_write,
1521
                             &uc->uc_sigmask, puc);
1522
}
1523

    
1524
#elif defined(__s390__)
1525

    
1526
int cpu_signal_handler(int host_signum, void *pinfo, 
1527
                       void *puc)
1528
{
1529
    siginfo_t *info = pinfo;
1530
    struct ucontext *uc = puc;
1531
    unsigned long pc;
1532
    int is_write;
1533
    
1534
    pc = uc->uc_mcontext.psw.addr;
1535
    /* XXX: compute is_write */
1536
    is_write = 0;
1537
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1538
                             is_write,
1539
                             &uc->uc_sigmask, puc);
1540
}
1541

    
1542
#else
1543

    
1544
#error host CPU specific signal handler needed
1545

    
1546
#endif
1547

    
1548
#endif /* !defined(CONFIG_SOFTMMU) */