Statistics
| Branch: | Revision:

root / kvm-all.c @ ea375f9a

History | View | Annotate | Download (29 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright IBM, Corp. 2008
5
 *           Red Hat, Inc. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *  Glauber Costa     <gcosta@redhat.com>
10
 *
11
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12
 * See the COPYING file in the top-level directory.
13
 *
14
 */
15

    
16
#include <sys/types.h>
17
#include <sys/ioctl.h>
18
#include <sys/mman.h>
19
#include <stdarg.h>
20

    
21
#include <linux/kvm.h>
22

    
23
#include "qemu-common.h"
24
#include "qemu-barrier.h"
25
#include "sysemu.h"
26
#include "hw/hw.h"
27
#include "gdbstub.h"
28
#include "kvm.h"
29

    
30
/* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
31
#define PAGE_SIZE TARGET_PAGE_SIZE
32

    
33
//#define DEBUG_KVM
34

    
35
#ifdef DEBUG_KVM
36
#define dprintf(fmt, ...) \
37
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
38
#else
39
#define dprintf(fmt, ...) \
40
    do { } while (0)
41
#endif
42

    
43
typedef struct KVMSlot
44
{
45
    target_phys_addr_t start_addr;
46
    ram_addr_t memory_size;
47
    ram_addr_t phys_offset;
48
    int slot;
49
    int flags;
50
} KVMSlot;
51

    
52
typedef struct kvm_dirty_log KVMDirtyLog;
53

    
54
int kvm_allowed = 0;
55

    
56
struct KVMState
57
{
58
    KVMSlot slots[32];
59
    int fd;
60
    int vmfd;
61
    int coalesced_mmio;
62
#ifdef KVM_CAP_COALESCED_MMIO
63
    struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64
#endif
65
    int broken_set_mem_region;
66
    int migration_log;
67
    int vcpu_events;
68
    int robust_singlestep;
69
#ifdef KVM_CAP_SET_GUEST_DEBUG
70
    struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
71
#endif
72
    int irqchip_in_kernel;
73
    int pit_in_kernel;
74
};
75

    
76
static KVMState *kvm_state;
77

    
78
static KVMSlot *kvm_alloc_slot(KVMState *s)
79
{
80
    int i;
81

    
82
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
83
        /* KVM private memory slots */
84
        if (i >= 8 && i < 12)
85
            continue;
86
        if (s->slots[i].memory_size == 0)
87
            return &s->slots[i];
88
    }
89

    
90
    fprintf(stderr, "%s: no free slot available\n", __func__);
91
    abort();
92
}
93

    
94
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
95
                                         target_phys_addr_t start_addr,
96
                                         target_phys_addr_t end_addr)
97
{
98
    int i;
99

    
100
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
101
        KVMSlot *mem = &s->slots[i];
102

    
103
        if (start_addr == mem->start_addr &&
104
            end_addr == mem->start_addr + mem->memory_size) {
105
            return mem;
106
        }
107
    }
108

    
109
    return NULL;
110
}
111

    
112
/*
113
 * Find overlapping slot with lowest start address
114
 */
115
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
116
                                            target_phys_addr_t start_addr,
117
                                            target_phys_addr_t end_addr)
118
{
119
    KVMSlot *found = NULL;
120
    int i;
121

    
122
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
123
        KVMSlot *mem = &s->slots[i];
124

    
125
        if (mem->memory_size == 0 ||
126
            (found && found->start_addr < mem->start_addr)) {
127
            continue;
128
        }
129

    
130
        if (end_addr > mem->start_addr &&
131
            start_addr < mem->start_addr + mem->memory_size) {
132
            found = mem;
133
        }
134
    }
135

    
136
    return found;
137
}
138

    
139
static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
140
{
141
    struct kvm_userspace_memory_region mem;
142

    
143
    mem.slot = slot->slot;
144
    mem.guest_phys_addr = slot->start_addr;
145
    mem.memory_size = slot->memory_size;
146
    mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
147
    mem.flags = slot->flags;
148
    if (s->migration_log) {
149
        mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
150
    }
151
    return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
152
}
153

    
154
static void kvm_reset_vcpu(void *opaque)
155
{
156
    CPUState *env = opaque;
157

    
158
    kvm_arch_reset_vcpu(env);
159
}
160

    
161
int kvm_irqchip_in_kernel(void)
162
{
163
    return kvm_state->irqchip_in_kernel;
164
}
165

    
166
int kvm_pit_in_kernel(void)
167
{
168
    return kvm_state->pit_in_kernel;
169
}
170

    
171

    
172
int kvm_init_vcpu(CPUState *env)
173
{
174
    KVMState *s = kvm_state;
175
    long mmap_size;
176
    int ret;
177

    
178
    dprintf("kvm_init_vcpu\n");
179

    
180
    ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
181
    if (ret < 0) {
182
        dprintf("kvm_create_vcpu failed\n");
183
        goto err;
184
    }
185

    
186
    env->kvm_fd = ret;
187
    env->kvm_state = s;
188

    
189
    mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
190
    if (mmap_size < 0) {
191
        dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
192
        goto err;
193
    }
194

    
195
    env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
196
                        env->kvm_fd, 0);
197
    if (env->kvm_run == MAP_FAILED) {
198
        ret = -errno;
199
        dprintf("mmap'ing vcpu state failed\n");
200
        goto err;
201
    }
202

    
203
#ifdef KVM_CAP_COALESCED_MMIO
204
    if (s->coalesced_mmio && !s->coalesced_mmio_ring)
205
        s->coalesced_mmio_ring = (void *) env->kvm_run +
206
                s->coalesced_mmio * PAGE_SIZE;
207
#endif
208

    
209
    ret = kvm_arch_init_vcpu(env);
210
    if (ret == 0) {
211
        qemu_register_reset(kvm_reset_vcpu, env);
212
        kvm_arch_reset_vcpu(env);
213
    }
214
err:
215
    return ret;
216
}
217

    
218
/*
219
 * dirty pages logging control
220
 */
221
static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
222
                                      ram_addr_t size, int flags, int mask)
223
{
224
    KVMState *s = kvm_state;
225
    KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
226
    int old_flags;
227

    
228
    if (mem == NULL)  {
229
            fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
230
                    TARGET_FMT_plx "\n", __func__, phys_addr,
231
                    (target_phys_addr_t)(phys_addr + size - 1));
232
            return -EINVAL;
233
    }
234

    
235
    old_flags = mem->flags;
236

    
237
    flags = (mem->flags & ~mask) | flags;
238
    mem->flags = flags;
239

    
240
    /* If nothing changed effectively, no need to issue ioctl */
241
    if (s->migration_log) {
242
        flags |= KVM_MEM_LOG_DIRTY_PAGES;
243
    }
244
    if (flags == old_flags) {
245
            return 0;
246
    }
247

    
248
    return kvm_set_user_memory_region(s, mem);
249
}
250

    
251
int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
252
{
253
        return kvm_dirty_pages_log_change(phys_addr, size,
254
                                          KVM_MEM_LOG_DIRTY_PAGES,
255
                                          KVM_MEM_LOG_DIRTY_PAGES);
256
}
257

    
258
int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
259
{
260
        return kvm_dirty_pages_log_change(phys_addr, size,
261
                                          0,
262
                                          KVM_MEM_LOG_DIRTY_PAGES);
263
}
264

    
265
static int kvm_set_migration_log(int enable)
266
{
267
    KVMState *s = kvm_state;
268
    KVMSlot *mem;
269
    int i, err;
270

    
271
    s->migration_log = enable;
272

    
273
    for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
274
        mem = &s->slots[i];
275

    
276
        if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
277
            continue;
278
        }
279
        err = kvm_set_user_memory_region(s, mem);
280
        if (err) {
281
            return err;
282
        }
283
    }
284
    return 0;
285
}
286

    
287
static int test_le_bit(unsigned long nr, unsigned char *addr)
288
{
289
    return (addr[nr >> 3] >> (nr & 7)) & 1;
290
}
291

    
292
/**
293
 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
294
 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
295
 * This means all bits are set to dirty.
296
 *
297
 * @start_add: start of logged region.
298
 * @end_addr: end of logged region.
299
 */
300
static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
301
                                          target_phys_addr_t end_addr)
302
{
303
    KVMState *s = kvm_state;
304
    unsigned long size, allocated_size = 0;
305
    target_phys_addr_t phys_addr;
306
    ram_addr_t addr;
307
    KVMDirtyLog d;
308
    KVMSlot *mem;
309
    int ret = 0;
310

    
311
    d.dirty_bitmap = NULL;
312
    while (start_addr < end_addr) {
313
        mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
314
        if (mem == NULL) {
315
            break;
316
        }
317

    
318
        size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
319
        if (!d.dirty_bitmap) {
320
            d.dirty_bitmap = qemu_malloc(size);
321
        } else if (size > allocated_size) {
322
            d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
323
        }
324
        allocated_size = size;
325
        memset(d.dirty_bitmap, 0, allocated_size);
326

    
327
        d.slot = mem->slot;
328

    
329
        if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
330
            dprintf("ioctl failed %d\n", errno);
331
            ret = -1;
332
            break;
333
        }
334

    
335
        for (phys_addr = mem->start_addr, addr = mem->phys_offset;
336
             phys_addr < mem->start_addr + mem->memory_size;
337
             phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
338
            unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
339
            unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
340

    
341
            if (test_le_bit(nr, bitmap)) {
342
                cpu_physical_memory_set_dirty(addr);
343
            }
344
        }
345
        start_addr = phys_addr;
346
    }
347
    qemu_free(d.dirty_bitmap);
348

    
349
    return ret;
350
}
351

    
352
int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
353
{
354
    int ret = -ENOSYS;
355
#ifdef KVM_CAP_COALESCED_MMIO
356
    KVMState *s = kvm_state;
357

    
358
    if (s->coalesced_mmio) {
359
        struct kvm_coalesced_mmio_zone zone;
360

    
361
        zone.addr = start;
362
        zone.size = size;
363

    
364
        ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
365
    }
366
#endif
367

    
368
    return ret;
369
}
370

    
371
int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
372
{
373
    int ret = -ENOSYS;
374
#ifdef KVM_CAP_COALESCED_MMIO
375
    KVMState *s = kvm_state;
376

    
377
    if (s->coalesced_mmio) {
378
        struct kvm_coalesced_mmio_zone zone;
379

    
380
        zone.addr = start;
381
        zone.size = size;
382

    
383
        ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
384
    }
385
#endif
386

    
387
    return ret;
388
}
389

    
390
int kvm_check_extension(KVMState *s, unsigned int extension)
391
{
392
    int ret;
393

    
394
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
395
    if (ret < 0) {
396
        ret = 0;
397
    }
398

    
399
    return ret;
400
}
401

    
402
static void kvm_set_phys_mem(target_phys_addr_t start_addr,
403
                             ram_addr_t size,
404
                             ram_addr_t phys_offset)
405
{
406
    KVMState *s = kvm_state;
407
    ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
408
    KVMSlot *mem, old;
409
    int err;
410

    
411
    if (start_addr & ~TARGET_PAGE_MASK) {
412
        if (flags >= IO_MEM_UNASSIGNED) {
413
            if (!kvm_lookup_overlapping_slot(s, start_addr,
414
                                             start_addr + size)) {
415
                return;
416
            }
417
            fprintf(stderr, "Unaligned split of a KVM memory slot\n");
418
        } else {
419
            fprintf(stderr, "Only page-aligned memory slots supported\n");
420
        }
421
        abort();
422
    }
423

    
424
    /* KVM does not support read-only slots */
425
    phys_offset &= ~IO_MEM_ROM;
426

    
427
    while (1) {
428
        mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
429
        if (!mem) {
430
            break;
431
        }
432

    
433
        if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
434
            (start_addr + size <= mem->start_addr + mem->memory_size) &&
435
            (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
436
            /* The new slot fits into the existing one and comes with
437
             * identical parameters - nothing to be done. */
438
            return;
439
        }
440

    
441
        old = *mem;
442

    
443
        /* unregister the overlapping slot */
444
        mem->memory_size = 0;
445
        err = kvm_set_user_memory_region(s, mem);
446
        if (err) {
447
            fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
448
                    __func__, strerror(-err));
449
            abort();
450
        }
451

    
452
        /* Workaround for older KVM versions: we can't join slots, even not by
453
         * unregistering the previous ones and then registering the larger
454
         * slot. We have to maintain the existing fragmentation. Sigh.
455
         *
456
         * This workaround assumes that the new slot starts at the same
457
         * address as the first existing one. If not or if some overlapping
458
         * slot comes around later, we will fail (not seen in practice so far)
459
         * - and actually require a recent KVM version. */
460
        if (s->broken_set_mem_region &&
461
            old.start_addr == start_addr && old.memory_size < size &&
462
            flags < IO_MEM_UNASSIGNED) {
463
            mem = kvm_alloc_slot(s);
464
            mem->memory_size = old.memory_size;
465
            mem->start_addr = old.start_addr;
466
            mem->phys_offset = old.phys_offset;
467
            mem->flags = 0;
468

    
469
            err = kvm_set_user_memory_region(s, mem);
470
            if (err) {
471
                fprintf(stderr, "%s: error updating slot: %s\n", __func__,
472
                        strerror(-err));
473
                abort();
474
            }
475

    
476
            start_addr += old.memory_size;
477
            phys_offset += old.memory_size;
478
            size -= old.memory_size;
479
            continue;
480
        }
481

    
482
        /* register prefix slot */
483
        if (old.start_addr < start_addr) {
484
            mem = kvm_alloc_slot(s);
485
            mem->memory_size = start_addr - old.start_addr;
486
            mem->start_addr = old.start_addr;
487
            mem->phys_offset = old.phys_offset;
488
            mem->flags = 0;
489

    
490
            err = kvm_set_user_memory_region(s, mem);
491
            if (err) {
492
                fprintf(stderr, "%s: error registering prefix slot: %s\n",
493
                        __func__, strerror(-err));
494
                abort();
495
            }
496
        }
497

    
498
        /* register suffix slot */
499
        if (old.start_addr + old.memory_size > start_addr + size) {
500
            ram_addr_t size_delta;
501

    
502
            mem = kvm_alloc_slot(s);
503
            mem->start_addr = start_addr + size;
504
            size_delta = mem->start_addr - old.start_addr;
505
            mem->memory_size = old.memory_size - size_delta;
506
            mem->phys_offset = old.phys_offset + size_delta;
507
            mem->flags = 0;
508

    
509
            err = kvm_set_user_memory_region(s, mem);
510
            if (err) {
511
                fprintf(stderr, "%s: error registering suffix slot: %s\n",
512
                        __func__, strerror(-err));
513
                abort();
514
            }
515
        }
516
    }
517

    
518
    /* in case the KVM bug workaround already "consumed" the new slot */
519
    if (!size)
520
        return;
521

    
522
    /* KVM does not need to know about this memory */
523
    if (flags >= IO_MEM_UNASSIGNED)
524
        return;
525

    
526
    mem = kvm_alloc_slot(s);
527
    mem->memory_size = size;
528
    mem->start_addr = start_addr;
529
    mem->phys_offset = phys_offset;
530
    mem->flags = 0;
531

    
532
    err = kvm_set_user_memory_region(s, mem);
533
    if (err) {
534
        fprintf(stderr, "%s: error registering slot: %s\n", __func__,
535
                strerror(-err));
536
        abort();
537
    }
538
}
539

    
540
static void kvm_client_set_memory(struct CPUPhysMemoryClient *client,
541
                                  target_phys_addr_t start_addr,
542
                                  ram_addr_t size,
543
                                  ram_addr_t phys_offset)
544
{
545
        kvm_set_phys_mem(start_addr, size, phys_offset);
546
}
547

    
548
static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient *client,
549
                                        target_phys_addr_t start_addr,
550
                                        target_phys_addr_t end_addr)
551
{
552
        return kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
553
}
554

    
555
static int kvm_client_migration_log(struct CPUPhysMemoryClient *client,
556
                                    int enable)
557
{
558
        return kvm_set_migration_log(enable);
559
}
560

    
561
static CPUPhysMemoryClient kvm_cpu_phys_memory_client = {
562
        .set_memory = kvm_client_set_memory,
563
        .sync_dirty_bitmap = kvm_client_sync_dirty_bitmap,
564
        .migration_log = kvm_client_migration_log,
565
};
566

    
567
int kvm_init(int smp_cpus)
568
{
569
    static const char upgrade_note[] =
570
        "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
571
        "(see http://sourceforge.net/projects/kvm).\n";
572
    KVMState *s;
573
    int ret;
574
    int i;
575

    
576
    if (smp_cpus > 1) {
577
        fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
578
        return -EINVAL;
579
    }
580

    
581
    s = qemu_mallocz(sizeof(KVMState));
582

    
583
#ifdef KVM_CAP_SET_GUEST_DEBUG
584
    QTAILQ_INIT(&s->kvm_sw_breakpoints);
585
#endif
586
    for (i = 0; i < ARRAY_SIZE(s->slots); i++)
587
        s->slots[i].slot = i;
588

    
589
    s->vmfd = -1;
590
    s->fd = qemu_open("/dev/kvm", O_RDWR);
591
    if (s->fd == -1) {
592
        fprintf(stderr, "Could not access KVM kernel module: %m\n");
593
        ret = -errno;
594
        goto err;
595
    }
596

    
597
    ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
598
    if (ret < KVM_API_VERSION) {
599
        if (ret > 0)
600
            ret = -EINVAL;
601
        fprintf(stderr, "kvm version too old\n");
602
        goto err;
603
    }
604

    
605
    if (ret > KVM_API_VERSION) {
606
        ret = -EINVAL;
607
        fprintf(stderr, "kvm version not supported\n");
608
        goto err;
609
    }
610

    
611
    s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
612
    if (s->vmfd < 0)
613
        goto err;
614

    
615
    /* initially, KVM allocated its own memory and we had to jump through
616
     * hooks to make phys_ram_base point to this.  Modern versions of KVM
617
     * just use a user allocated buffer so we can use regular pages
618
     * unmodified.  Make sure we have a sufficiently modern version of KVM.
619
     */
620
    if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
621
        ret = -EINVAL;
622
        fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
623
                upgrade_note);
624
        goto err;
625
    }
626

    
627
    /* There was a nasty bug in < kvm-80 that prevents memory slots from being
628
     * destroyed properly.  Since we rely on this capability, refuse to work
629
     * with any kernel without this capability. */
630
    if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
631
        ret = -EINVAL;
632

    
633
        fprintf(stderr,
634
                "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
635
                upgrade_note);
636
        goto err;
637
    }
638

    
639
    s->coalesced_mmio = 0;
640
#ifdef KVM_CAP_COALESCED_MMIO
641
    s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
642
    s->coalesced_mmio_ring = NULL;
643
#endif
644

    
645
    s->broken_set_mem_region = 1;
646
#ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
647
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
648
    if (ret > 0) {
649
        s->broken_set_mem_region = 0;
650
    }
651
#endif
652

    
653
    s->vcpu_events = 0;
654
#ifdef KVM_CAP_VCPU_EVENTS
655
    s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
656
#endif
657

    
658
    s->robust_singlestep = 0;
659
#ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
660
    s->robust_singlestep =
661
        kvm_check_extension(s, KVM_CAP_X86_ROBUST_SINGLESTEP);
662
#endif
663

    
664
    ret = kvm_arch_init(s, smp_cpus);
665
    if (ret < 0)
666
        goto err;
667

    
668
    kvm_state = s;
669
    cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client);
670

    
671
    return 0;
672

    
673
err:
674
    if (s) {
675
        if (s->vmfd != -1)
676
            close(s->vmfd);
677
        if (s->fd != -1)
678
            close(s->fd);
679
    }
680
    qemu_free(s);
681

    
682
    return ret;
683
}
684

    
685
static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
686
                         uint32_t count)
687
{
688
    int i;
689
    uint8_t *ptr = data;
690

    
691
    for (i = 0; i < count; i++) {
692
        if (direction == KVM_EXIT_IO_IN) {
693
            switch (size) {
694
            case 1:
695
                stb_p(ptr, cpu_inb(port));
696
                break;
697
            case 2:
698
                stw_p(ptr, cpu_inw(port));
699
                break;
700
            case 4:
701
                stl_p(ptr, cpu_inl(port));
702
                break;
703
            }
704
        } else {
705
            switch (size) {
706
            case 1:
707
                cpu_outb(port, ldub_p(ptr));
708
                break;
709
            case 2:
710
                cpu_outw(port, lduw_p(ptr));
711
                break;
712
            case 4:
713
                cpu_outl(port, ldl_p(ptr));
714
                break;
715
            }
716
        }
717

    
718
        ptr += size;
719
    }
720

    
721
    return 1;
722
}
723

    
724
void kvm_flush_coalesced_mmio_buffer(void)
725
{
726
#ifdef KVM_CAP_COALESCED_MMIO
727
    KVMState *s = kvm_state;
728
    if (s->coalesced_mmio_ring) {
729
        struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
730
        while (ring->first != ring->last) {
731
            struct kvm_coalesced_mmio *ent;
732

    
733
            ent = &ring->coalesced_mmio[ring->first];
734

    
735
            cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
736
            smp_wmb();
737
            ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
738
        }
739
    }
740
#endif
741
}
742

    
743
void kvm_cpu_synchronize_state(CPUState *env)
744
{
745
    if (!env->kvm_vcpu_dirty) {
746
        kvm_arch_get_registers(env);
747
        env->kvm_vcpu_dirty = 1;
748
    }
749
}
750

    
751
void kvm_cpu_synchronize_post_reset(CPUState *env)
752
{
753
    kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
754
    env->kvm_vcpu_dirty = 0;
755
}
756

    
757
void kvm_cpu_synchronize_post_init(CPUState *env)
758
{
759
    kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
760
    env->kvm_vcpu_dirty = 0;
761
}
762

    
763
int kvm_cpu_exec(CPUState *env)
764
{
765
    struct kvm_run *run = env->kvm_run;
766
    int ret;
767

    
768
    dprintf("kvm_cpu_exec()\n");
769

    
770
    do {
771
#ifndef CONFIG_IOTHREAD
772
        if (env->exit_request) {
773
            dprintf("interrupt exit requested\n");
774
            ret = 0;
775
            break;
776
        }
777
#endif
778

    
779
        if (env->kvm_vcpu_dirty) {
780
            kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
781
            env->kvm_vcpu_dirty = 0;
782
        }
783

    
784
        kvm_arch_pre_run(env, run);
785
        qemu_mutex_unlock_iothread();
786
        ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
787
        qemu_mutex_lock_iothread();
788
        kvm_arch_post_run(env, run);
789

    
790
        if (ret == -EINTR || ret == -EAGAIN) {
791
            cpu_exit(env);
792
            dprintf("io window exit\n");
793
            ret = 0;
794
            break;
795
        }
796

    
797
        if (ret < 0) {
798
            dprintf("kvm run failed %s\n", strerror(-ret));
799
            abort();
800
        }
801

    
802
        kvm_flush_coalesced_mmio_buffer();
803

    
804
        ret = 0; /* exit loop */
805
        switch (run->exit_reason) {
806
        case KVM_EXIT_IO:
807
            dprintf("handle_io\n");
808
            ret = kvm_handle_io(run->io.port,
809
                                (uint8_t *)run + run->io.data_offset,
810
                                run->io.direction,
811
                                run->io.size,
812
                                run->io.count);
813
            break;
814
        case KVM_EXIT_MMIO:
815
            dprintf("handle_mmio\n");
816
            cpu_physical_memory_rw(run->mmio.phys_addr,
817
                                   run->mmio.data,
818
                                   run->mmio.len,
819
                                   run->mmio.is_write);
820
            ret = 1;
821
            break;
822
        case KVM_EXIT_IRQ_WINDOW_OPEN:
823
            dprintf("irq_window_open\n");
824
            break;
825
        case KVM_EXIT_SHUTDOWN:
826
            dprintf("shutdown\n");
827
            qemu_system_reset_request();
828
            ret = 1;
829
            break;
830
        case KVM_EXIT_UNKNOWN:
831
            dprintf("kvm_exit_unknown\n");
832
            break;
833
        case KVM_EXIT_FAIL_ENTRY:
834
            dprintf("kvm_exit_fail_entry\n");
835
            break;
836
        case KVM_EXIT_EXCEPTION:
837
            dprintf("kvm_exit_exception\n");
838
            break;
839
        case KVM_EXIT_DEBUG:
840
            dprintf("kvm_exit_debug\n");
841
#ifdef KVM_CAP_SET_GUEST_DEBUG
842
            if (kvm_arch_debug(&run->debug.arch)) {
843
                gdb_set_stop_cpu(env);
844
                vm_stop(EXCP_DEBUG);
845
                env->exception_index = EXCP_DEBUG;
846
                return 0;
847
            }
848
            /* re-enter, this exception was guest-internal */
849
            ret = 1;
850
#endif /* KVM_CAP_SET_GUEST_DEBUG */
851
            break;
852
        default:
853
            dprintf("kvm_arch_handle_exit\n");
854
            ret = kvm_arch_handle_exit(env, run);
855
            break;
856
        }
857
    } while (ret > 0);
858

    
859
    if (env->exit_request) {
860
        env->exit_request = 0;
861
        env->exception_index = EXCP_INTERRUPT;
862
    }
863

    
864
    return ret;
865
}
866

    
867
int kvm_ioctl(KVMState *s, int type, ...)
868
{
869
    int ret;
870
    void *arg;
871
    va_list ap;
872

    
873
    va_start(ap, type);
874
    arg = va_arg(ap, void *);
875
    va_end(ap);
876

    
877
    ret = ioctl(s->fd, type, arg);
878
    if (ret == -1)
879
        ret = -errno;
880

    
881
    return ret;
882
}
883

    
884
int kvm_vm_ioctl(KVMState *s, int type, ...)
885
{
886
    int ret;
887
    void *arg;
888
    va_list ap;
889

    
890
    va_start(ap, type);
891
    arg = va_arg(ap, void *);
892
    va_end(ap);
893

    
894
    ret = ioctl(s->vmfd, type, arg);
895
    if (ret == -1)
896
        ret = -errno;
897

    
898
    return ret;
899
}
900

    
901
int kvm_vcpu_ioctl(CPUState *env, int type, ...)
902
{
903
    int ret;
904
    void *arg;
905
    va_list ap;
906

    
907
    va_start(ap, type);
908
    arg = va_arg(ap, void *);
909
    va_end(ap);
910

    
911
    ret = ioctl(env->kvm_fd, type, arg);
912
    if (ret == -1)
913
        ret = -errno;
914

    
915
    return ret;
916
}
917

    
918
int kvm_has_sync_mmu(void)
919
{
920
#ifdef KVM_CAP_SYNC_MMU
921
    KVMState *s = kvm_state;
922

    
923
    return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
924
#else
925
    return 0;
926
#endif
927
}
928

    
929
int kvm_has_vcpu_events(void)
930
{
931
    return kvm_state->vcpu_events;
932
}
933

    
934
int kvm_has_robust_singlestep(void)
935
{
936
    return kvm_state->robust_singlestep;
937
}
938

    
939
void kvm_setup_guest_memory(void *start, size_t size)
940
{
941
    if (!kvm_has_sync_mmu()) {
942
#ifdef MADV_DONTFORK
943
        int ret = madvise(start, size, MADV_DONTFORK);
944

    
945
        if (ret) {
946
            perror("madvice");
947
            exit(1);
948
        }
949
#else
950
        fprintf(stderr,
951
                "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
952
        exit(1);
953
#endif
954
    }
955
}
956

    
957
#ifdef KVM_CAP_SET_GUEST_DEBUG
958
static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
959
{
960
#ifdef CONFIG_IOTHREAD
961
    if (env != cpu_single_env) {
962
        abort();
963
    }
964
#endif
965
    func(data);
966
}
967

    
968
struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
969
                                                 target_ulong pc)
970
{
971
    struct kvm_sw_breakpoint *bp;
972

    
973
    QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
974
        if (bp->pc == pc)
975
            return bp;
976
    }
977
    return NULL;
978
}
979

    
980
int kvm_sw_breakpoints_active(CPUState *env)
981
{
982
    return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
983
}
984

    
985
struct kvm_set_guest_debug_data {
986
    struct kvm_guest_debug dbg;
987
    CPUState *env;
988
    int err;
989
};
990

    
991
static void kvm_invoke_set_guest_debug(void *data)
992
{
993
    struct kvm_set_guest_debug_data *dbg_data = data;
994
    CPUState *env = dbg_data->env;
995

    
996
    dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
997
}
998

    
999
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1000
{
1001
    struct kvm_set_guest_debug_data data;
1002

    
1003
    data.dbg.control = reinject_trap;
1004

    
1005
    if (env->singlestep_enabled) {
1006
        data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
1007
    }
1008
    kvm_arch_update_guest_debug(env, &data.dbg);
1009
    data.env = env;
1010

    
1011
    on_vcpu(env, kvm_invoke_set_guest_debug, &data);
1012
    return data.err;
1013
}
1014

    
1015
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1016
                          target_ulong len, int type)
1017
{
1018
    struct kvm_sw_breakpoint *bp;
1019
    CPUState *env;
1020
    int err;
1021

    
1022
    if (type == GDB_BREAKPOINT_SW) {
1023
        bp = kvm_find_sw_breakpoint(current_env, addr);
1024
        if (bp) {
1025
            bp->use_count++;
1026
            return 0;
1027
        }
1028

    
1029
        bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
1030
        if (!bp)
1031
            return -ENOMEM;
1032

    
1033
        bp->pc = addr;
1034
        bp->use_count = 1;
1035
        err = kvm_arch_insert_sw_breakpoint(current_env, bp);
1036
        if (err) {
1037
            free(bp);
1038
            return err;
1039
        }
1040

    
1041
        QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
1042
                          bp, entry);
1043
    } else {
1044
        err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1045
        if (err)
1046
            return err;
1047
    }
1048

    
1049
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1050
        err = kvm_update_guest_debug(env, 0);
1051
        if (err)
1052
            return err;
1053
    }
1054
    return 0;
1055
}
1056

    
1057
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1058
                          target_ulong len, int type)
1059
{
1060
    struct kvm_sw_breakpoint *bp;
1061
    CPUState *env;
1062
    int err;
1063

    
1064
    if (type == GDB_BREAKPOINT_SW) {
1065
        bp = kvm_find_sw_breakpoint(current_env, addr);
1066
        if (!bp)
1067
            return -ENOENT;
1068

    
1069
        if (bp->use_count > 1) {
1070
            bp->use_count--;
1071
            return 0;
1072
        }
1073

    
1074
        err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1075
        if (err)
1076
            return err;
1077

    
1078
        QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1079
        qemu_free(bp);
1080
    } else {
1081
        err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1082
        if (err)
1083
            return err;
1084
    }
1085

    
1086
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
1087
        err = kvm_update_guest_debug(env, 0);
1088
        if (err)
1089
            return err;
1090
    }
1091
    return 0;
1092
}
1093

    
1094
void kvm_remove_all_breakpoints(CPUState *current_env)
1095
{
1096
    struct kvm_sw_breakpoint *bp, *next;
1097
    KVMState *s = current_env->kvm_state;
1098
    CPUState *env;
1099

    
1100
    QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1101
        if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1102
            /* Try harder to find a CPU that currently sees the breakpoint. */
1103
            for (env = first_cpu; env != NULL; env = env->next_cpu) {
1104
                if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1105
                    break;
1106
            }
1107
        }
1108
    }
1109
    kvm_arch_remove_all_hw_breakpoints();
1110

    
1111
    for (env = first_cpu; env != NULL; env = env->next_cpu)
1112
        kvm_update_guest_debug(env, 0);
1113
}
1114

    
1115
#else /* !KVM_CAP_SET_GUEST_DEBUG */
1116

    
1117
int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1118
{
1119
    return -EINVAL;
1120
}
1121

    
1122
int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1123
                          target_ulong len, int type)
1124
{
1125
    return -EINVAL;
1126
}
1127

    
1128
int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1129
                          target_ulong len, int type)
1130
{
1131
    return -EINVAL;
1132
}
1133

    
1134
void kvm_remove_all_breakpoints(CPUState *current_env)
1135
{
1136
}
1137
#endif /* !KVM_CAP_SET_GUEST_DEBUG */
1138

    
1139
int kvm_set_signal_mask(CPUState *env, const sigset_t *sigset)
1140
{
1141
    struct kvm_signal_mask *sigmask;
1142
    int r;
1143

    
1144
    if (!sigset)
1145
        return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
1146

    
1147
    sigmask = qemu_malloc(sizeof(*sigmask) + sizeof(*sigset));
1148

    
1149
    sigmask->len = 8;
1150
    memcpy(sigmask->sigset, sigset, sizeof(*sigset));
1151
    r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
1152
    free(sigmask);
1153

    
1154
    return r;
1155
}