Statistics
| Branch: | Revision:

root / cpu-exec.c @ ead9360e

History | View | Annotate | Download (49.8 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
void cpu_loop_exit(void)
44
{
45
    /* NOTE: the register at this point must be saved by hand because
46
       longjmp restore them */
47
    regs_to_env();
48
    longjmp(env->jmp_env, 1);
49
}
50

    
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc) 
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      unsigned int flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87
    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91
    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc && 
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base && 
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146
    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    unsigned int flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    cs_base = env->segs[R_CS].base;
167
    pc = cs_base + env->eip;
168
#elif defined(TARGET_ARM)
169
    flags = env->thumb | (env->vfp.vec_len << 1)
170
            | (env->vfp.vec_stride << 4);
171
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172
        flags |= (1 << 6);
173
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174
        flags |= (1 << 7);
175
    cs_base = 0;
176
    pc = env->regs[15];
177
#elif defined(TARGET_SPARC)
178
#ifdef TARGET_SPARC64
179
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182
#else
183
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
184
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185
        | env->psrs;
186
#endif
187
    cs_base = env->npc;
188
    pc = env->pc;
189
#elif defined(TARGET_PPC)
190
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
192
    cs_base = 0;
193
    pc = env->nip;
194
#elif defined(TARGET_MIPS)
195
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196
    cs_base = 0;
197
    pc = env->PC[env->current_tc];
198
#elif defined(TARGET_M68K)
199
    flags = (env->fpcr & M68K_FPCR_PREC)  /* Bit  6 */
200
            | (env->sr & SR_S)            /* Bit  13 */
201
            | ((env->macsr >> 4) & 0xf);  /* Bits 0-3 */
202
    cs_base = 0;
203
    pc = env->pc;
204
#elif defined(TARGET_SH4)
205
    flags = env->sr & (SR_MD | SR_RB);
206
    cs_base = 0;         /* XXXXX */
207
    pc = env->pc;
208
#elif defined(TARGET_ALPHA)
209
    flags = env->ps;
210
    cs_base = 0;
211
    pc = env->pc;
212
#else
213
#error unsupported CPU
214
#endif
215
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
216
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
217
                         tb->flags != flags, 0)) {
218
        tb = tb_find_slow(pc, cs_base, flags);
219
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
220
           doing it in tb_find_slow */
221
        if (tb_invalidated_flag) {
222
            /* as some TB could have been invalidated because
223
               of memory exceptions while generating the code, we
224
               must recompute the hash index here */
225
            T0 = 0;
226
        }
227
    }
228
    return tb;
229
}
230

    
231

    
232
/* main execution loop */
233

    
234
int cpu_exec(CPUState *env1)
235
{
236
#define DECLARE_HOST_REGS 1
237
#include "hostregs_helper.h"
238
#if defined(TARGET_SPARC)
239
#if defined(reg_REGWPTR)
240
    uint32_t *saved_regwptr;
241
#endif
242
#endif
243
#if defined(__sparc__) && !defined(HOST_SOLARIS)
244
    int saved_i7;
245
    target_ulong tmp_T0;
246
#endif
247
    int ret, interrupt_request;
248
    void (*gen_func)(void);
249
    TranslationBlock *tb;
250
    uint8_t *tc_ptr;
251

    
252
    if (cpu_halted(env1) == EXCP_HALTED)
253
        return EXCP_HALTED;
254

    
255
    cpu_single_env = env1; 
256

    
257
    /* first we save global registers */
258
#define SAVE_HOST_REGS 1
259
#include "hostregs_helper.h"
260
    env = env1;
261
#if defined(__sparc__) && !defined(HOST_SOLARIS)
262
    /* we also save i7 because longjmp may not restore it */
263
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
264
#endif
265

    
266
    env_to_regs();
267
#if defined(TARGET_I386)
268
    /* put eflags in CPU temporary format */
269
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
270
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
271
    CC_OP = CC_OP_EFLAGS;
272
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
273
#elif defined(TARGET_SPARC)
274
#if defined(reg_REGWPTR)
275
    saved_regwptr = REGWPTR;
276
#endif
277
#elif defined(TARGET_M68K)
278
    env->cc_op = CC_OP_FLAGS;
279
    env->cc_dest = env->sr & 0xf;
280
    env->cc_x = (env->sr >> 4) & 1;
281
#elif defined(TARGET_ALPHA)
282
#elif defined(TARGET_ARM)
283
#elif defined(TARGET_PPC)
284
#elif defined(TARGET_MIPS)
285
#elif defined(TARGET_SH4)
286
    /* XXXXX */
287
#else
288
#error unsupported target CPU
289
#endif
290
    env->exception_index = -1;
291

    
292
    /* prepare setjmp context for exception handling */
293
    for(;;) {
294
        if (setjmp(env->jmp_env) == 0) {
295
            env->current_tb = NULL;
296
            /* if an exception is pending, we execute it here */
297
            if (env->exception_index >= 0) {
298
                if (env->exception_index >= EXCP_INTERRUPT) {
299
                    /* exit request from the cpu execution loop */
300
                    ret = env->exception_index;
301
                    break;
302
                } else if (env->user_mode_only) {
303
                    /* if user mode only, we simulate a fake exception
304
                       which will be handled outside the cpu execution
305
                       loop */
306
#if defined(TARGET_I386)
307
                    do_interrupt_user(env->exception_index, 
308
                                      env->exception_is_int, 
309
                                      env->error_code, 
310
                                      env->exception_next_eip);
311
#endif
312
                    ret = env->exception_index;
313
                    break;
314
                } else {
315
#if defined(TARGET_I386)
316
                    /* simulate a real cpu exception. On i386, it can
317
                       trigger new exceptions, but we do not handle
318
                       double or triple faults yet. */
319
                    do_interrupt(env->exception_index, 
320
                                 env->exception_is_int, 
321
                                 env->error_code, 
322
                                 env->exception_next_eip, 0);
323
                    /* successfully delivered */
324
                    env->old_exception = -1;
325
#elif defined(TARGET_PPC)
326
                    do_interrupt(env);
327
#elif defined(TARGET_MIPS)
328
                    do_interrupt(env);
329
#elif defined(TARGET_SPARC)
330
                    do_interrupt(env->exception_index);
331
#elif defined(TARGET_ARM)
332
                    do_interrupt(env);
333
#elif defined(TARGET_SH4)
334
                    do_interrupt(env);
335
#elif defined(TARGET_ALPHA)
336
                    do_interrupt(env);
337
#elif defined(TARGET_M68K)
338
                    do_interrupt(0);
339
#endif
340
                }
341
                env->exception_index = -1;
342
            } 
343
#ifdef USE_KQEMU
344
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
345
                int ret;
346
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
347
                ret = kqemu_cpu_exec(env);
348
                /* put eflags in CPU temporary format */
349
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
350
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
351
                CC_OP = CC_OP_EFLAGS;
352
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
353
                if (ret == 1) {
354
                    /* exception */
355
                    longjmp(env->jmp_env, 1);
356
                } else if (ret == 2) {
357
                    /* softmmu execution needed */
358
                } else {
359
                    if (env->interrupt_request != 0) {
360
                        /* hardware interrupt will be executed just after */
361
                    } else {
362
                        /* otherwise, we restart */
363
                        longjmp(env->jmp_env, 1);
364
                    }
365
                }
366
            }
367
#endif
368

    
369
            T0 = 0; /* force lookup of first TB */
370
            for(;;) {
371
#if defined(__sparc__) && !defined(HOST_SOLARIS)
372
                /* g1 can be modified by some libc? functions */ 
373
                tmp_T0 = T0;
374
#endif            
375
                interrupt_request = env->interrupt_request;
376
                if (__builtin_expect(interrupt_request, 0)) {
377
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
378
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
379
                        env->exception_index = EXCP_DEBUG;
380
                        cpu_loop_exit();
381
                    }
382
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
383
    defined(TARGET_PPC) || defined(TARGET_ALPHA)
384
                    if (interrupt_request & CPU_INTERRUPT_HALT) {
385
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
386
                        env->halted = 1;
387
                        env->exception_index = EXCP_HLT;
388
                        cpu_loop_exit();
389
                    }
390
#endif
391
#if defined(TARGET_I386)
392
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
393
                        !(env->hflags & HF_SMM_MASK)) {
394
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
395
                        do_smm_enter();
396
#if defined(__sparc__) && !defined(HOST_SOLARIS)
397
                        tmp_T0 = 0;
398
#else
399
                        T0 = 0;
400
#endif
401
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
402
                        (env->eflags & IF_MASK) && 
403
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
404
                        int intno;
405
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
406
                        intno = cpu_get_pic_interrupt(env);
407
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
408
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
409
                        }
410
                        do_interrupt(intno, 0, 0, 0, 1);
411
                        /* ensure that no TB jump will be modified as
412
                           the program flow was changed */
413
#if defined(__sparc__) && !defined(HOST_SOLARIS)
414
                        tmp_T0 = 0;
415
#else
416
                        T0 = 0;
417
#endif
418
                    }
419
#elif defined(TARGET_PPC)
420
#if 0
421
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
422
                        cpu_ppc_reset(env);
423
                    }
424
#endif
425
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
426
                        ppc_hw_interrupt(env);
427
                        if (env->pending_interrupts == 0)
428
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
429
#if defined(__sparc__) && !defined(HOST_SOLARIS)
430
                        tmp_T0 = 0;
431
#else
432
                        T0 = 0;
433
#endif
434
                    }
435
#elif defined(TARGET_MIPS)
436
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
437
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
438
                        (env->CP0_Status & (1 << CP0St_IE)) &&
439
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
440
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
441
                        !(env->hflags & MIPS_HFLAG_DM)) {
442
                        /* Raise it */
443
                        env->exception_index = EXCP_EXT_INTERRUPT;
444
                        env->error_code = 0;
445
                        do_interrupt(env);
446
#if defined(__sparc__) && !defined(HOST_SOLARIS)
447
                        tmp_T0 = 0;
448
#else
449
                        T0 = 0;
450
#endif
451
                    }
452
#elif defined(TARGET_SPARC)
453
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
454
                        (env->psret != 0)) {
455
                        int pil = env->interrupt_index & 15;
456
                        int type = env->interrupt_index & 0xf0;
457

    
458
                        if (((type == TT_EXTINT) &&
459
                             (pil == 15 || pil > env->psrpil)) ||
460
                            type != TT_EXTINT) {
461
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
462
                            do_interrupt(env->interrupt_index);
463
                            env->interrupt_index = 0;
464
#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
465
                            cpu_check_irqs(env);
466
#endif
467
#if defined(__sparc__) && !defined(HOST_SOLARIS)
468
                            tmp_T0 = 0;
469
#else
470
                            T0 = 0;
471
#endif
472
                        }
473
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
474
                        //do_interrupt(0, 0, 0, 0, 0);
475
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
476
                    }
477
#elif defined(TARGET_ARM)
478
                    if (interrupt_request & CPU_INTERRUPT_FIQ
479
                        && !(env->uncached_cpsr & CPSR_F)) {
480
                        env->exception_index = EXCP_FIQ;
481
                        do_interrupt(env);
482
                    }
483
                    if (interrupt_request & CPU_INTERRUPT_HARD
484
                        && !(env->uncached_cpsr & CPSR_I)) {
485
                        env->exception_index = EXCP_IRQ;
486
                        do_interrupt(env);
487
                    }
488
#elif defined(TARGET_SH4)
489
                    /* XXXXX */
490
#elif defined(TARGET_ALPHA)
491
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
492
                        do_interrupt(env);
493
                    }
494
#elif defined(TARGET_M68K)
495
                    if (interrupt_request & CPU_INTERRUPT_HARD
496
                        && ((env->sr & SR_I) >> SR_I_SHIFT)
497
                            < env->pending_level) {
498
                        /* Real hardware gets the interrupt vector via an
499
                           IACK cycle at this point.  Current emulated
500
                           hardware doesn't rely on this, so we
501
                           provide/save the vector when the interrupt is
502
                           first signalled.  */
503
                        env->exception_index = env->pending_vector;
504
                        do_interrupt(1);
505
                    }
506
#endif
507
                   /* Don't use the cached interupt_request value,
508
                      do_interrupt may have updated the EXITTB flag. */
509
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
510
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
511
                        /* ensure that no TB jump will be modified as
512
                           the program flow was changed */
513
#if defined(__sparc__) && !defined(HOST_SOLARIS)
514
                        tmp_T0 = 0;
515
#else
516
                        T0 = 0;
517
#endif
518
                    }
519
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
520
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
521
                        env->exception_index = EXCP_INTERRUPT;
522
                        cpu_loop_exit();
523
                    }
524
                }
525
#ifdef DEBUG_EXEC
526
                if ((loglevel & CPU_LOG_TB_CPU)) {
527
                    /* restore flags in standard format */
528
                    regs_to_env();
529
#if defined(TARGET_I386)
530
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
531
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
532
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
533
#elif defined(TARGET_ARM)
534
                    cpu_dump_state(env, logfile, fprintf, 0);
535
#elif defined(TARGET_SPARC)
536
                    REGWPTR = env->regbase + (env->cwp * 16);
537
                    env->regwptr = REGWPTR;
538
                    cpu_dump_state(env, logfile, fprintf, 0);
539
#elif defined(TARGET_PPC)
540
                    cpu_dump_state(env, logfile, fprintf, 0);
541
#elif defined(TARGET_M68K)
542
                    cpu_m68k_flush_flags(env, env->cc_op);
543
                    env->cc_op = CC_OP_FLAGS;
544
                    env->sr = (env->sr & 0xffe0)
545
                              | env->cc_dest | (env->cc_x << 4);
546
                    cpu_dump_state(env, logfile, fprintf, 0);
547
#elif defined(TARGET_MIPS)
548
                    cpu_dump_state(env, logfile, fprintf, 0);
549
#elif defined(TARGET_SH4)
550
                    cpu_dump_state(env, logfile, fprintf, 0);
551
#elif defined(TARGET_ALPHA)
552
                    cpu_dump_state(env, logfile, fprintf, 0);
553
#else
554
#error unsupported target CPU 
555
#endif
556
                }
557
#endif
558
                tb = tb_find_fast();
559
#ifdef DEBUG_EXEC
560
                if ((loglevel & CPU_LOG_EXEC)) {
561
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
562
                            (long)tb->tc_ptr, tb->pc,
563
                            lookup_symbol(tb->pc));
564
                }
565
#endif
566
#if defined(__sparc__) && !defined(HOST_SOLARIS)
567
                T0 = tmp_T0;
568
#endif            
569
                /* see if we can patch the calling TB. When the TB
570
                   spans two pages, we cannot safely do a direct
571
                   jump. */
572
                {
573
                    if (T0 != 0 &&
574
#if USE_KQEMU
575
                        (env->kqemu_enabled != 2) &&
576
#endif
577
                        tb->page_addr[1] == -1
578
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
579
                    && (tb->cflags & CF_CODE_COPY) == 
580
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
581
#endif
582
                    ) {
583
                    spin_lock(&tb_lock);
584
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
585
#if defined(USE_CODE_COPY)
586
                    /* propagates the FP use info */
587
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
588
                        (tb->cflags & CF_FP_USED);
589
#endif
590
                    spin_unlock(&tb_lock);
591
                }
592
                }
593
                tc_ptr = tb->tc_ptr;
594
                env->current_tb = tb;
595
                /* execute the generated code */
596
                gen_func = (void *)tc_ptr;
597
#if defined(__sparc__)
598
                __asm__ __volatile__("call        %0\n\t"
599
                                     "mov        %%o7,%%i0"
600
                                     : /* no outputs */
601
                                     : "r" (gen_func) 
602
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
603
                                       "o0", "o1", "o2", "o3", "o4", "o5",
604
                                       "l0", "l1", "l2", "l3", "l4", "l5",
605
                                       "l6", "l7");
606
#elif defined(__arm__)
607
                asm volatile ("mov pc, %0\n\t"
608
                              ".global exec_loop\n\t"
609
                              "exec_loop:\n\t"
610
                              : /* no outputs */
611
                              : "r" (gen_func)
612
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
613
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
614
{
615
    if (!(tb->cflags & CF_CODE_COPY)) {
616
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
617
            save_native_fp_state(env);
618
        }
619
        gen_func();
620
    } else {
621
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
622
            restore_native_fp_state(env);
623
        }
624
        /* we work with native eflags */
625
        CC_SRC = cc_table[CC_OP].compute_all();
626
        CC_OP = CC_OP_EFLAGS;
627
        asm(".globl exec_loop\n"
628
            "\n"
629
            "debug1:\n"
630
            "    pushl %%ebp\n"
631
            "    fs movl %10, %9\n"
632
            "    fs movl %11, %%eax\n"
633
            "    andl $0x400, %%eax\n"
634
            "    fs orl %8, %%eax\n"
635
            "    pushl %%eax\n"
636
            "    popf\n"
637
            "    fs movl %%esp, %12\n"
638
            "    fs movl %0, %%eax\n"
639
            "    fs movl %1, %%ecx\n"
640
            "    fs movl %2, %%edx\n"
641
            "    fs movl %3, %%ebx\n"
642
            "    fs movl %4, %%esp\n"
643
            "    fs movl %5, %%ebp\n"
644
            "    fs movl %6, %%esi\n"
645
            "    fs movl %7, %%edi\n"
646
            "    fs jmp *%9\n"
647
            "exec_loop:\n"
648
            "    fs movl %%esp, %4\n"
649
            "    fs movl %12, %%esp\n"
650
            "    fs movl %%eax, %0\n"
651
            "    fs movl %%ecx, %1\n"
652
            "    fs movl %%edx, %2\n"
653
            "    fs movl %%ebx, %3\n"
654
            "    fs movl %%ebp, %5\n"
655
            "    fs movl %%esi, %6\n"
656
            "    fs movl %%edi, %7\n"
657
            "    pushf\n"
658
            "    popl %%eax\n"
659
            "    movl %%eax, %%ecx\n"
660
            "    andl $0x400, %%ecx\n"
661
            "    shrl $9, %%ecx\n"
662
            "    andl $0x8d5, %%eax\n"
663
            "    fs movl %%eax, %8\n"
664
            "    movl $1, %%eax\n"
665
            "    subl %%ecx, %%eax\n"
666
            "    fs movl %%eax, %11\n"
667
            "    fs movl %9, %%ebx\n" /* get T0 value */
668
            "    popl %%ebp\n"
669
            :
670
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
671
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
672
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
673
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
674
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
675
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
676
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
677
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
678
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
679
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
680
            "a" (gen_func),
681
            "m" (*(uint8_t *)offsetof(CPUState, df)),
682
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
683
            : "%ecx", "%edx"
684
            );
685
    }
686
}
687
#elif defined(__ia64)
688
                struct fptr {
689
                        void *ip;
690
                        void *gp;
691
                } fp;
692

    
693
                fp.ip = tc_ptr;
694
                fp.gp = code_gen_buffer + 2 * (1 << 20);
695
                (*(void (*)(void)) &fp)();
696
#else
697
                gen_func();
698
#endif
699
                env->current_tb = NULL;
700
                /* reset soft MMU for next block (it can currently
701
                   only be set by a memory fault) */
702
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
703
                if (env->hflags & HF_SOFTMMU_MASK) {
704
                    env->hflags &= ~HF_SOFTMMU_MASK;
705
                    /* do not allow linking to another block */
706
                    T0 = 0;
707
                }
708
#endif
709
#if defined(USE_KQEMU)
710
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
711
                if (kqemu_is_ok(env) &&
712
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
713
                    cpu_loop_exit();
714
                }
715
#endif
716
            } /* for(;;) */
717
        } else {
718
            env_to_regs();
719
        }
720
    } /* for(;;) */
721

    
722

    
723
#if defined(TARGET_I386)
724
#if defined(USE_CODE_COPY)
725
    if (env->native_fp_regs) {
726
        save_native_fp_state(env);
727
    }
728
#endif
729
    /* restore flags in standard format */
730
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
731
#elif defined(TARGET_ARM)
732
    /* XXX: Save/restore host fpu exception state?.  */
733
#elif defined(TARGET_SPARC)
734
#if defined(reg_REGWPTR)
735
    REGWPTR = saved_regwptr;
736
#endif
737
#elif defined(TARGET_PPC)
738
#elif defined(TARGET_M68K)
739
    cpu_m68k_flush_flags(env, env->cc_op);
740
    env->cc_op = CC_OP_FLAGS;
741
    env->sr = (env->sr & 0xffe0)
742
              | env->cc_dest | (env->cc_x << 4);
743
#elif defined(TARGET_MIPS)
744
#elif defined(TARGET_SH4)
745
#elif defined(TARGET_ALPHA)
746
    /* XXXXX */
747
#else
748
#error unsupported target CPU
749
#endif
750

    
751
    /* restore global registers */
752
#if defined(__sparc__) && !defined(HOST_SOLARIS)
753
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
754
#endif
755
#include "hostregs_helper.h"
756

    
757
    /* fail safe : never use cpu_single_env outside cpu_exec() */
758
    cpu_single_env = NULL; 
759
    return ret;
760
}
761

    
762
/* must only be called from the generated code as an exception can be
763
   generated */
764
void tb_invalidate_page_range(target_ulong start, target_ulong end)
765
{
766
    /* XXX: cannot enable it yet because it yields to MMU exception
767
       where NIP != read address on PowerPC */
768
#if 0
769
    target_ulong phys_addr;
770
    phys_addr = get_phys_addr_code(env, start);
771
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
772
#endif
773
}
774

    
775
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
776

    
777
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
778
{
779
    CPUX86State *saved_env;
780

    
781
    saved_env = env;
782
    env = s;
783
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
784
        selector &= 0xffff;
785
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
786
                               (selector << 4), 0xffff, 0);
787
    } else {
788
        load_seg(seg_reg, selector);
789
    }
790
    env = saved_env;
791
}
792

    
793
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
794
{
795
    CPUX86State *saved_env;
796

    
797
    saved_env = env;
798
    env = s;
799
    
800
    helper_fsave((target_ulong)ptr, data32);
801

    
802
    env = saved_env;
803
}
804

    
805
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
806
{
807
    CPUX86State *saved_env;
808

    
809
    saved_env = env;
810
    env = s;
811
    
812
    helper_frstor((target_ulong)ptr, data32);
813

    
814
    env = saved_env;
815
}
816

    
817
#endif /* TARGET_I386 */
818

    
819
#if !defined(CONFIG_SOFTMMU)
820

    
821
#if defined(TARGET_I386)
822

    
823
/* 'pc' is the host PC at which the exception was raised. 'address' is
824
   the effective address of the memory exception. 'is_write' is 1 if a
825
   write caused the exception and otherwise 0'. 'old_set' is the
826
   signal set which should be restored */
827
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
828
                                    int is_write, sigset_t *old_set, 
829
                                    void *puc)
830
{
831
    TranslationBlock *tb;
832
    int ret;
833

    
834
    if (cpu_single_env)
835
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
836
#if defined(DEBUG_SIGNAL)
837
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
838
                pc, address, is_write, *(unsigned long *)old_set);
839
#endif
840
    /* XXX: locking issue */
841
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
842
        return 1;
843
    }
844

    
845
    /* see if it is an MMU fault */
846
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
847
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
848
    if (ret < 0)
849
        return 0; /* not an MMU fault */
850
    if (ret == 0)
851
        return 1; /* the MMU fault was handled without causing real CPU fault */
852
    /* now we have a real cpu fault */
853
    tb = tb_find_pc(pc);
854
    if (tb) {
855
        /* the PC is inside the translated code. It means that we have
856
           a virtual CPU fault */
857
        cpu_restore_state(tb, env, pc, puc);
858
    }
859
    if (ret == 1) {
860
#if 0
861
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
862
               env->eip, env->cr[2], env->error_code);
863
#endif
864
        /* we restore the process signal mask as the sigreturn should
865
           do it (XXX: use sigsetjmp) */
866
        sigprocmask(SIG_SETMASK, old_set, NULL);
867
        raise_exception_err(env->exception_index, env->error_code);
868
    } else {
869
        /* activate soft MMU for this block */
870
        env->hflags |= HF_SOFTMMU_MASK;
871
        cpu_resume_from_signal(env, puc);
872
    }
873
    /* never comes here */
874
    return 1;
875
}
876

    
877
#elif defined(TARGET_ARM)
878
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
879
                                    int is_write, sigset_t *old_set,
880
                                    void *puc)
881
{
882
    TranslationBlock *tb;
883
    int ret;
884

    
885
    if (cpu_single_env)
886
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
887
#if defined(DEBUG_SIGNAL)
888
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
889
           pc, address, is_write, *(unsigned long *)old_set);
890
#endif
891
    /* XXX: locking issue */
892
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
893
        return 1;
894
    }
895
    /* see if it is an MMU fault */
896
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
897
    if (ret < 0)
898
        return 0; /* not an MMU fault */
899
    if (ret == 0)
900
        return 1; /* the MMU fault was handled without causing real CPU fault */
901
    /* now we have a real cpu fault */
902
    tb = tb_find_pc(pc);
903
    if (tb) {
904
        /* the PC is inside the translated code. It means that we have
905
           a virtual CPU fault */
906
        cpu_restore_state(tb, env, pc, puc);
907
    }
908
    /* we restore the process signal mask as the sigreturn should
909
       do it (XXX: use sigsetjmp) */
910
    sigprocmask(SIG_SETMASK, old_set, NULL);
911
    cpu_loop_exit();
912
}
913
#elif defined(TARGET_SPARC)
914
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
915
                                    int is_write, sigset_t *old_set,
916
                                    void *puc)
917
{
918
    TranslationBlock *tb;
919
    int ret;
920

    
921
    if (cpu_single_env)
922
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
923
#if defined(DEBUG_SIGNAL)
924
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
925
           pc, address, is_write, *(unsigned long *)old_set);
926
#endif
927
    /* XXX: locking issue */
928
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
929
        return 1;
930
    }
931
    /* see if it is an MMU fault */
932
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
933
    if (ret < 0)
934
        return 0; /* not an MMU fault */
935
    if (ret == 0)
936
        return 1; /* the MMU fault was handled without causing real CPU fault */
937
    /* now we have a real cpu fault */
938
    tb = tb_find_pc(pc);
939
    if (tb) {
940
        /* the PC is inside the translated code. It means that we have
941
           a virtual CPU fault */
942
        cpu_restore_state(tb, env, pc, puc);
943
    }
944
    /* we restore the process signal mask as the sigreturn should
945
       do it (XXX: use sigsetjmp) */
946
    sigprocmask(SIG_SETMASK, old_set, NULL);
947
    cpu_loop_exit();
948
}
949
#elif defined (TARGET_PPC)
950
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
951
                                    int is_write, sigset_t *old_set,
952
                                    void *puc)
953
{
954
    TranslationBlock *tb;
955
    int ret;
956
    
957
    if (cpu_single_env)
958
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
959
#if defined(DEBUG_SIGNAL)
960
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
961
           pc, address, is_write, *(unsigned long *)old_set);
962
#endif
963
    /* XXX: locking issue */
964
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
965
        return 1;
966
    }
967

    
968
    /* see if it is an MMU fault */
969
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
970
    if (ret < 0)
971
        return 0; /* not an MMU fault */
972
    if (ret == 0)
973
        return 1; /* the MMU fault was handled without causing real CPU fault */
974

    
975
    /* now we have a real cpu fault */
976
    tb = tb_find_pc(pc);
977
    if (tb) {
978
        /* the PC is inside the translated code. It means that we have
979
           a virtual CPU fault */
980
        cpu_restore_state(tb, env, pc, puc);
981
    }
982
    if (ret == 1) {
983
#if 0
984
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
985
               env->nip, env->error_code, tb);
986
#endif
987
    /* we restore the process signal mask as the sigreturn should
988
       do it (XXX: use sigsetjmp) */
989
        sigprocmask(SIG_SETMASK, old_set, NULL);
990
        do_raise_exception_err(env->exception_index, env->error_code);
991
    } else {
992
        /* activate soft MMU for this block */
993
        cpu_resume_from_signal(env, puc);
994
    }
995
    /* never comes here */
996
    return 1;
997
}
998

    
999
#elif defined(TARGET_M68K)
1000
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1001
                                    int is_write, sigset_t *old_set,
1002
                                    void *puc)
1003
{
1004
    TranslationBlock *tb;
1005
    int ret;
1006

    
1007
    if (cpu_single_env)
1008
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1009
#if defined(DEBUG_SIGNAL)
1010
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1011
           pc, address, is_write, *(unsigned long *)old_set);
1012
#endif
1013
    /* XXX: locking issue */
1014
    if (is_write && page_unprotect(address, pc, puc)) {
1015
        return 1;
1016
    }
1017
    /* see if it is an MMU fault */
1018
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1019
    if (ret < 0)
1020
        return 0; /* not an MMU fault */
1021
    if (ret == 0)
1022
        return 1; /* the MMU fault was handled without causing real CPU fault */
1023
    /* now we have a real cpu fault */
1024
    tb = tb_find_pc(pc);
1025
    if (tb) {
1026
        /* the PC is inside the translated code. It means that we have
1027
           a virtual CPU fault */
1028
        cpu_restore_state(tb, env, pc, puc);
1029
    }
1030
    /* we restore the process signal mask as the sigreturn should
1031
       do it (XXX: use sigsetjmp) */
1032
    sigprocmask(SIG_SETMASK, old_set, NULL);
1033
    cpu_loop_exit();
1034
    /* never comes here */
1035
    return 1;
1036
}
1037

    
1038
#elif defined (TARGET_MIPS)
1039
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1040
                                    int is_write, sigset_t *old_set,
1041
                                    void *puc)
1042
{
1043
    TranslationBlock *tb;
1044
    int ret;
1045
    
1046
    if (cpu_single_env)
1047
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1048
#if defined(DEBUG_SIGNAL)
1049
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1050
           pc, address, is_write, *(unsigned long *)old_set);
1051
#endif
1052
    /* XXX: locking issue */
1053
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1054
        return 1;
1055
    }
1056

    
1057
    /* see if it is an MMU fault */
1058
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1059
    if (ret < 0)
1060
        return 0; /* not an MMU fault */
1061
    if (ret == 0)
1062
        return 1; /* the MMU fault was handled without causing real CPU fault */
1063

    
1064
    /* now we have a real cpu fault */
1065
    tb = tb_find_pc(pc);
1066
    if (tb) {
1067
        /* the PC is inside the translated code. It means that we have
1068
           a virtual CPU fault */
1069
        cpu_restore_state(tb, env, pc, puc);
1070
    }
1071
    if (ret == 1) {
1072
#if 0
1073
        printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n", 
1074
               env->PC, env->error_code, tb);
1075
#endif
1076
    /* we restore the process signal mask as the sigreturn should
1077
       do it (XXX: use sigsetjmp) */
1078
        sigprocmask(SIG_SETMASK, old_set, NULL);
1079
        do_raise_exception_err(env->exception_index, env->error_code);
1080
    } else {
1081
        /* activate soft MMU for this block */
1082
        cpu_resume_from_signal(env, puc);
1083
    }
1084
    /* never comes here */
1085
    return 1;
1086
}
1087

    
1088
#elif defined (TARGET_SH4)
1089
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1090
                                    int is_write, sigset_t *old_set,
1091
                                    void *puc)
1092
{
1093
    TranslationBlock *tb;
1094
    int ret;
1095
    
1096
    if (cpu_single_env)
1097
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1098
#if defined(DEBUG_SIGNAL)
1099
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1100
           pc, address, is_write, *(unsigned long *)old_set);
1101
#endif
1102
    /* XXX: locking issue */
1103
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1104
        return 1;
1105
    }
1106

    
1107
    /* see if it is an MMU fault */
1108
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1109
    if (ret < 0)
1110
        return 0; /* not an MMU fault */
1111
    if (ret == 0)
1112
        return 1; /* the MMU fault was handled without causing real CPU fault */
1113

    
1114
    /* now we have a real cpu fault */
1115
    tb = tb_find_pc(pc);
1116
    if (tb) {
1117
        /* the PC is inside the translated code. It means that we have
1118
           a virtual CPU fault */
1119
        cpu_restore_state(tb, env, pc, puc);
1120
    }
1121
#if 0
1122
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1123
               env->nip, env->error_code, tb);
1124
#endif
1125
    /* we restore the process signal mask as the sigreturn should
1126
       do it (XXX: use sigsetjmp) */
1127
    sigprocmask(SIG_SETMASK, old_set, NULL);
1128
    cpu_loop_exit();
1129
    /* never comes here */
1130
    return 1;
1131
}
1132

    
1133
#elif defined (TARGET_ALPHA)
1134
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1135
                                    int is_write, sigset_t *old_set,
1136
                                    void *puc)
1137
{
1138
    TranslationBlock *tb;
1139
    int ret;
1140
    
1141
    if (cpu_single_env)
1142
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1143
#if defined(DEBUG_SIGNAL)
1144
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1145
           pc, address, is_write, *(unsigned long *)old_set);
1146
#endif
1147
    /* XXX: locking issue */
1148
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1149
        return 1;
1150
    }
1151

    
1152
    /* see if it is an MMU fault */
1153
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1154
    if (ret < 0)
1155
        return 0; /* not an MMU fault */
1156
    if (ret == 0)
1157
        return 1; /* the MMU fault was handled without causing real CPU fault */
1158

    
1159
    /* now we have a real cpu fault */
1160
    tb = tb_find_pc(pc);
1161
    if (tb) {
1162
        /* the PC is inside the translated code. It means that we have
1163
           a virtual CPU fault */
1164
        cpu_restore_state(tb, env, pc, puc);
1165
    }
1166
#if 0
1167
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1168
               env->nip, env->error_code, tb);
1169
#endif
1170
    /* we restore the process signal mask as the sigreturn should
1171
       do it (XXX: use sigsetjmp) */
1172
    sigprocmask(SIG_SETMASK, old_set, NULL);
1173
    cpu_loop_exit();
1174
    /* never comes here */
1175
    return 1;
1176
}
1177
#else
1178
#error unsupported target CPU
1179
#endif
1180

    
1181
#if defined(__i386__)
1182

    
1183
#if defined(__APPLE__)
1184
# include <sys/ucontext.h>
1185

    
1186
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1187
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1188
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1189
#else
1190
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1191
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1192
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1193
#endif
1194

    
1195
#if defined(USE_CODE_COPY)
1196
static void cpu_send_trap(unsigned long pc, int trap, 
1197
                          struct ucontext *uc)
1198
{
1199
    TranslationBlock *tb;
1200

    
1201
    if (cpu_single_env)
1202
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1203
    /* now we have a real cpu fault */
1204
    tb = tb_find_pc(pc);
1205
    if (tb) {
1206
        /* the PC is inside the translated code. It means that we have
1207
           a virtual CPU fault */
1208
        cpu_restore_state(tb, env, pc, uc);
1209
    }
1210
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1211
    raise_exception_err(trap, env->error_code);
1212
}
1213
#endif
1214

    
1215
int cpu_signal_handler(int host_signum, void *pinfo, 
1216
                       void *puc)
1217
{
1218
    siginfo_t *info = pinfo;
1219
    struct ucontext *uc = puc;
1220
    unsigned long pc;
1221
    int trapno;
1222

    
1223
#ifndef REG_EIP
1224
/* for glibc 2.1 */
1225
#define REG_EIP    EIP
1226
#define REG_ERR    ERR
1227
#define REG_TRAPNO TRAPNO
1228
#endif
1229
    pc = EIP_sig(uc);
1230
    trapno = TRAP_sig(uc);
1231
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1232
    if (trapno == 0x00 || trapno == 0x05) {
1233
        /* send division by zero or bound exception */
1234
        cpu_send_trap(pc, trapno, uc);
1235
        return 1;
1236
    } else
1237
#endif
1238
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1239
                                 trapno == 0xe ? 
1240
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1241
                                 &uc->uc_sigmask, puc);
1242
}
1243

    
1244
#elif defined(__x86_64__)
1245

    
1246
int cpu_signal_handler(int host_signum, void *pinfo,
1247
                       void *puc)
1248
{
1249
    siginfo_t *info = pinfo;
1250
    struct ucontext *uc = puc;
1251
    unsigned long pc;
1252

    
1253
    pc = uc->uc_mcontext.gregs[REG_RIP];
1254
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1255
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1256
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1257
                             &uc->uc_sigmask, puc);
1258
}
1259

    
1260
#elif defined(__powerpc__)
1261

    
1262
/***********************************************************************
1263
 * signal context platform-specific definitions
1264
 * From Wine
1265
 */
1266
#ifdef linux
1267
/* All Registers access - only for local access */
1268
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1269
/* Gpr Registers access  */
1270
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1271
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1272
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1273
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1274
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1275
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1276
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1277
/* Float Registers access  */
1278
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1279
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1280
/* Exception Registers access */
1281
# define DAR_sig(context)                        REG_sig(dar, context)
1282
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1283
# define TRAP_sig(context)                        REG_sig(trap, context)
1284
#endif /* linux */
1285

    
1286
#ifdef __APPLE__
1287
# include <sys/ucontext.h>
1288
typedef struct ucontext SIGCONTEXT;
1289
/* All Registers access - only for local access */
1290
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1291
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1292
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1293
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1294
/* Gpr Registers access */
1295
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1296
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1297
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1298
# define CTR_sig(context)                        REG_sig(ctr, context)
1299
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1300
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1301
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1302
/* Float Registers access */
1303
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1304
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1305
/* Exception Registers access */
1306
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1307
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1308
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1309
#endif /* __APPLE__ */
1310

    
1311
int cpu_signal_handler(int host_signum, void *pinfo, 
1312
                       void *puc)
1313
{
1314
    siginfo_t *info = pinfo;
1315
    struct ucontext *uc = puc;
1316
    unsigned long pc;
1317
    int is_write;
1318

    
1319
    pc = IAR_sig(uc);
1320
    is_write = 0;
1321
#if 0
1322
    /* ppc 4xx case */
1323
    if (DSISR_sig(uc) & 0x00800000)
1324
        is_write = 1;
1325
#else
1326
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1327
        is_write = 1;
1328
#endif
1329
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1330
                             is_write, &uc->uc_sigmask, puc);
1331
}
1332

    
1333
#elif defined(__alpha__)
1334

    
1335
int cpu_signal_handler(int host_signum, void *pinfo, 
1336
                           void *puc)
1337
{
1338
    siginfo_t *info = pinfo;
1339
    struct ucontext *uc = puc;
1340
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1341
    uint32_t insn = *pc;
1342
    int is_write = 0;
1343

    
1344
    /* XXX: need kernel patch to get write flag faster */
1345
    switch (insn >> 26) {
1346
    case 0x0d: // stw
1347
    case 0x0e: // stb
1348
    case 0x0f: // stq_u
1349
    case 0x24: // stf
1350
    case 0x25: // stg
1351
    case 0x26: // sts
1352
    case 0x27: // stt
1353
    case 0x2c: // stl
1354
    case 0x2d: // stq
1355
    case 0x2e: // stl_c
1356
    case 0x2f: // stq_c
1357
        is_write = 1;
1358
    }
1359

    
1360
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1361
                             is_write, &uc->uc_sigmask, puc);
1362
}
1363
#elif defined(__sparc__)
1364

    
1365
int cpu_signal_handler(int host_signum, void *pinfo, 
1366
                       void *puc)
1367
{
1368
    siginfo_t *info = pinfo;
1369
    uint32_t *regs = (uint32_t *)(info + 1);
1370
    void *sigmask = (regs + 20);
1371
    unsigned long pc;
1372
    int is_write;
1373
    uint32_t insn;
1374
    
1375
    /* XXX: is there a standard glibc define ? */
1376
    pc = regs[1];
1377
    /* XXX: need kernel patch to get write flag faster */
1378
    is_write = 0;
1379
    insn = *(uint32_t *)pc;
1380
    if ((insn >> 30) == 3) {
1381
      switch((insn >> 19) & 0x3f) {
1382
      case 0x05: // stb
1383
      case 0x06: // sth
1384
      case 0x04: // st
1385
      case 0x07: // std
1386
      case 0x24: // stf
1387
      case 0x27: // stdf
1388
      case 0x25: // stfsr
1389
        is_write = 1;
1390
        break;
1391
      }
1392
    }
1393
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1394
                             is_write, sigmask, NULL);
1395
}
1396

    
1397
#elif defined(__arm__)
1398

    
1399
int cpu_signal_handler(int host_signum, void *pinfo, 
1400
                       void *puc)
1401
{
1402
    siginfo_t *info = pinfo;
1403
    struct ucontext *uc = puc;
1404
    unsigned long pc;
1405
    int is_write;
1406
    
1407
    pc = uc->uc_mcontext.gregs[R15];
1408
    /* XXX: compute is_write */
1409
    is_write = 0;
1410
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1411
                             is_write,
1412
                             &uc->uc_sigmask, puc);
1413
}
1414

    
1415
#elif defined(__mc68000)
1416

    
1417
int cpu_signal_handler(int host_signum, void *pinfo, 
1418
                       void *puc)
1419
{
1420
    siginfo_t *info = pinfo;
1421
    struct ucontext *uc = puc;
1422
    unsigned long pc;
1423
    int is_write;
1424
    
1425
    pc = uc->uc_mcontext.gregs[16];
1426
    /* XXX: compute is_write */
1427
    is_write = 0;
1428
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1429
                             is_write,
1430
                             &uc->uc_sigmask, puc);
1431
}
1432

    
1433
#elif defined(__ia64)
1434

    
1435
#ifndef __ISR_VALID
1436
  /* This ought to be in <bits/siginfo.h>... */
1437
# define __ISR_VALID        1
1438
#endif
1439

    
1440
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1441
{
1442
    siginfo_t *info = pinfo;
1443
    struct ucontext *uc = puc;
1444
    unsigned long ip;
1445
    int is_write = 0;
1446

    
1447
    ip = uc->uc_mcontext.sc_ip;
1448
    switch (host_signum) {
1449
      case SIGILL:
1450
      case SIGFPE:
1451
      case SIGSEGV:
1452
      case SIGBUS:
1453
      case SIGTRAP:
1454
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1455
              /* ISR.W (write-access) is bit 33:  */
1456
              is_write = (info->si_isr >> 33) & 1;
1457
          break;
1458

    
1459
      default:
1460
          break;
1461
    }
1462
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1463
                             is_write,
1464
                             &uc->uc_sigmask, puc);
1465
}
1466

    
1467
#elif defined(__s390__)
1468

    
1469
int cpu_signal_handler(int host_signum, void *pinfo, 
1470
                       void *puc)
1471
{
1472
    siginfo_t *info = pinfo;
1473
    struct ucontext *uc = puc;
1474
    unsigned long pc;
1475
    int is_write;
1476
    
1477
    pc = uc->uc_mcontext.psw.addr;
1478
    /* XXX: compute is_write */
1479
    is_write = 0;
1480
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1481
                             is_write, &uc->uc_sigmask, puc);
1482
}
1483

    
1484
#elif defined(__mips__)
1485

    
1486
int cpu_signal_handler(int host_signum, void *pinfo, 
1487
                       void *puc)
1488
{
1489
    siginfo_t *info = pinfo;
1490
    struct ucontext *uc = puc;
1491
    greg_t pc = uc->uc_mcontext.pc;
1492
    int is_write;
1493
    
1494
    /* XXX: compute is_write */
1495
    is_write = 0;
1496
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1497
                             is_write, &uc->uc_sigmask, puc);
1498
}
1499

    
1500
#else
1501

    
1502
#error host CPU specific signal handler needed
1503

    
1504
#endif
1505

    
1506
#endif /* !defined(CONFIG_SOFTMMU) */