root / target-i386 / kvm.c @ ea643051
History | View | Annotate | Download (32.5 kB)
1 |
/*
|
---|---|
2 |
* QEMU KVM support
|
3 |
*
|
4 |
* Copyright (C) 2006-2008 Qumranet Technologies
|
5 |
* Copyright IBM, Corp. 2008
|
6 |
*
|
7 |
* Authors:
|
8 |
* Anthony Liguori <aliguori@us.ibm.com>
|
9 |
*
|
10 |
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
11 |
* See the COPYING file in the top-level directory.
|
12 |
*
|
13 |
*/
|
14 |
|
15 |
#include <sys/types.h> |
16 |
#include <sys/ioctl.h> |
17 |
#include <sys/mman.h> |
18 |
|
19 |
#include <linux/kvm.h> |
20 |
|
21 |
#include "qemu-common.h" |
22 |
#include "sysemu.h" |
23 |
#include "kvm.h" |
24 |
#include "cpu.h" |
25 |
#include "gdbstub.h" |
26 |
#include "host-utils.h" |
27 |
#include "hw/pc.h" |
28 |
#include "ioport.h" |
29 |
|
30 |
#ifdef CONFIG_KVM_PARA
|
31 |
#include <linux/kvm_para.h> |
32 |
#endif
|
33 |
//
|
34 |
//#define DEBUG_KVM
|
35 |
|
36 |
#ifdef DEBUG_KVM
|
37 |
#define dprintf(fmt, ...) \
|
38 |
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
39 |
#else
|
40 |
#define dprintf(fmt, ...) \
|
41 |
do { } while (0) |
42 |
#endif
|
43 |
|
44 |
#define MSR_KVM_WALL_CLOCK 0x11 |
45 |
#define MSR_KVM_SYSTEM_TIME 0x12 |
46 |
|
47 |
#ifdef KVM_CAP_EXT_CPUID
|
48 |
|
49 |
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
50 |
{ |
51 |
struct kvm_cpuid2 *cpuid;
|
52 |
int r, size;
|
53 |
|
54 |
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); |
55 |
cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
|
56 |
cpuid->nent = max; |
57 |
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); |
58 |
if (r == 0 && cpuid->nent >= max) { |
59 |
r = -E2BIG; |
60 |
} |
61 |
if (r < 0) { |
62 |
if (r == -E2BIG) {
|
63 |
qemu_free(cpuid); |
64 |
return NULL; |
65 |
} else {
|
66 |
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
|
67 |
strerror(-r)); |
68 |
exit(1);
|
69 |
} |
70 |
} |
71 |
return cpuid;
|
72 |
} |
73 |
|
74 |
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
|
75 |
{ |
76 |
struct kvm_cpuid2 *cpuid;
|
77 |
int i, max;
|
78 |
uint32_t ret = 0;
|
79 |
uint32_t cpuid_1_edx; |
80 |
|
81 |
if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
|
82 |
return -1U; |
83 |
} |
84 |
|
85 |
max = 1;
|
86 |
while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { |
87 |
max *= 2;
|
88 |
} |
89 |
|
90 |
for (i = 0; i < cpuid->nent; ++i) { |
91 |
if (cpuid->entries[i].function == function) {
|
92 |
switch (reg) {
|
93 |
case R_EAX:
|
94 |
ret = cpuid->entries[i].eax; |
95 |
break;
|
96 |
case R_EBX:
|
97 |
ret = cpuid->entries[i].ebx; |
98 |
break;
|
99 |
case R_ECX:
|
100 |
ret = cpuid->entries[i].ecx; |
101 |
break;
|
102 |
case R_EDX:
|
103 |
ret = cpuid->entries[i].edx; |
104 |
switch (function) {
|
105 |
case 1: |
106 |
/* KVM before 2.6.30 misreports the following features */
|
107 |
ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA; |
108 |
break;
|
109 |
case 0x80000001: |
110 |
/* On Intel, kvm returns cpuid according to the Intel spec,
|
111 |
* so add missing bits according to the AMD spec:
|
112 |
*/
|
113 |
cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
|
114 |
ret |= cpuid_1_edx & 0xdfeff7ff;
|
115 |
break;
|
116 |
} |
117 |
break;
|
118 |
} |
119 |
} |
120 |
} |
121 |
|
122 |
qemu_free(cpuid); |
123 |
|
124 |
return ret;
|
125 |
} |
126 |
|
127 |
#else
|
128 |
|
129 |
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
|
130 |
{ |
131 |
return -1U; |
132 |
} |
133 |
|
134 |
#endif
|
135 |
|
136 |
static void kvm_trim_features(uint32_t *features, uint32_t supported) |
137 |
{ |
138 |
int i;
|
139 |
uint32_t mask; |
140 |
|
141 |
for (i = 0; i < 32; ++i) { |
142 |
mask = 1U << i;
|
143 |
if ((*features & mask) && !(supported & mask)) {
|
144 |
*features &= ~mask; |
145 |
} |
146 |
} |
147 |
} |
148 |
|
149 |
#ifdef CONFIG_KVM_PARA
|
150 |
struct kvm_para_features {
|
151 |
int cap;
|
152 |
int feature;
|
153 |
} para_features[] = { |
154 |
#ifdef KVM_CAP_CLOCKSOURCE
|
155 |
{ KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE }, |
156 |
#endif
|
157 |
#ifdef KVM_CAP_NOP_IO_DELAY
|
158 |
{ KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY }, |
159 |
#endif
|
160 |
#ifdef KVM_CAP_PV_MMU
|
161 |
{ KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP }, |
162 |
#endif
|
163 |
{ -1, -1 } |
164 |
}; |
165 |
|
166 |
static int get_para_features(CPUState *env) |
167 |
{ |
168 |
int i, features = 0; |
169 |
|
170 |
for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) { |
171 |
if (kvm_check_extension(env->kvm_state, para_features[i].cap))
|
172 |
features |= (1 << para_features[i].feature);
|
173 |
} |
174 |
|
175 |
return features;
|
176 |
} |
177 |
#endif
|
178 |
|
179 |
int kvm_arch_init_vcpu(CPUState *env)
|
180 |
{ |
181 |
struct {
|
182 |
struct kvm_cpuid2 cpuid;
|
183 |
struct kvm_cpuid_entry2 entries[100]; |
184 |
} __attribute__((packed)) cpuid_data; |
185 |
uint32_t limit, i, j, cpuid_i; |
186 |
uint32_t unused; |
187 |
struct kvm_cpuid_entry2 *c;
|
188 |
#ifdef KVM_CPUID_SIGNATURE
|
189 |
uint32_t signature[3];
|
190 |
#endif
|
191 |
|
192 |
env->mp_state = KVM_MP_STATE_RUNNABLE; |
193 |
|
194 |
kvm_trim_features(&env->cpuid_features, |
195 |
kvm_arch_get_supported_cpuid(env, 1, R_EDX));
|
196 |
|
197 |
i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; |
198 |
kvm_trim_features(&env->cpuid_ext_features, |
199 |
kvm_arch_get_supported_cpuid(env, 1, R_ECX));
|
200 |
env->cpuid_ext_features |= i; |
201 |
|
202 |
kvm_trim_features(&env->cpuid_ext2_features, |
203 |
kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
|
204 |
kvm_trim_features(&env->cpuid_ext3_features, |
205 |
kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
|
206 |
|
207 |
cpuid_i = 0;
|
208 |
|
209 |
#ifdef CONFIG_KVM_PARA
|
210 |
/* Paravirtualization CPUIDs */
|
211 |
memcpy(signature, "KVMKVMKVM\0\0\0", 12); |
212 |
c = &cpuid_data.entries[cpuid_i++]; |
213 |
memset(c, 0, sizeof(*c)); |
214 |
c->function = KVM_CPUID_SIGNATURE; |
215 |
c->eax = 0;
|
216 |
c->ebx = signature[0];
|
217 |
c->ecx = signature[1];
|
218 |
c->edx = signature[2];
|
219 |
|
220 |
c = &cpuid_data.entries[cpuid_i++]; |
221 |
memset(c, 0, sizeof(*c)); |
222 |
c->function = KVM_CPUID_FEATURES; |
223 |
c->eax = env->cpuid_kvm_features & get_para_features(env); |
224 |
#endif
|
225 |
|
226 |
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
227 |
|
228 |
for (i = 0; i <= limit; i++) { |
229 |
c = &cpuid_data.entries[cpuid_i++]; |
230 |
|
231 |
switch (i) {
|
232 |
case 2: { |
233 |
/* Keep reading function 2 till all the input is received */
|
234 |
int times;
|
235 |
|
236 |
c->function = i; |
237 |
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
238 |
KVM_CPUID_FLAG_STATE_READ_NEXT; |
239 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
240 |
times = c->eax & 0xff;
|
241 |
|
242 |
for (j = 1; j < times; ++j) { |
243 |
c = &cpuid_data.entries[cpuid_i++]; |
244 |
c->function = i; |
245 |
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
246 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
247 |
} |
248 |
break;
|
249 |
} |
250 |
case 4: |
251 |
case 0xb: |
252 |
case 0xd: |
253 |
for (j = 0; ; j++) { |
254 |
c->function = i; |
255 |
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
256 |
c->index = j; |
257 |
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
258 |
|
259 |
if (i == 4 && c->eax == 0) |
260 |
break;
|
261 |
if (i == 0xb && !(c->ecx & 0xff00)) |
262 |
break;
|
263 |
if (i == 0xd && c->eax == 0) |
264 |
break;
|
265 |
|
266 |
c = &cpuid_data.entries[cpuid_i++]; |
267 |
} |
268 |
break;
|
269 |
default:
|
270 |
c->function = i; |
271 |
c->flags = 0;
|
272 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
273 |
break;
|
274 |
} |
275 |
} |
276 |
cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
277 |
|
278 |
for (i = 0x80000000; i <= limit; i++) { |
279 |
c = &cpuid_data.entries[cpuid_i++]; |
280 |
|
281 |
c->function = i; |
282 |
c->flags = 0;
|
283 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
284 |
} |
285 |
|
286 |
cpuid_data.cpuid.nent = cpuid_i; |
287 |
|
288 |
return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
|
289 |
} |
290 |
|
291 |
void kvm_arch_reset_vcpu(CPUState *env)
|
292 |
{ |
293 |
env->exception_injected = -1;
|
294 |
env->interrupt_injected = -1;
|
295 |
env->nmi_injected = 0;
|
296 |
env->nmi_pending = 0;
|
297 |
} |
298 |
|
299 |
static int kvm_has_msr_star(CPUState *env) |
300 |
{ |
301 |
static int has_msr_star; |
302 |
int ret;
|
303 |
|
304 |
/* first time */
|
305 |
if (has_msr_star == 0) { |
306 |
struct kvm_msr_list msr_list, *kvm_msr_list;
|
307 |
|
308 |
has_msr_star = -1;
|
309 |
|
310 |
/* Obtain MSR list from KVM. These are the MSRs that we must
|
311 |
* save/restore */
|
312 |
msr_list.nmsrs = 0;
|
313 |
ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
314 |
if (ret < 0 && ret != -E2BIG) { |
315 |
return 0; |
316 |
} |
317 |
/* Old kernel modules had a bug and could write beyond the provided
|
318 |
memory. Allocate at least a safe amount of 1K. */
|
319 |
kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + |
320 |
msr_list.nmsrs * |
321 |
sizeof(msr_list.indices[0]))); |
322 |
|
323 |
kvm_msr_list->nmsrs = msr_list.nmsrs; |
324 |
ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
325 |
if (ret >= 0) { |
326 |
int i;
|
327 |
|
328 |
for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
329 |
if (kvm_msr_list->indices[i] == MSR_STAR) {
|
330 |
has_msr_star = 1;
|
331 |
break;
|
332 |
} |
333 |
} |
334 |
} |
335 |
|
336 |
free(kvm_msr_list); |
337 |
} |
338 |
|
339 |
if (has_msr_star == 1) |
340 |
return 1; |
341 |
return 0; |
342 |
} |
343 |
|
344 |
int kvm_arch_init(KVMState *s, int smp_cpus) |
345 |
{ |
346 |
int ret;
|
347 |
|
348 |
/* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
|
349 |
* directly. In order to use vm86 mode, a TSS is needed. Since this
|
350 |
* must be part of guest physical memory, we need to allocate it. Older
|
351 |
* versions of KVM just assumed that it would be at the end of physical
|
352 |
* memory but that doesn't work with more than 4GB of memory. We simply
|
353 |
* refuse to work with those older versions of KVM. */
|
354 |
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
355 |
if (ret <= 0) { |
356 |
fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
|
357 |
return ret;
|
358 |
} |
359 |
|
360 |
/* this address is 3 pages before the bios, and the bios should present
|
361 |
* as unavaible memory. FIXME, need to ensure the e820 map deals with
|
362 |
* this?
|
363 |
*/
|
364 |
/*
|
365 |
* Tell fw_cfg to notify the BIOS to reserve the range.
|
366 |
*/
|
367 |
if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) { |
368 |
perror("e820_add_entry() table is full");
|
369 |
exit(1);
|
370 |
} |
371 |
return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
372 |
} |
373 |
|
374 |
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
375 |
{ |
376 |
lhs->selector = rhs->selector; |
377 |
lhs->base = rhs->base; |
378 |
lhs->limit = rhs->limit; |
379 |
lhs->type = 3;
|
380 |
lhs->present = 1;
|
381 |
lhs->dpl = 3;
|
382 |
lhs->db = 0;
|
383 |
lhs->s = 1;
|
384 |
lhs->l = 0;
|
385 |
lhs->g = 0;
|
386 |
lhs->avl = 0;
|
387 |
lhs->unusable = 0;
|
388 |
} |
389 |
|
390 |
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
391 |
{ |
392 |
unsigned flags = rhs->flags;
|
393 |
lhs->selector = rhs->selector; |
394 |
lhs->base = rhs->base; |
395 |
lhs->limit = rhs->limit; |
396 |
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
|
397 |
lhs->present = (flags & DESC_P_MASK) != 0;
|
398 |
lhs->dpl = rhs->selector & 3;
|
399 |
lhs->db = (flags >> DESC_B_SHIFT) & 1;
|
400 |
lhs->s = (flags & DESC_S_MASK) != 0;
|
401 |
lhs->l = (flags >> DESC_L_SHIFT) & 1;
|
402 |
lhs->g = (flags & DESC_G_MASK) != 0;
|
403 |
lhs->avl = (flags & DESC_AVL_MASK) != 0;
|
404 |
lhs->unusable = 0;
|
405 |
} |
406 |
|
407 |
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
408 |
{ |
409 |
lhs->selector = rhs->selector; |
410 |
lhs->base = rhs->base; |
411 |
lhs->limit = rhs->limit; |
412 |
lhs->flags = |
413 |
(rhs->type << DESC_TYPE_SHIFT) |
414 |
| (rhs->present * DESC_P_MASK) |
415 |
| (rhs->dpl << DESC_DPL_SHIFT) |
416 |
| (rhs->db << DESC_B_SHIFT) |
417 |
| (rhs->s * DESC_S_MASK) |
418 |
| (rhs->l << DESC_L_SHIFT) |
419 |
| (rhs->g * DESC_G_MASK) |
420 |
| (rhs->avl * DESC_AVL_MASK); |
421 |
} |
422 |
|
423 |
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) |
424 |
{ |
425 |
if (set)
|
426 |
*kvm_reg = *qemu_reg; |
427 |
else
|
428 |
*qemu_reg = *kvm_reg; |
429 |
} |
430 |
|
431 |
static int kvm_getput_regs(CPUState *env, int set) |
432 |
{ |
433 |
struct kvm_regs regs;
|
434 |
int ret = 0; |
435 |
|
436 |
if (!set) {
|
437 |
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
438 |
if (ret < 0) |
439 |
return ret;
|
440 |
} |
441 |
|
442 |
kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); |
443 |
kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); |
444 |
kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); |
445 |
kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); |
446 |
kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); |
447 |
kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); |
448 |
kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); |
449 |
kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); |
450 |
#ifdef TARGET_X86_64
|
451 |
kvm_getput_reg(®s.r8, &env->regs[8], set);
|
452 |
kvm_getput_reg(®s.r9, &env->regs[9], set);
|
453 |
kvm_getput_reg(®s.r10, &env->regs[10], set);
|
454 |
kvm_getput_reg(®s.r11, &env->regs[11], set);
|
455 |
kvm_getput_reg(®s.r12, &env->regs[12], set);
|
456 |
kvm_getput_reg(®s.r13, &env->regs[13], set);
|
457 |
kvm_getput_reg(®s.r14, &env->regs[14], set);
|
458 |
kvm_getput_reg(®s.r15, &env->regs[15], set);
|
459 |
#endif
|
460 |
|
461 |
kvm_getput_reg(®s.rflags, &env->eflags, set); |
462 |
kvm_getput_reg(®s.rip, &env->eip, set); |
463 |
|
464 |
if (set)
|
465 |
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
466 |
|
467 |
return ret;
|
468 |
} |
469 |
|
470 |
static int kvm_put_fpu(CPUState *env) |
471 |
{ |
472 |
struct kvm_fpu fpu;
|
473 |
int i;
|
474 |
|
475 |
memset(&fpu, 0, sizeof fpu); |
476 |
fpu.fsw = env->fpus & ~(7 << 11); |
477 |
fpu.fsw |= (env->fpstt & 7) << 11; |
478 |
fpu.fcw = env->fpuc; |
479 |
for (i = 0; i < 8; ++i) |
480 |
fpu.ftwx |= (!env->fptags[i]) << i; |
481 |
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
|
482 |
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
|
483 |
fpu.mxcsr = env->mxcsr; |
484 |
|
485 |
return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
|
486 |
} |
487 |
|
488 |
static int kvm_put_sregs(CPUState *env) |
489 |
{ |
490 |
struct kvm_sregs sregs;
|
491 |
|
492 |
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
493 |
if (env->interrupt_injected >= 0) { |
494 |
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
|
495 |
(uint64_t)1 << (env->interrupt_injected % 64); |
496 |
} |
497 |
|
498 |
if ((env->eflags & VM_MASK)) {
|
499 |
set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
500 |
set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
501 |
set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
502 |
set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
503 |
set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
504 |
set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
505 |
} else {
|
506 |
set_seg(&sregs.cs, &env->segs[R_CS]); |
507 |
set_seg(&sregs.ds, &env->segs[R_DS]); |
508 |
set_seg(&sregs.es, &env->segs[R_ES]); |
509 |
set_seg(&sregs.fs, &env->segs[R_FS]); |
510 |
set_seg(&sregs.gs, &env->segs[R_GS]); |
511 |
set_seg(&sregs.ss, &env->segs[R_SS]); |
512 |
|
513 |
if (env->cr[0] & CR0_PE_MASK) { |
514 |
/* force ss cpl to cs cpl */
|
515 |
sregs.ss.selector = (sregs.ss.selector & ~3) |
|
516 |
(sregs.cs.selector & 3);
|
517 |
sregs.ss.dpl = sregs.ss.selector & 3;
|
518 |
} |
519 |
} |
520 |
|
521 |
set_seg(&sregs.tr, &env->tr); |
522 |
set_seg(&sregs.ldt, &env->ldt); |
523 |
|
524 |
sregs.idt.limit = env->idt.limit; |
525 |
sregs.idt.base = env->idt.base; |
526 |
sregs.gdt.limit = env->gdt.limit; |
527 |
sregs.gdt.base = env->gdt.base; |
528 |
|
529 |
sregs.cr0 = env->cr[0];
|
530 |
sregs.cr2 = env->cr[2];
|
531 |
sregs.cr3 = env->cr[3];
|
532 |
sregs.cr4 = env->cr[4];
|
533 |
|
534 |
sregs.cr8 = cpu_get_apic_tpr(env); |
535 |
sregs.apic_base = cpu_get_apic_base(env); |
536 |
|
537 |
sregs.efer = env->efer; |
538 |
|
539 |
return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
|
540 |
} |
541 |
|
542 |
static void kvm_msr_entry_set(struct kvm_msr_entry *entry, |
543 |
uint32_t index, uint64_t value) |
544 |
{ |
545 |
entry->index = index; |
546 |
entry->data = value; |
547 |
} |
548 |
|
549 |
static int kvm_put_msrs(CPUState *env, int level) |
550 |
{ |
551 |
struct {
|
552 |
struct kvm_msrs info;
|
553 |
struct kvm_msr_entry entries[100]; |
554 |
} msr_data; |
555 |
struct kvm_msr_entry *msrs = msr_data.entries;
|
556 |
int n = 0; |
557 |
|
558 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
559 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
560 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
561 |
if (kvm_has_msr_star(env))
|
562 |
kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
563 |
#ifdef TARGET_X86_64
|
564 |
/* FIXME if lm capable */
|
565 |
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
566 |
kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
567 |
kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
568 |
kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
569 |
#endif
|
570 |
if (level == KVM_PUT_FULL_STATE) {
|
571 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
572 |
kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, |
573 |
env->system_time_msr); |
574 |
kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); |
575 |
} |
576 |
|
577 |
msr_data.info.nmsrs = n; |
578 |
|
579 |
return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
|
580 |
|
581 |
} |
582 |
|
583 |
|
584 |
static int kvm_get_fpu(CPUState *env) |
585 |
{ |
586 |
struct kvm_fpu fpu;
|
587 |
int i, ret;
|
588 |
|
589 |
ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); |
590 |
if (ret < 0) |
591 |
return ret;
|
592 |
|
593 |
env->fpstt = (fpu.fsw >> 11) & 7; |
594 |
env->fpus = fpu.fsw; |
595 |
env->fpuc = fpu.fcw; |
596 |
for (i = 0; i < 8; ++i) |
597 |
env->fptags[i] = !((fpu.ftwx >> i) & 1);
|
598 |
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
|
599 |
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
|
600 |
env->mxcsr = fpu.mxcsr; |
601 |
|
602 |
return 0; |
603 |
} |
604 |
|
605 |
static int kvm_get_sregs(CPUState *env) |
606 |
{ |
607 |
struct kvm_sregs sregs;
|
608 |
uint32_t hflags; |
609 |
int bit, i, ret;
|
610 |
|
611 |
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
612 |
if (ret < 0) |
613 |
return ret;
|
614 |
|
615 |
/* There can only be one pending IRQ set in the bitmap at a time, so try
|
616 |
to find it and save its number instead (-1 for none). */
|
617 |
env->interrupt_injected = -1;
|
618 |
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { |
619 |
if (sregs.interrupt_bitmap[i]) {
|
620 |
bit = ctz64(sregs.interrupt_bitmap[i]); |
621 |
env->interrupt_injected = i * 64 + bit;
|
622 |
break;
|
623 |
} |
624 |
} |
625 |
|
626 |
get_seg(&env->segs[R_CS], &sregs.cs); |
627 |
get_seg(&env->segs[R_DS], &sregs.ds); |
628 |
get_seg(&env->segs[R_ES], &sregs.es); |
629 |
get_seg(&env->segs[R_FS], &sregs.fs); |
630 |
get_seg(&env->segs[R_GS], &sregs.gs); |
631 |
get_seg(&env->segs[R_SS], &sregs.ss); |
632 |
|
633 |
get_seg(&env->tr, &sregs.tr); |
634 |
get_seg(&env->ldt, &sregs.ldt); |
635 |
|
636 |
env->idt.limit = sregs.idt.limit; |
637 |
env->idt.base = sregs.idt.base; |
638 |
env->gdt.limit = sregs.gdt.limit; |
639 |
env->gdt.base = sregs.gdt.base; |
640 |
|
641 |
env->cr[0] = sregs.cr0;
|
642 |
env->cr[2] = sregs.cr2;
|
643 |
env->cr[3] = sregs.cr3;
|
644 |
env->cr[4] = sregs.cr4;
|
645 |
|
646 |
cpu_set_apic_base(env, sregs.apic_base); |
647 |
|
648 |
env->efer = sregs.efer; |
649 |
//cpu_set_apic_tpr(env, sregs.cr8);
|
650 |
|
651 |
#define HFLAG_COPY_MASK ~( \
|
652 |
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
653 |
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
654 |
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
655 |
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
656 |
|
657 |
|
658 |
|
659 |
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
660 |
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
|
661 |
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
|
662 |
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
663 |
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
664 |
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
|
665 |
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
666 |
|
667 |
if (env->efer & MSR_EFER_LMA) {
|
668 |
hflags |= HF_LMA_MASK; |
669 |
} |
670 |
|
671 |
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
|
672 |
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
673 |
} else {
|
674 |
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
675 |
(DESC_B_SHIFT - HF_CS32_SHIFT); |
676 |
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
677 |
(DESC_B_SHIFT - HF_SS32_SHIFT); |
678 |
if (!(env->cr[0] & CR0_PE_MASK) || |
679 |
(env->eflags & VM_MASK) || |
680 |
!(hflags & HF_CS32_MASK)) { |
681 |
hflags |= HF_ADDSEG_MASK; |
682 |
} else {
|
683 |
hflags |= ((env->segs[R_DS].base | |
684 |
env->segs[R_ES].base | |
685 |
env->segs[R_SS].base) != 0) <<
|
686 |
HF_ADDSEG_SHIFT; |
687 |
} |
688 |
} |
689 |
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
690 |
|
691 |
return 0; |
692 |
} |
693 |
|
694 |
static int kvm_get_msrs(CPUState *env) |
695 |
{ |
696 |
struct {
|
697 |
struct kvm_msrs info;
|
698 |
struct kvm_msr_entry entries[100]; |
699 |
} msr_data; |
700 |
struct kvm_msr_entry *msrs = msr_data.entries;
|
701 |
int ret, i, n;
|
702 |
|
703 |
n = 0;
|
704 |
msrs[n++].index = MSR_IA32_SYSENTER_CS; |
705 |
msrs[n++].index = MSR_IA32_SYSENTER_ESP; |
706 |
msrs[n++].index = MSR_IA32_SYSENTER_EIP; |
707 |
if (kvm_has_msr_star(env))
|
708 |
msrs[n++].index = MSR_STAR; |
709 |
msrs[n++].index = MSR_IA32_TSC; |
710 |
#ifdef TARGET_X86_64
|
711 |
/* FIXME lm_capable_kernel */
|
712 |
msrs[n++].index = MSR_CSTAR; |
713 |
msrs[n++].index = MSR_KERNELGSBASE; |
714 |
msrs[n++].index = MSR_FMASK; |
715 |
msrs[n++].index = MSR_LSTAR; |
716 |
#endif
|
717 |
msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
718 |
msrs[n++].index = MSR_KVM_WALL_CLOCK; |
719 |
|
720 |
msr_data.info.nmsrs = n; |
721 |
ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); |
722 |
if (ret < 0) |
723 |
return ret;
|
724 |
|
725 |
for (i = 0; i < ret; i++) { |
726 |
switch (msrs[i].index) {
|
727 |
case MSR_IA32_SYSENTER_CS:
|
728 |
env->sysenter_cs = msrs[i].data; |
729 |
break;
|
730 |
case MSR_IA32_SYSENTER_ESP:
|
731 |
env->sysenter_esp = msrs[i].data; |
732 |
break;
|
733 |
case MSR_IA32_SYSENTER_EIP:
|
734 |
env->sysenter_eip = msrs[i].data; |
735 |
break;
|
736 |
case MSR_STAR:
|
737 |
env->star = msrs[i].data; |
738 |
break;
|
739 |
#ifdef TARGET_X86_64
|
740 |
case MSR_CSTAR:
|
741 |
env->cstar = msrs[i].data; |
742 |
break;
|
743 |
case MSR_KERNELGSBASE:
|
744 |
env->kernelgsbase = msrs[i].data; |
745 |
break;
|
746 |
case MSR_FMASK:
|
747 |
env->fmask = msrs[i].data; |
748 |
break;
|
749 |
case MSR_LSTAR:
|
750 |
env->lstar = msrs[i].data; |
751 |
break;
|
752 |
#endif
|
753 |
case MSR_IA32_TSC:
|
754 |
env->tsc = msrs[i].data; |
755 |
break;
|
756 |
case MSR_KVM_SYSTEM_TIME:
|
757 |
env->system_time_msr = msrs[i].data; |
758 |
break;
|
759 |
case MSR_KVM_WALL_CLOCK:
|
760 |
env->wall_clock_msr = msrs[i].data; |
761 |
break;
|
762 |
} |
763 |
} |
764 |
|
765 |
return 0; |
766 |
} |
767 |
|
768 |
static int kvm_put_mp_state(CPUState *env) |
769 |
{ |
770 |
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
|
771 |
|
772 |
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
|
773 |
} |
774 |
|
775 |
static int kvm_get_mp_state(CPUState *env) |
776 |
{ |
777 |
struct kvm_mp_state mp_state;
|
778 |
int ret;
|
779 |
|
780 |
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); |
781 |
if (ret < 0) { |
782 |
return ret;
|
783 |
} |
784 |
env->mp_state = mp_state.mp_state; |
785 |
return 0; |
786 |
} |
787 |
|
788 |
static int kvm_put_vcpu_events(CPUState *env, int level) |
789 |
{ |
790 |
#ifdef KVM_CAP_VCPU_EVENTS
|
791 |
struct kvm_vcpu_events events;
|
792 |
|
793 |
if (!kvm_has_vcpu_events()) {
|
794 |
return 0; |
795 |
} |
796 |
|
797 |
events.exception.injected = (env->exception_injected >= 0);
|
798 |
events.exception.nr = env->exception_injected; |
799 |
events.exception.has_error_code = env->has_error_code; |
800 |
events.exception.error_code = env->error_code; |
801 |
|
802 |
events.interrupt.injected = (env->interrupt_injected >= 0);
|
803 |
events.interrupt.nr = env->interrupt_injected; |
804 |
events.interrupt.soft = env->soft_interrupt; |
805 |
|
806 |
events.nmi.injected = env->nmi_injected; |
807 |
events.nmi.pending = env->nmi_pending; |
808 |
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); |
809 |
|
810 |
events.sipi_vector = env->sipi_vector; |
811 |
|
812 |
events.flags = 0;
|
813 |
if (level >= KVM_PUT_RESET_STATE) {
|
814 |
events.flags |= |
815 |
KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR; |
816 |
} |
817 |
|
818 |
return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
|
819 |
#else
|
820 |
return 0; |
821 |
#endif
|
822 |
} |
823 |
|
824 |
static int kvm_get_vcpu_events(CPUState *env) |
825 |
{ |
826 |
#ifdef KVM_CAP_VCPU_EVENTS
|
827 |
struct kvm_vcpu_events events;
|
828 |
int ret;
|
829 |
|
830 |
if (!kvm_has_vcpu_events()) {
|
831 |
return 0; |
832 |
} |
833 |
|
834 |
ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); |
835 |
if (ret < 0) { |
836 |
return ret;
|
837 |
} |
838 |
env->exception_injected = |
839 |
events.exception.injected ? events.exception.nr : -1;
|
840 |
env->has_error_code = events.exception.has_error_code; |
841 |
env->error_code = events.exception.error_code; |
842 |
|
843 |
env->interrupt_injected = |
844 |
events.interrupt.injected ? events.interrupt.nr : -1;
|
845 |
env->soft_interrupt = events.interrupt.soft; |
846 |
|
847 |
env->nmi_injected = events.nmi.injected; |
848 |
env->nmi_pending = events.nmi.pending; |
849 |
if (events.nmi.masked) {
|
850 |
env->hflags2 |= HF2_NMI_MASK; |
851 |
} else {
|
852 |
env->hflags2 &= ~HF2_NMI_MASK; |
853 |
} |
854 |
|
855 |
env->sipi_vector = events.sipi_vector; |
856 |
#endif
|
857 |
|
858 |
return 0; |
859 |
} |
860 |
|
861 |
static int kvm_guest_debug_workarounds(CPUState *env) |
862 |
{ |
863 |
int ret = 0; |
864 |
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
865 |
unsigned long reinject_trap = 0; |
866 |
|
867 |
if (!kvm_has_vcpu_events()) {
|
868 |
if (env->exception_injected == 1) { |
869 |
reinject_trap = KVM_GUESTDBG_INJECT_DB; |
870 |
} else if (env->exception_injected == 3) { |
871 |
reinject_trap = KVM_GUESTDBG_INJECT_BP; |
872 |
} |
873 |
env->exception_injected = -1;
|
874 |
} |
875 |
|
876 |
/*
|
877 |
* Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
|
878 |
* injected via SET_GUEST_DEBUG while updating GP regs. Work around this
|
879 |
* by updating the debug state once again if single-stepping is on.
|
880 |
* Another reason to call kvm_update_guest_debug here is a pending debug
|
881 |
* trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
|
882 |
* reinject them via SET_GUEST_DEBUG.
|
883 |
*/
|
884 |
if (reinject_trap ||
|
885 |
(!kvm_has_robust_singlestep() && env->singlestep_enabled)) { |
886 |
ret = kvm_update_guest_debug(env, reinject_trap); |
887 |
} |
888 |
#endif /* KVM_CAP_SET_GUEST_DEBUG */ |
889 |
return ret;
|
890 |
} |
891 |
|
892 |
int kvm_arch_put_registers(CPUState *env, int level) |
893 |
{ |
894 |
int ret;
|
895 |
|
896 |
ret = kvm_getput_regs(env, 1);
|
897 |
if (ret < 0) |
898 |
return ret;
|
899 |
|
900 |
ret = kvm_put_fpu(env); |
901 |
if (ret < 0) |
902 |
return ret;
|
903 |
|
904 |
ret = kvm_put_sregs(env); |
905 |
if (ret < 0) |
906 |
return ret;
|
907 |
|
908 |
ret = kvm_put_msrs(env, level); |
909 |
if (ret < 0) |
910 |
return ret;
|
911 |
|
912 |
if (level >= KVM_PUT_RESET_STATE) {
|
913 |
ret = kvm_put_mp_state(env); |
914 |
if (ret < 0) |
915 |
return ret;
|
916 |
} |
917 |
|
918 |
ret = kvm_put_vcpu_events(env, level); |
919 |
if (ret < 0) |
920 |
return ret;
|
921 |
|
922 |
/* must be last */
|
923 |
ret = kvm_guest_debug_workarounds(env); |
924 |
if (ret < 0) |
925 |
return ret;
|
926 |
|
927 |
return 0; |
928 |
} |
929 |
|
930 |
int kvm_arch_get_registers(CPUState *env)
|
931 |
{ |
932 |
int ret;
|
933 |
|
934 |
ret = kvm_getput_regs(env, 0);
|
935 |
if (ret < 0) |
936 |
return ret;
|
937 |
|
938 |
ret = kvm_get_fpu(env); |
939 |
if (ret < 0) |
940 |
return ret;
|
941 |
|
942 |
ret = kvm_get_sregs(env); |
943 |
if (ret < 0) |
944 |
return ret;
|
945 |
|
946 |
ret = kvm_get_msrs(env); |
947 |
if (ret < 0) |
948 |
return ret;
|
949 |
|
950 |
ret = kvm_get_mp_state(env); |
951 |
if (ret < 0) |
952 |
return ret;
|
953 |
|
954 |
ret = kvm_get_vcpu_events(env); |
955 |
if (ret < 0) |
956 |
return ret;
|
957 |
|
958 |
return 0; |
959 |
} |
960 |
|
961 |
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
962 |
{ |
963 |
/* Try to inject an interrupt if the guest can accept it */
|
964 |
if (run->ready_for_interrupt_injection &&
|
965 |
(env->interrupt_request & CPU_INTERRUPT_HARD) && |
966 |
(env->eflags & IF_MASK)) { |
967 |
int irq;
|
968 |
|
969 |
env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
970 |
irq = cpu_get_pic_interrupt(env); |
971 |
if (irq >= 0) { |
972 |
struct kvm_interrupt intr;
|
973 |
intr.irq = irq; |
974 |
/* FIXME: errors */
|
975 |
dprintf("injected interrupt %d\n", irq);
|
976 |
kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
977 |
} |
978 |
} |
979 |
|
980 |
/* If we have an interrupt but the guest is not ready to receive an
|
981 |
* interrupt, request an interrupt window exit. This will
|
982 |
* cause a return to userspace as soon as the guest is ready to
|
983 |
* receive interrupts. */
|
984 |
if ((env->interrupt_request & CPU_INTERRUPT_HARD))
|
985 |
run->request_interrupt_window = 1;
|
986 |
else
|
987 |
run->request_interrupt_window = 0;
|
988 |
|
989 |
dprintf("setting tpr\n");
|
990 |
run->cr8 = cpu_get_apic_tpr(env); |
991 |
|
992 |
return 0; |
993 |
} |
994 |
|
995 |
int kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
996 |
{ |
997 |
if (run->if_flag)
|
998 |
env->eflags |= IF_MASK; |
999 |
else
|
1000 |
env->eflags &= ~IF_MASK; |
1001 |
|
1002 |
cpu_set_apic_tpr(env, run->cr8); |
1003 |
cpu_set_apic_base(env, run->apic_base); |
1004 |
|
1005 |
return 0; |
1006 |
} |
1007 |
|
1008 |
static int kvm_handle_halt(CPUState *env) |
1009 |
{ |
1010 |
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
1011 |
(env->eflags & IF_MASK)) && |
1012 |
!(env->interrupt_request & CPU_INTERRUPT_NMI)) { |
1013 |
env->halted = 1;
|
1014 |
env->exception_index = EXCP_HLT; |
1015 |
return 0; |
1016 |
} |
1017 |
|
1018 |
return 1; |
1019 |
} |
1020 |
|
1021 |
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
1022 |
{ |
1023 |
int ret = 0; |
1024 |
|
1025 |
switch (run->exit_reason) {
|
1026 |
case KVM_EXIT_HLT:
|
1027 |
dprintf("handle_hlt\n");
|
1028 |
ret = kvm_handle_halt(env); |
1029 |
break;
|
1030 |
} |
1031 |
|
1032 |
return ret;
|
1033 |
} |
1034 |
|
1035 |
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
1036 |
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1037 |
{ |
1038 |
static const uint8_t int3 = 0xcc; |
1039 |
|
1040 |
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
1041 |
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
1042 |
return -EINVAL;
|
1043 |
return 0; |
1044 |
} |
1045 |
|
1046 |
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
1047 |
{ |
1048 |
uint8_t int3; |
1049 |
|
1050 |
if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
1051 |
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
1052 |
return -EINVAL;
|
1053 |
return 0; |
1054 |
} |
1055 |
|
1056 |
static struct { |
1057 |
target_ulong addr; |
1058 |
int len;
|
1059 |
int type;
|
1060 |
} hw_breakpoint[4];
|
1061 |
|
1062 |
static int nb_hw_breakpoint; |
1063 |
|
1064 |
static int find_hw_breakpoint(target_ulong addr, int len, int type) |
1065 |
{ |
1066 |
int n;
|
1067 |
|
1068 |
for (n = 0; n < nb_hw_breakpoint; n++) |
1069 |
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
|
1070 |
(hw_breakpoint[n].len == len || len == -1))
|
1071 |
return n;
|
1072 |
return -1; |
1073 |
} |
1074 |
|
1075 |
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
1076 |
target_ulong len, int type)
|
1077 |
{ |
1078 |
switch (type) {
|
1079 |
case GDB_BREAKPOINT_HW:
|
1080 |
len = 1;
|
1081 |
break;
|
1082 |
case GDB_WATCHPOINT_WRITE:
|
1083 |
case GDB_WATCHPOINT_ACCESS:
|
1084 |
switch (len) {
|
1085 |
case 1: |
1086 |
break;
|
1087 |
case 2: |
1088 |
case 4: |
1089 |
case 8: |
1090 |
if (addr & (len - 1)) |
1091 |
return -EINVAL;
|
1092 |
break;
|
1093 |
default:
|
1094 |
return -EINVAL;
|
1095 |
} |
1096 |
break;
|
1097 |
default:
|
1098 |
return -ENOSYS;
|
1099 |
} |
1100 |
|
1101 |
if (nb_hw_breakpoint == 4) |
1102 |
return -ENOBUFS;
|
1103 |
|
1104 |
if (find_hw_breakpoint(addr, len, type) >= 0) |
1105 |
return -EEXIST;
|
1106 |
|
1107 |
hw_breakpoint[nb_hw_breakpoint].addr = addr; |
1108 |
hw_breakpoint[nb_hw_breakpoint].len = len; |
1109 |
hw_breakpoint[nb_hw_breakpoint].type = type; |
1110 |
nb_hw_breakpoint++; |
1111 |
|
1112 |
return 0; |
1113 |
} |
1114 |
|
1115 |
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
1116 |
target_ulong len, int type)
|
1117 |
{ |
1118 |
int n;
|
1119 |
|
1120 |
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
|
1121 |
if (n < 0) |
1122 |
return -ENOENT;
|
1123 |
|
1124 |
nb_hw_breakpoint--; |
1125 |
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
1126 |
|
1127 |
return 0; |
1128 |
} |
1129 |
|
1130 |
void kvm_arch_remove_all_hw_breakpoints(void) |
1131 |
{ |
1132 |
nb_hw_breakpoint = 0;
|
1133 |
} |
1134 |
|
1135 |
static CPUWatchpoint hw_watchpoint;
|
1136 |
|
1137 |
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) |
1138 |
{ |
1139 |
int handle = 0; |
1140 |
int n;
|
1141 |
|
1142 |
if (arch_info->exception == 1) { |
1143 |
if (arch_info->dr6 & (1 << 14)) { |
1144 |
if (cpu_single_env->singlestep_enabled)
|
1145 |
handle = 1;
|
1146 |
} else {
|
1147 |
for (n = 0; n < 4; n++) |
1148 |
if (arch_info->dr6 & (1 << n)) |
1149 |
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
1150 |
case 0x0: |
1151 |
handle = 1;
|
1152 |
break;
|
1153 |
case 0x1: |
1154 |
handle = 1;
|
1155 |
cpu_single_env->watchpoint_hit = &hw_watchpoint; |
1156 |
hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
1157 |
hw_watchpoint.flags = BP_MEM_WRITE; |
1158 |
break;
|
1159 |
case 0x3: |
1160 |
handle = 1;
|
1161 |
cpu_single_env->watchpoint_hit = &hw_watchpoint; |
1162 |
hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
1163 |
hw_watchpoint.flags = BP_MEM_ACCESS; |
1164 |
break;
|
1165 |
} |
1166 |
} |
1167 |
} else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) |
1168 |
handle = 1;
|
1169 |
|
1170 |
if (!handle) {
|
1171 |
cpu_synchronize_state(cpu_single_env); |
1172 |
assert(cpu_single_env->exception_injected == -1);
|
1173 |
|
1174 |
cpu_single_env->exception_injected = arch_info->exception; |
1175 |
cpu_single_env->has_error_code = 0;
|
1176 |
} |
1177 |
|
1178 |
return handle;
|
1179 |
} |
1180 |
|
1181 |
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) |
1182 |
{ |
1183 |
const uint8_t type_code[] = {
|
1184 |
[GDB_BREAKPOINT_HW] = 0x0,
|
1185 |
[GDB_WATCHPOINT_WRITE] = 0x1,
|
1186 |
[GDB_WATCHPOINT_ACCESS] = 0x3
|
1187 |
}; |
1188 |
const uint8_t len_code[] = {
|
1189 |
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
1190 |
}; |
1191 |
int n;
|
1192 |
|
1193 |
if (kvm_sw_breakpoints_active(env))
|
1194 |
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
1195 |
|
1196 |
if (nb_hw_breakpoint > 0) { |
1197 |
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
1198 |
dbg->arch.debugreg[7] = 0x0600; |
1199 |
for (n = 0; n < nb_hw_breakpoint; n++) { |
1200 |
dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
1201 |
dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
1202 |
(type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
1203 |
(len_code[hw_breakpoint[n].len] << (18 + n*4)); |
1204 |
} |
1205 |
} |
1206 |
} |
1207 |
#endif /* KVM_CAP_SET_GUEST_DEBUG */ |