Statistics
| Branch: | Revision:

root / hw / omap1.c @ eb38c52c

History | View | Annotate | Download (132.8 kB)

1
/*
2
 * TI OMAP processors emulation.
3
 *
4
 * Copyright (C) 2006-2008 Andrzej Zaborowski  <balrog@zabor.org>
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License as
8
 * published by the Free Software Foundation; either version 2 or
9
 * (at your option) version 3 of the License.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
19
 * MA 02111-1307 USA
20
 */
21
#include "hw.h"
22
#include "arm-misc.h"
23
#include "omap.h"
24
#include "sysemu.h"
25
#include "qemu-timer.h"
26
#include "qemu-char.h"
27
#include "soc_dma.h"
28
/* We use pc-style serial ports.  */
29
#include "pc.h"
30

    
31
/* Should signal the TCMI/GPMC */
32
uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
33
{
34
    uint8_t ret;
35

    
36
    OMAP_8B_REG(addr);
37
    cpu_physical_memory_read(addr, (void *) &ret, 1);
38
    return ret;
39
}
40

    
41
void omap_badwidth_write8(void *opaque, target_phys_addr_t addr,
42
                uint32_t value)
43
{
44
    uint8_t val8 = value;
45

    
46
    OMAP_8B_REG(addr);
47
    cpu_physical_memory_write(addr, (void *) &val8, 1);
48
}
49

    
50
uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
51
{
52
    uint16_t ret;
53

    
54
    OMAP_16B_REG(addr);
55
    cpu_physical_memory_read(addr, (void *) &ret, 2);
56
    return ret;
57
}
58

    
59
void omap_badwidth_write16(void *opaque, target_phys_addr_t addr,
60
                uint32_t value)
61
{
62
    uint16_t val16 = value;
63

    
64
    OMAP_16B_REG(addr);
65
    cpu_physical_memory_write(addr, (void *) &val16, 2);
66
}
67

    
68
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
69
{
70
    uint32_t ret;
71

    
72
    OMAP_32B_REG(addr);
73
    cpu_physical_memory_read(addr, (void *) &ret, 4);
74
    return ret;
75
}
76

    
77
void omap_badwidth_write32(void *opaque, target_phys_addr_t addr,
78
                uint32_t value)
79
{
80
    OMAP_32B_REG(addr);
81
    cpu_physical_memory_write(addr, (void *) &value, 4);
82
}
83

    
84
/* Interrupt Handlers */
85
struct omap_intr_handler_bank_s {
86
    uint32_t irqs;
87
    uint32_t inputs;
88
    uint32_t mask;
89
    uint32_t fiq;
90
    uint32_t sens_edge;
91
    uint32_t swi;
92
    unsigned char priority[32];
93
};
94

    
95
struct omap_intr_handler_s {
96
    qemu_irq *pins;
97
    qemu_irq parent_intr[2];
98
    target_phys_addr_t base;
99
    unsigned char nbanks;
100
    int level_only;
101

    
102
    /* state */
103
    uint32_t new_agr[2];
104
    int sir_intr[2];
105
    int autoidle;
106
    uint32_t mask;
107
    struct omap_intr_handler_bank_s bank[];
108
};
109

    
110
static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq)
111
{
112
    int i, j, sir_intr, p_intr, p, f;
113
    uint32_t level;
114
    sir_intr = 0;
115
    p_intr = 255;
116

    
117
    /* Find the interrupt line with the highest dynamic priority.
118
     * Note: 0 denotes the hightest priority.
119
     * If all interrupts have the same priority, the default order is IRQ_N,
120
     * IRQ_N-1,...,IRQ_0. */
121
    for (j = 0; j < s->nbanks; ++j) {
122
        level = s->bank[j].irqs & ~s->bank[j].mask &
123
                (is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq);
124
        for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f,
125
                        level >>= f) {
126
            p = s->bank[j].priority[i];
127
            if (p <= p_intr) {
128
                p_intr = p;
129
                sir_intr = 32 * j + i;
130
            }
131
            f = ffs(level >> 1);
132
        }
133
    }
134
    s->sir_intr[is_fiq] = sir_intr;
135
}
136

    
137
static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq)
138
{
139
    int i;
140
    uint32_t has_intr = 0;
141

    
142
    for (i = 0; i < s->nbanks; ++i)
143
        has_intr |= s->bank[i].irqs & ~s->bank[i].mask &
144
                (is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq);
145

    
146
    if (s->new_agr[is_fiq] & has_intr & s->mask) {
147
        s->new_agr[is_fiq] = 0;
148
        omap_inth_sir_update(s, is_fiq);
149
        qemu_set_irq(s->parent_intr[is_fiq], 1);
150
    }
151
}
152

    
153
#define INT_FALLING_EDGE        0
154
#define INT_LOW_LEVEL                1
155

    
156
static void omap_set_intr(void *opaque, int irq, int req)
157
{
158
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
159
    uint32_t rise;
160

    
161
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
162
    int n = irq & 31;
163

    
164
    if (req) {
165
        rise = ~bank->irqs & (1 << n);
166
        if (~bank->sens_edge & (1 << n))
167
            rise &= ~bank->inputs;
168

    
169
        bank->inputs |= (1 << n);
170
        if (rise) {
171
            bank->irqs |= rise;
172
            omap_inth_update(ih, 0);
173
            omap_inth_update(ih, 1);
174
        }
175
    } else {
176
        rise = bank->sens_edge & bank->irqs & (1 << n);
177
        bank->irqs &= ~rise;
178
        bank->inputs &= ~(1 << n);
179
    }
180
}
181

    
182
/* Simplified version with no edge detection */
183
static void omap_set_intr_noedge(void *opaque, int irq, int req)
184
{
185
    struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque;
186
    uint32_t rise;
187

    
188
    struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5];
189
    int n = irq & 31;
190

    
191
    if (req) {
192
        rise = ~bank->inputs & (1 << n);
193
        if (rise) {
194
            bank->irqs |= bank->inputs |= rise;
195
            omap_inth_update(ih, 0);
196
            omap_inth_update(ih, 1);
197
        }
198
    } else
199
        bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
200
}
201

    
202
static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr)
203
{
204
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
205
    int i, offset = addr - s->base;
206
    int bank_no = offset >> 8;
207
    int line_no;
208
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
209
    offset &= 0xff;
210

    
211
    switch (offset) {
212
    case 0x00:        /* ITR */
213
        return bank->irqs;
214

    
215
    case 0x04:        /* MIR */
216
        return bank->mask;
217

    
218
    case 0x10:        /* SIR_IRQ_CODE */
219
    case 0x14:  /* SIR_FIQ_CODE */
220
        if (bank_no != 0)
221
            break;
222
        line_no = s->sir_intr[(offset - 0x10) >> 2];
223
        bank = &s->bank[line_no >> 5];
224
        i = line_no & 31;
225
        if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE)
226
            bank->irqs &= ~(1 << i);
227
        return line_no;
228

    
229
    case 0x18:        /* CONTROL_REG */
230
        if (bank_no != 0)
231
            break;
232
        return 0;
233

    
234
    case 0x1c:        /* ILR0 */
235
    case 0x20:        /* ILR1 */
236
    case 0x24:        /* ILR2 */
237
    case 0x28:        /* ILR3 */
238
    case 0x2c:        /* ILR4 */
239
    case 0x30:        /* ILR5 */
240
    case 0x34:        /* ILR6 */
241
    case 0x38:        /* ILR7 */
242
    case 0x3c:        /* ILR8 */
243
    case 0x40:        /* ILR9 */
244
    case 0x44:        /* ILR10 */
245
    case 0x48:        /* ILR11 */
246
    case 0x4c:        /* ILR12 */
247
    case 0x50:        /* ILR13 */
248
    case 0x54:        /* ILR14 */
249
    case 0x58:        /* ILR15 */
250
    case 0x5c:        /* ILR16 */
251
    case 0x60:        /* ILR17 */
252
    case 0x64:        /* ILR18 */
253
    case 0x68:        /* ILR19 */
254
    case 0x6c:        /* ILR20 */
255
    case 0x70:        /* ILR21 */
256
    case 0x74:        /* ILR22 */
257
    case 0x78:        /* ILR23 */
258
    case 0x7c:        /* ILR24 */
259
    case 0x80:        /* ILR25 */
260
    case 0x84:        /* ILR26 */
261
    case 0x88:        /* ILR27 */
262
    case 0x8c:        /* ILR28 */
263
    case 0x90:        /* ILR29 */
264
    case 0x94:        /* ILR30 */
265
    case 0x98:        /* ILR31 */
266
        i = (offset - 0x1c) >> 2;
267
        return (bank->priority[i] << 2) |
268
                (((bank->sens_edge >> i) & 1) << 1) |
269
                ((bank->fiq >> i) & 1);
270

    
271
    case 0x9c:        /* ISR */
272
        return 0x00000000;
273

    
274
    }
275
    OMAP_BAD_REG(addr);
276
    return 0;
277
}
278

    
279
static void omap_inth_write(void *opaque, target_phys_addr_t addr,
280
                uint32_t value)
281
{
282
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
283
    int i, offset = addr - s->base;
284
    int bank_no = offset >> 8;
285
    struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
286
    offset &= 0xff;
287

    
288
    switch (offset) {
289
    case 0x00:        /* ITR */
290
        /* Important: ignore the clearing if the IRQ is level-triggered and
291
           the input bit is 1 */
292
        bank->irqs &= value | (bank->inputs & bank->sens_edge);
293
        return;
294

    
295
    case 0x04:        /* MIR */
296
        bank->mask = value;
297
        omap_inth_update(s, 0);
298
        omap_inth_update(s, 1);
299
        return;
300

    
301
    case 0x10:        /* SIR_IRQ_CODE */
302
    case 0x14:        /* SIR_FIQ_CODE */
303
        OMAP_RO_REG(addr);
304
        break;
305

    
306
    case 0x18:        /* CONTROL_REG */
307
        if (bank_no != 0)
308
            break;
309
        if (value & 2) {
310
            qemu_set_irq(s->parent_intr[1], 0);
311
            s->new_agr[1] = ~0;
312
            omap_inth_update(s, 1);
313
        }
314
        if (value & 1) {
315
            qemu_set_irq(s->parent_intr[0], 0);
316
            s->new_agr[0] = ~0;
317
            omap_inth_update(s, 0);
318
        }
319
        return;
320

    
321
    case 0x1c:        /* ILR0 */
322
    case 0x20:        /* ILR1 */
323
    case 0x24:        /* ILR2 */
324
    case 0x28:        /* ILR3 */
325
    case 0x2c:        /* ILR4 */
326
    case 0x30:        /* ILR5 */
327
    case 0x34:        /* ILR6 */
328
    case 0x38:        /* ILR7 */
329
    case 0x3c:        /* ILR8 */
330
    case 0x40:        /* ILR9 */
331
    case 0x44:        /* ILR10 */
332
    case 0x48:        /* ILR11 */
333
    case 0x4c:        /* ILR12 */
334
    case 0x50:        /* ILR13 */
335
    case 0x54:        /* ILR14 */
336
    case 0x58:        /* ILR15 */
337
    case 0x5c:        /* ILR16 */
338
    case 0x60:        /* ILR17 */
339
    case 0x64:        /* ILR18 */
340
    case 0x68:        /* ILR19 */
341
    case 0x6c:        /* ILR20 */
342
    case 0x70:        /* ILR21 */
343
    case 0x74:        /* ILR22 */
344
    case 0x78:        /* ILR23 */
345
    case 0x7c:        /* ILR24 */
346
    case 0x80:        /* ILR25 */
347
    case 0x84:        /* ILR26 */
348
    case 0x88:        /* ILR27 */
349
    case 0x8c:        /* ILR28 */
350
    case 0x90:        /* ILR29 */
351
    case 0x94:        /* ILR30 */
352
    case 0x98:        /* ILR31 */
353
        i = (offset - 0x1c) >> 2;
354
        bank->priority[i] = (value >> 2) & 0x1f;
355
        bank->sens_edge &= ~(1 << i);
356
        bank->sens_edge |= ((value >> 1) & 1) << i;
357
        bank->fiq &= ~(1 << i);
358
        bank->fiq |= (value & 1) << i;
359
        return;
360

    
361
    case 0x9c:        /* ISR */
362
        for (i = 0; i < 32; i ++)
363
            if (value & (1 << i)) {
364
                omap_set_intr(s, 32 * bank_no + i, 1);
365
                return;
366
            }
367
        return;
368
    }
369
    OMAP_BAD_REG(addr);
370
}
371

    
372
static CPUReadMemoryFunc *omap_inth_readfn[] = {
373
    omap_badwidth_read32,
374
    omap_badwidth_read32,
375
    omap_inth_read,
376
};
377

    
378
static CPUWriteMemoryFunc *omap_inth_writefn[] = {
379
    omap_inth_write,
380
    omap_inth_write,
381
    omap_inth_write,
382
};
383

    
384
void omap_inth_reset(struct omap_intr_handler_s *s)
385
{
386
    int i;
387

    
388
    for (i = 0; i < s->nbanks; ++i){
389
        s->bank[i].irqs = 0x00000000;
390
        s->bank[i].mask = 0xffffffff;
391
        s->bank[i].sens_edge = 0x00000000;
392
        s->bank[i].fiq = 0x00000000;
393
        s->bank[i].inputs = 0x00000000;
394
        s->bank[i].swi = 0x00000000;
395
        memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority));
396

    
397
        if (s->level_only)
398
            s->bank[i].sens_edge = 0xffffffff;
399
    }
400

    
401
    s->new_agr[0] = ~0;
402
    s->new_agr[1] = ~0;
403
    s->sir_intr[0] = 0;
404
    s->sir_intr[1] = 0;
405
    s->autoidle = 0;
406
    s->mask = ~0;
407

    
408
    qemu_set_irq(s->parent_intr[0], 0);
409
    qemu_set_irq(s->parent_intr[1], 0);
410
}
411

    
412
struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
413
                unsigned long size, unsigned char nbanks, qemu_irq **pins,
414
                qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk)
415
{
416
    int iomemtype;
417
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
418
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
419
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
420

    
421
    s->parent_intr[0] = parent_irq;
422
    s->parent_intr[1] = parent_fiq;
423
    s->base = base;
424
    s->nbanks = nbanks;
425
    s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
426
    if (pins)
427
        *pins = s->pins;
428

    
429
    omap_inth_reset(s);
430

    
431
    iomemtype = cpu_register_io_memory(0, omap_inth_readfn,
432
                    omap_inth_writefn, s);
433
    cpu_register_physical_memory(s->base, size, iomemtype);
434

    
435
    return s;
436
}
437

    
438
static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr)
439
{
440
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
441
    int offset = addr - s->base;
442
    int bank_no, line_no;
443
    struct omap_intr_handler_bank_s *bank = 0;
444

    
445
    if ((offset & 0xf80) == 0x80) {
446
        bank_no = (offset & 0x60) >> 5;
447
        if (bank_no < s->nbanks) {
448
            offset &= ~0x60;
449
            bank = &s->bank[bank_no];
450
        }
451
    }
452

    
453
    switch (offset) {
454
    case 0x00:        /* INTC_REVISION */
455
        return 0x21;
456

    
457
    case 0x10:        /* INTC_SYSCONFIG */
458
        return (s->autoidle >> 2) & 1;
459

    
460
    case 0x14:        /* INTC_SYSSTATUS */
461
        return 1;                                                /* RESETDONE */
462

    
463
    case 0x40:        /* INTC_SIR_IRQ */
464
        return s->sir_intr[0];
465

    
466
    case 0x44:        /* INTC_SIR_FIQ */
467
        return s->sir_intr[1];
468

    
469
    case 0x48:        /* INTC_CONTROL */
470
        return (!s->mask) << 2;                                        /* GLOBALMASK */
471

    
472
    case 0x4c:        /* INTC_PROTECTION */
473
        return 0;
474

    
475
    case 0x50:        /* INTC_IDLE */
476
        return s->autoidle & 3;
477

    
478
    /* Per-bank registers */
479
    case 0x80:        /* INTC_ITR */
480
        return bank->inputs;
481

    
482
    case 0x84:        /* INTC_MIR */
483
        return bank->mask;
484

    
485
    case 0x88:        /* INTC_MIR_CLEAR */
486
    case 0x8c:        /* INTC_MIR_SET */
487
        return 0;
488

    
489
    case 0x90:        /* INTC_ISR_SET */
490
        return bank->swi;
491

    
492
    case 0x94:        /* INTC_ISR_CLEAR */
493
        return 0;
494

    
495
    case 0x98:        /* INTC_PENDING_IRQ */
496
        return bank->irqs & ~bank->mask & ~bank->fiq;
497

    
498
    case 0x9c:        /* INTC_PENDING_FIQ */
499
        return bank->irqs & ~bank->mask & bank->fiq;
500

    
501
    /* Per-line registers */
502
    case 0x100 ... 0x300:        /* INTC_ILR */
503
        bank_no = (offset - 0x100) >> 7;
504
        if (bank_no > s->nbanks)
505
            break;
506
        bank = &s->bank[bank_no];
507
        line_no = (offset & 0x7f) >> 2;
508
        return (bank->priority[line_no] << 2) |
509
                ((bank->fiq >> line_no) & 1);
510
    }
511
    OMAP_BAD_REG(addr);
512
    return 0;
513
}
514

    
515
static void omap2_inth_write(void *opaque, target_phys_addr_t addr,
516
                uint32_t value)
517
{
518
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque;
519
    int offset = addr - s->base;
520
    int bank_no, line_no;
521
    struct omap_intr_handler_bank_s *bank = 0;
522

    
523
    if ((offset & 0xf80) == 0x80) {
524
        bank_no = (offset & 0x60) >> 5;
525
        if (bank_no < s->nbanks) {
526
            offset &= ~0x60;
527
            bank = &s->bank[bank_no];
528
        }
529
    }
530

    
531
    switch (offset) {
532
    case 0x10:        /* INTC_SYSCONFIG */
533
        s->autoidle &= 4;
534
        s->autoidle |= (value & 1) << 2;
535
        if (value & 2)                                                /* SOFTRESET */
536
            omap_inth_reset(s);
537
        return;
538

    
539
    case 0x48:        /* INTC_CONTROL */
540
        s->mask = (value & 4) ? 0 : ~0;                                /* GLOBALMASK */
541
        if (value & 2) {                                        /* NEWFIQAGR */
542
            qemu_set_irq(s->parent_intr[1], 0);
543
            s->new_agr[1] = ~0;
544
            omap_inth_update(s, 1);
545
        }
546
        if (value & 1) {                                        /* NEWIRQAGR */
547
            qemu_set_irq(s->parent_intr[0], 0);
548
            s->new_agr[0] = ~0;
549
            omap_inth_update(s, 0);
550
        }
551
        return;
552

    
553
    case 0x4c:        /* INTC_PROTECTION */
554
        /* TODO: Make a bitmap (or sizeof(char)map) of access privileges
555
         * for every register, see Chapter 3 and 4 for privileged mode.  */
556
        if (value & 1)
557
            fprintf(stderr, "%s: protection mode enable attempt\n",
558
                            __FUNCTION__);
559
        return;
560

    
561
    case 0x50:        /* INTC_IDLE */
562
        s->autoidle &= ~3;
563
        s->autoidle |= value & 3;
564
        return;
565

    
566
    /* Per-bank registers */
567
    case 0x84:        /* INTC_MIR */
568
        bank->mask = value;
569
        omap_inth_update(s, 0);
570
        omap_inth_update(s, 1);
571
        return;
572

    
573
    case 0x88:        /* INTC_MIR_CLEAR */
574
        bank->mask &= ~value;
575
        omap_inth_update(s, 0);
576
        omap_inth_update(s, 1);
577
        return;
578

    
579
    case 0x8c:        /* INTC_MIR_SET */
580
        bank->mask |= value;
581
        return;
582

    
583
    case 0x90:        /* INTC_ISR_SET */
584
        bank->irqs |= bank->swi |= value;
585
        omap_inth_update(s, 0);
586
        omap_inth_update(s, 1);
587
        return;
588

    
589
    case 0x94:        /* INTC_ISR_CLEAR */
590
        bank->swi &= ~value;
591
        bank->irqs = bank->swi & bank->inputs;
592
        return;
593

    
594
    /* Per-line registers */
595
    case 0x100 ... 0x300:        /* INTC_ILR */
596
        bank_no = (offset - 0x100) >> 7;
597
        if (bank_no > s->nbanks)
598
            break;
599
        bank = &s->bank[bank_no];
600
        line_no = (offset & 0x7f) >> 2;
601
        bank->priority[line_no] = (value >> 2) & 0x3f;
602
        bank->fiq &= ~(1 << line_no);
603
        bank->fiq |= (value & 1) << line_no;
604
        return;
605

    
606
    case 0x00:        /* INTC_REVISION */
607
    case 0x14:        /* INTC_SYSSTATUS */
608
    case 0x40:        /* INTC_SIR_IRQ */
609
    case 0x44:        /* INTC_SIR_FIQ */
610
    case 0x80:        /* INTC_ITR */
611
    case 0x98:        /* INTC_PENDING_IRQ */
612
    case 0x9c:        /* INTC_PENDING_FIQ */
613
        OMAP_RO_REG(addr);
614
        return;
615
    }
616
    OMAP_BAD_REG(addr);
617
}
618

    
619
static CPUReadMemoryFunc *omap2_inth_readfn[] = {
620
    omap_badwidth_read32,
621
    omap_badwidth_read32,
622
    omap2_inth_read,
623
};
624

    
625
static CPUWriteMemoryFunc *omap2_inth_writefn[] = {
626
    omap2_inth_write,
627
    omap2_inth_write,
628
    omap2_inth_write,
629
};
630

    
631
struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
632
                int size, int nbanks, qemu_irq **pins,
633
                qemu_irq parent_irq, qemu_irq parent_fiq,
634
                omap_clk fclk, omap_clk iclk)
635
{
636
    int iomemtype;
637
    struct omap_intr_handler_s *s = (struct omap_intr_handler_s *)
638
            qemu_mallocz(sizeof(struct omap_intr_handler_s) +
639
                            sizeof(struct omap_intr_handler_bank_s) * nbanks);
640

    
641
    s->parent_intr[0] = parent_irq;
642
    s->parent_intr[1] = parent_fiq;
643
    s->base = base;
644
    s->nbanks = nbanks;
645
    s->level_only = 1;
646
    s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
647
    if (pins)
648
        *pins = s->pins;
649

    
650
    omap_inth_reset(s);
651

    
652
    iomemtype = cpu_register_io_memory(0, omap2_inth_readfn,
653
                    omap2_inth_writefn, s);
654
    cpu_register_physical_memory(s->base, size, iomemtype);
655

    
656
    return s;
657
}
658

    
659
/* MPU OS timers */
660
struct omap_mpu_timer_s {
661
    qemu_irq irq;
662
    omap_clk clk;
663
    target_phys_addr_t base;
664
    uint32_t val;
665
    int64_t time;
666
    QEMUTimer *timer;
667
    int64_t rate;
668
    int it_ena;
669

    
670
    int enable;
671
    int ptv;
672
    int ar;
673
    int st;
674
    uint32_t reset_val;
675
};
676

    
677
static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer)
678
{
679
    uint64_t distance = qemu_get_clock(vm_clock) - timer->time;
680

    
681
    if (timer->st && timer->enable && timer->rate)
682
        return timer->val - muldiv64(distance >> (timer->ptv + 1),
683
                        timer->rate, ticks_per_sec);
684
    else
685
        return timer->val;
686
}
687

    
688
static inline void omap_timer_sync(struct omap_mpu_timer_s *timer)
689
{
690
    timer->val = omap_timer_read(timer);
691
    timer->time = qemu_get_clock(vm_clock);
692
}
693

    
694
static inline void omap_timer_update(struct omap_mpu_timer_s *timer)
695
{
696
    int64_t expires;
697

    
698
    if (timer->enable && timer->st && timer->rate) {
699
        timer->val = timer->reset_val;        /* Should skip this on clk enable */
700
        expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
701
                        ticks_per_sec, timer->rate);
702

    
703
        /* If timer expiry would be sooner than in about 1 ms and
704
         * auto-reload isn't set, then fire immediately.  This is a hack
705
         * to make systems like PalmOS run in acceptable time.  PalmOS
706
         * sets the interval to a very low value and polls the status bit
707
         * in a busy loop when it wants to sleep just a couple of CPU
708
         * ticks.  */
709
        if (expires > (ticks_per_sec >> 10) || timer->ar)
710
            qemu_mod_timer(timer->timer, timer->time + expires);
711
        else {
712
            timer->val = 0;
713
            timer->st = 0;
714
            if (timer->it_ena)
715
                /* Edge-triggered irq */
716
                qemu_irq_pulse(timer->irq);
717
        }
718
    } else
719
        qemu_del_timer(timer->timer);
720
}
721

    
722
static void omap_timer_tick(void *opaque)
723
{
724
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
725
    omap_timer_sync(timer);
726

    
727
    if (!timer->ar) {
728
        timer->val = 0;
729
        timer->st = 0;
730
    }
731

    
732
    if (timer->it_ena)
733
        /* Edge-triggered irq */
734
        qemu_irq_pulse(timer->irq);
735
    omap_timer_update(timer);
736
}
737

    
738
static void omap_timer_clk_update(void *opaque, int line, int on)
739
{
740
    struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque;
741

    
742
    omap_timer_sync(timer);
743
    timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
744
    omap_timer_update(timer);
745
}
746

    
747
static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer)
748
{
749
    omap_clk_adduser(timer->clk,
750
                    qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]);
751
    timer->rate = omap_clk_getrate(timer->clk);
752
}
753

    
754
static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr)
755
{
756
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
757
    int offset = addr - s->base;
758

    
759
    switch (offset) {
760
    case 0x00:        /* CNTL_TIMER */
761
        return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st;
762

    
763
    case 0x04:        /* LOAD_TIM */
764
        break;
765

    
766
    case 0x08:        /* READ_TIM */
767
        return omap_timer_read(s);
768
    }
769

    
770
    OMAP_BAD_REG(addr);
771
    return 0;
772
}
773

    
774
static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr,
775
                uint32_t value)
776
{
777
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque;
778
    int offset = addr - s->base;
779

    
780
    switch (offset) {
781
    case 0x00:        /* CNTL_TIMER */
782
        omap_timer_sync(s);
783
        s->enable = (value >> 5) & 1;
784
        s->ptv = (value >> 2) & 7;
785
        s->ar = (value >> 1) & 1;
786
        s->st = value & 1;
787
        omap_timer_update(s);
788
        return;
789

    
790
    case 0x04:        /* LOAD_TIM */
791
        s->reset_val = value;
792
        return;
793

    
794
    case 0x08:        /* READ_TIM */
795
        OMAP_RO_REG(addr);
796
        break;
797

    
798
    default:
799
        OMAP_BAD_REG(addr);
800
    }
801
}
802

    
803
static CPUReadMemoryFunc *omap_mpu_timer_readfn[] = {
804
    omap_badwidth_read32,
805
    omap_badwidth_read32,
806
    omap_mpu_timer_read,
807
};
808

    
809
static CPUWriteMemoryFunc *omap_mpu_timer_writefn[] = {
810
    omap_badwidth_write32,
811
    omap_badwidth_write32,
812
    omap_mpu_timer_write,
813
};
814

    
815
static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s)
816
{
817
    qemu_del_timer(s->timer);
818
    s->enable = 0;
819
    s->reset_val = 31337;
820
    s->val = 0;
821
    s->ptv = 0;
822
    s->ar = 0;
823
    s->st = 0;
824
    s->it_ena = 1;
825
}
826

    
827
struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
828
                qemu_irq irq, omap_clk clk)
829
{
830
    int iomemtype;
831
    struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *)
832
            qemu_mallocz(sizeof(struct omap_mpu_timer_s));
833

    
834
    s->irq = irq;
835
    s->clk = clk;
836
    s->base = base;
837
    s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s);
838
    omap_mpu_timer_reset(s);
839
    omap_timer_clk_setup(s);
840

    
841
    iomemtype = cpu_register_io_memory(0, omap_mpu_timer_readfn,
842
                    omap_mpu_timer_writefn, s);
843
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
844

    
845
    return s;
846
}
847

    
848
/* Watchdog timer */
849
struct omap_watchdog_timer_s {
850
    struct omap_mpu_timer_s timer;
851
    uint8_t last_wr;
852
    int mode;
853
    int free;
854
    int reset;
855
};
856

    
857
static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr)
858
{
859
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
860
    int offset = addr - s->timer.base;
861

    
862
    switch (offset) {
863
    case 0x00:        /* CNTL_TIMER */
864
        return (s->timer.ptv << 9) | (s->timer.ar << 8) |
865
                (s->timer.st << 7) | (s->free << 1);
866

    
867
    case 0x04:        /* READ_TIMER */
868
        return omap_timer_read(&s->timer);
869

    
870
    case 0x08:        /* TIMER_MODE */
871
        return s->mode << 15;
872
    }
873

    
874
    OMAP_BAD_REG(addr);
875
    return 0;
876
}
877

    
878
static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr,
879
                uint32_t value)
880
{
881
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque;
882
    int offset = addr - s->timer.base;
883

    
884
    switch (offset) {
885
    case 0x00:        /* CNTL_TIMER */
886
        omap_timer_sync(&s->timer);
887
        s->timer.ptv = (value >> 9) & 7;
888
        s->timer.ar = (value >> 8) & 1;
889
        s->timer.st = (value >> 7) & 1;
890
        s->free = (value >> 1) & 1;
891
        omap_timer_update(&s->timer);
892
        break;
893

    
894
    case 0x04:        /* LOAD_TIMER */
895
        s->timer.reset_val = value & 0xffff;
896
        break;
897

    
898
    case 0x08:        /* TIMER_MODE */
899
        if (!s->mode && ((value >> 15) & 1))
900
            omap_clk_get(s->timer.clk);
901
        s->mode |= (value >> 15) & 1;
902
        if (s->last_wr == 0xf5) {
903
            if ((value & 0xff) == 0xa0) {
904
                if (s->mode) {
905
                    s->mode = 0;
906
                    omap_clk_put(s->timer.clk);
907
                }
908
            } else {
909
                /* XXX: on T|E hardware somehow this has no effect,
910
                 * on Zire 71 it works as specified.  */
911
                s->reset = 1;
912
                qemu_system_reset_request();
913
            }
914
        }
915
        s->last_wr = value & 0xff;
916
        break;
917

    
918
    default:
919
        OMAP_BAD_REG(addr);
920
    }
921
}
922

    
923
static CPUReadMemoryFunc *omap_wd_timer_readfn[] = {
924
    omap_badwidth_read16,
925
    omap_wd_timer_read,
926
    omap_badwidth_read16,
927
};
928

    
929
static CPUWriteMemoryFunc *omap_wd_timer_writefn[] = {
930
    omap_badwidth_write16,
931
    omap_wd_timer_write,
932
    omap_badwidth_write16,
933
};
934

    
935
static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s)
936
{
937
    qemu_del_timer(s->timer.timer);
938
    if (!s->mode)
939
        omap_clk_get(s->timer.clk);
940
    s->mode = 1;
941
    s->free = 1;
942
    s->reset = 0;
943
    s->timer.enable = 1;
944
    s->timer.it_ena = 1;
945
    s->timer.reset_val = 0xffff;
946
    s->timer.val = 0;
947
    s->timer.st = 0;
948
    s->timer.ptv = 0;
949
    s->timer.ar = 0;
950
    omap_timer_update(&s->timer);
951
}
952

    
953
struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
954
                qemu_irq irq, omap_clk clk)
955
{
956
    int iomemtype;
957
    struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *)
958
            qemu_mallocz(sizeof(struct omap_watchdog_timer_s));
959

    
960
    s->timer.irq = irq;
961
    s->timer.clk = clk;
962
    s->timer.base = base;
963
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
964
    omap_wd_timer_reset(s);
965
    omap_timer_clk_setup(&s->timer);
966

    
967
    iomemtype = cpu_register_io_memory(0, omap_wd_timer_readfn,
968
                    omap_wd_timer_writefn, s);
969
    cpu_register_physical_memory(s->timer.base, 0x100, iomemtype);
970

    
971
    return s;
972
}
973

    
974
/* 32-kHz timer */
975
struct omap_32khz_timer_s {
976
    struct omap_mpu_timer_s timer;
977
};
978

    
979
static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr)
980
{
981
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
982
    int offset = addr & OMAP_MPUI_REG_MASK;
983

    
984
    switch (offset) {
985
    case 0x00:        /* TVR */
986
        return s->timer.reset_val;
987

    
988
    case 0x04:        /* TCR */
989
        return omap_timer_read(&s->timer);
990

    
991
    case 0x08:        /* CR */
992
        return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st;
993

    
994
    default:
995
        break;
996
    }
997
    OMAP_BAD_REG(addr);
998
    return 0;
999
}
1000

    
1001
static void omap_os_timer_write(void *opaque, target_phys_addr_t addr,
1002
                uint32_t value)
1003
{
1004
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque;
1005
    int offset = addr & OMAP_MPUI_REG_MASK;
1006

    
1007
    switch (offset) {
1008
    case 0x00:        /* TVR */
1009
        s->timer.reset_val = value & 0x00ffffff;
1010
        break;
1011

    
1012
    case 0x04:        /* TCR */
1013
        OMAP_RO_REG(addr);
1014
        break;
1015

    
1016
    case 0x08:        /* CR */
1017
        s->timer.ar = (value >> 3) & 1;
1018
        s->timer.it_ena = (value >> 2) & 1;
1019
        if (s->timer.st != (value & 1) || (value & 2)) {
1020
            omap_timer_sync(&s->timer);
1021
            s->timer.enable = value & 1;
1022
            s->timer.st = value & 1;
1023
            omap_timer_update(&s->timer);
1024
        }
1025
        break;
1026

    
1027
    default:
1028
        OMAP_BAD_REG(addr);
1029
    }
1030
}
1031

    
1032
static CPUReadMemoryFunc *omap_os_timer_readfn[] = {
1033
    omap_badwidth_read32,
1034
    omap_badwidth_read32,
1035
    omap_os_timer_read,
1036
};
1037

    
1038
static CPUWriteMemoryFunc *omap_os_timer_writefn[] = {
1039
    omap_badwidth_write32,
1040
    omap_badwidth_write32,
1041
    omap_os_timer_write,
1042
};
1043

    
1044
static void omap_os_timer_reset(struct omap_32khz_timer_s *s)
1045
{
1046
    qemu_del_timer(s->timer.timer);
1047
    s->timer.enable = 0;
1048
    s->timer.it_ena = 0;
1049
    s->timer.reset_val = 0x00ffffff;
1050
    s->timer.val = 0;
1051
    s->timer.st = 0;
1052
    s->timer.ptv = 0;
1053
    s->timer.ar = 1;
1054
}
1055

    
1056
struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
1057
                qemu_irq irq, omap_clk clk)
1058
{
1059
    int iomemtype;
1060
    struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *)
1061
            qemu_mallocz(sizeof(struct omap_32khz_timer_s));
1062

    
1063
    s->timer.irq = irq;
1064
    s->timer.clk = clk;
1065
    s->timer.base = base;
1066
    s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer);
1067
    omap_os_timer_reset(s);
1068
    omap_timer_clk_setup(&s->timer);
1069

    
1070
    iomemtype = cpu_register_io_memory(0, omap_os_timer_readfn,
1071
                    omap_os_timer_writefn, s);
1072
    cpu_register_physical_memory(s->timer.base, 0x800, iomemtype);
1073

    
1074
    return s;
1075
}
1076

    
1077
/* Ultra Low-Power Device Module */
1078
static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr)
1079
{
1080
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1081
    int offset = addr - s->ulpd_pm_base;
1082
    uint16_t ret;
1083

    
1084
    switch (offset) {
1085
    case 0x14:        /* IT_STATUS */
1086
        ret = s->ulpd_pm_regs[offset >> 2];
1087
        s->ulpd_pm_regs[offset >> 2] = 0;
1088
        qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
1089
        return ret;
1090

    
1091
    case 0x18:        /* Reserved */
1092
    case 0x1c:        /* Reserved */
1093
    case 0x20:        /* Reserved */
1094
    case 0x28:        /* Reserved */
1095
    case 0x2c:        /* Reserved */
1096
        OMAP_BAD_REG(addr);
1097
    case 0x00:        /* COUNTER_32_LSB */
1098
    case 0x04:        /* COUNTER_32_MSB */
1099
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1100
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1101
    case 0x10:        /* GAUGING_CTRL */
1102
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1103
    case 0x30:        /* CLOCK_CTRL */
1104
    case 0x34:        /* SOFT_REQ */
1105
    case 0x38:        /* COUNTER_32_FIQ */
1106
    case 0x3c:        /* DPLL_CTRL */
1107
    case 0x40:        /* STATUS_REQ */
1108
        /* XXX: check clk::usecount state for every clock */
1109
    case 0x48:        /* LOCL_TIME */
1110
    case 0x4c:        /* APLL_CTRL */
1111
    case 0x50:        /* POWER_CTRL */
1112
        return s->ulpd_pm_regs[offset >> 2];
1113
    }
1114

    
1115
    OMAP_BAD_REG(addr);
1116
    return 0;
1117
}
1118

    
1119
static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s,
1120
                uint16_t diff, uint16_t value)
1121
{
1122
    if (diff & (1 << 4))                                /* USB_MCLK_EN */
1123
        omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1);
1124
    if (diff & (1 << 5))                                /* DIS_USB_PVCI_CLK */
1125
        omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1);
1126
}
1127

    
1128
static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s,
1129
                uint16_t diff, uint16_t value)
1130
{
1131
    if (diff & (1 << 0))                                /* SOFT_DPLL_REQ */
1132
        omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1);
1133
    if (diff & (1 << 1))                                /* SOFT_COM_REQ */
1134
        omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1);
1135
    if (diff & (1 << 2))                                /* SOFT_SDW_REQ */
1136
        omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1);
1137
    if (diff & (1 << 3))                                /* SOFT_USB_REQ */
1138
        omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1);
1139
}
1140

    
1141
static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr,
1142
                uint32_t value)
1143
{
1144
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1145
    int offset = addr - s->ulpd_pm_base;
1146
    int64_t now, ticks;
1147
    int div, mult;
1148
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1149
    uint16_t diff;
1150

    
1151
    switch (offset) {
1152
    case 0x00:        /* COUNTER_32_LSB */
1153
    case 0x04:        /* COUNTER_32_MSB */
1154
    case 0x08:        /* COUNTER_HIGH_FREQ_LSB */
1155
    case 0x0c:        /* COUNTER_HIGH_FREQ_MSB */
1156
    case 0x14:        /* IT_STATUS */
1157
    case 0x40:        /* STATUS_REQ */
1158
        OMAP_RO_REG(addr);
1159
        break;
1160

    
1161
    case 0x10:        /* GAUGING_CTRL */
1162
        /* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
1163
        if ((s->ulpd_pm_regs[offset >> 2] ^ value) & 1) {
1164
            now = qemu_get_clock(vm_clock);
1165

    
1166
            if (value & 1)
1167
                s->ulpd_gauge_start = now;
1168
            else {
1169
                now -= s->ulpd_gauge_start;
1170

    
1171
                /* 32-kHz ticks */
1172
                ticks = muldiv64(now, 32768, ticks_per_sec);
1173
                s->ulpd_pm_regs[0x00 >> 2] = (ticks >>  0) & 0xffff;
1174
                s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff;
1175
                if (ticks >> 32)        /* OVERFLOW_32K */
1176
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2;
1177

    
1178
                /* High frequency ticks */
1179
                ticks = muldiv64(now, 12000000, ticks_per_sec);
1180
                s->ulpd_pm_regs[0x08 >> 2] = (ticks >>  0) & 0xffff;
1181
                s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff;
1182
                if (ticks >> 32)        /* OVERFLOW_HI_FREQ */
1183
                    s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1;
1184

    
1185
                s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0;        /* IT_GAUGING */
1186
                qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
1187
            }
1188
        }
1189
        s->ulpd_pm_regs[offset >> 2] = value;
1190
        break;
1191

    
1192
    case 0x18:        /* Reserved */
1193
    case 0x1c:        /* Reserved */
1194
    case 0x20:        /* Reserved */
1195
    case 0x28:        /* Reserved */
1196
    case 0x2c:        /* Reserved */
1197
        OMAP_BAD_REG(addr);
1198
    case 0x24:        /* SETUP_ANALOG_CELL3_ULPD1 */
1199
    case 0x38:        /* COUNTER_32_FIQ */
1200
    case 0x48:        /* LOCL_TIME */
1201
    case 0x50:        /* POWER_CTRL */
1202
        s->ulpd_pm_regs[offset >> 2] = value;
1203
        break;
1204

    
1205
    case 0x30:        /* CLOCK_CTRL */
1206
        diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1207
        s->ulpd_pm_regs[offset >> 2] = value & 0x3f;
1208
        omap_ulpd_clk_update(s, diff, value);
1209
        break;
1210

    
1211
    case 0x34:        /* SOFT_REQ */
1212
        diff = s->ulpd_pm_regs[offset >> 2] ^ value;
1213
        s->ulpd_pm_regs[offset >> 2] = value & 0x1f;
1214
        omap_ulpd_req_update(s, diff, value);
1215
        break;
1216

    
1217
    case 0x3c:        /* DPLL_CTRL */
1218
        /* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
1219
         * omitted altogether, probably a typo.  */
1220
        /* This register has identical semantics with DPLL(1:3) control
1221
         * registers, see omap_dpll_write() */
1222
        diff = s->ulpd_pm_regs[offset >> 2] & value;
1223
        s->ulpd_pm_regs[offset >> 2] = value & 0x2fff;
1224
        if (diff & (0x3ff << 2)) {
1225
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1226
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1227
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1228
            } else {
1229
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1230
                mult = 1;
1231
            }
1232
            omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
1233
        }
1234

    
1235
        /* Enter the desired mode.  */
1236
        s->ulpd_pm_regs[offset >> 2] =
1237
                (s->ulpd_pm_regs[offset >> 2] & 0xfffe) |
1238
                ((s->ulpd_pm_regs[offset >> 2] >> 4) & 1);
1239

    
1240
        /* Act as if the lock is restored.  */
1241
        s->ulpd_pm_regs[offset >> 2] |= 2;
1242
        break;
1243

    
1244
    case 0x4c:        /* APLL_CTRL */
1245
        diff = s->ulpd_pm_regs[offset >> 2] & value;
1246
        s->ulpd_pm_regs[offset >> 2] = value & 0xf;
1247
        if (diff & (1 << 0))                                /* APLL_NDPLL_SWITCH */
1248
            omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
1249
                                    (value & (1 << 0)) ? "apll" : "dpll4"));
1250
        break;
1251

    
1252
    default:
1253
        OMAP_BAD_REG(addr);
1254
    }
1255
}
1256

    
1257
static CPUReadMemoryFunc *omap_ulpd_pm_readfn[] = {
1258
    omap_badwidth_read16,
1259
    omap_ulpd_pm_read,
1260
    omap_badwidth_read16,
1261
};
1262

    
1263
static CPUWriteMemoryFunc *omap_ulpd_pm_writefn[] = {
1264
    omap_badwidth_write16,
1265
    omap_ulpd_pm_write,
1266
    omap_badwidth_write16,
1267
};
1268

    
1269
static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu)
1270
{
1271
    mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001;
1272
    mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000;
1273
    mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001;
1274
    mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000;
1275
    mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000;
1276
    mpu->ulpd_pm_regs[0x18 >> 2] = 0x01;
1277
    mpu->ulpd_pm_regs[0x1c >> 2] = 0x01;
1278
    mpu->ulpd_pm_regs[0x20 >> 2] = 0x01;
1279
    mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff;
1280
    mpu->ulpd_pm_regs[0x28 >> 2] = 0x01;
1281
    mpu->ulpd_pm_regs[0x2c >> 2] = 0x01;
1282
    omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000);
1283
    mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000;
1284
    omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000);
1285
    mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000;
1286
    mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001;
1287
    mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211;
1288
    mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */
1289
    mpu->ulpd_pm_regs[0x48 >> 2] = 0x960;
1290
    mpu->ulpd_pm_regs[0x4c >> 2] = 0x08;
1291
    mpu->ulpd_pm_regs[0x50 >> 2] = 0x08;
1292
    omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4);
1293
    omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4"));
1294
}
1295

    
1296
static void omap_ulpd_pm_init(target_phys_addr_t base,
1297
                struct omap_mpu_state_s *mpu)
1298
{
1299
    int iomemtype = cpu_register_io_memory(0, omap_ulpd_pm_readfn,
1300
                    omap_ulpd_pm_writefn, mpu);
1301

    
1302
    mpu->ulpd_pm_base = base;
1303
    cpu_register_physical_memory(mpu->ulpd_pm_base, 0x800, iomemtype);
1304
    omap_ulpd_pm_reset(mpu);
1305
}
1306

    
1307
/* OMAP Pin Configuration */
1308
static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr)
1309
{
1310
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1311
    int offset = addr - s->pin_cfg_base;
1312

    
1313
    switch (offset) {
1314
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1315
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1316
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1317
        return s->func_mux_ctrl[offset >> 2];
1318

    
1319
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1320
        return s->comp_mode_ctrl[0];
1321

    
1322
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1323
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1324
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1325
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1326
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1327
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1328
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1329
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1330
    case 0x30:        /* FUNC_MUX_CTRL_B */
1331
    case 0x34:        /* FUNC_MUX_CTRL_C */
1332
    case 0x38:        /* FUNC_MUX_CTRL_D */
1333
        return s->func_mux_ctrl[(offset >> 2) - 1];
1334

    
1335
    case 0x40:        /* PULL_DWN_CTRL_0 */
1336
    case 0x44:        /* PULL_DWN_CTRL_1 */
1337
    case 0x48:        /* PULL_DWN_CTRL_2 */
1338
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1339
        return s->pull_dwn_ctrl[(offset & 0xf) >> 2];
1340

    
1341
    case 0x50:        /* GATE_INH_CTRL_0 */
1342
        return s->gate_inh_ctrl[0];
1343

    
1344
    case 0x60:        /* VOLTAGE_CTRL_0 */
1345
        return s->voltage_ctrl[0];
1346

    
1347
    case 0x70:        /* TEST_DBG_CTRL_0 */
1348
        return s->test_dbg_ctrl[0];
1349

    
1350
    case 0x80:        /* MOD_CONF_CTRL_0 */
1351
        return s->mod_conf_ctrl[0];
1352
    }
1353

    
1354
    OMAP_BAD_REG(addr);
1355
    return 0;
1356
}
1357

    
1358
static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s,
1359
                uint32_t diff, uint32_t value)
1360
{
1361
    if (s->compat1509) {
1362
        if (diff & (1 << 9))                        /* BLUETOOTH */
1363
            omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
1364
                            (~value >> 9) & 1);
1365
        if (diff & (1 << 7))                        /* USB.CLKO */
1366
            omap_clk_onoff(omap_findclk(s, "usb.clko"),
1367
                            (value >> 7) & 1);
1368
    }
1369
}
1370

    
1371
static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s,
1372
                uint32_t diff, uint32_t value)
1373
{
1374
    if (s->compat1509) {
1375
        if (diff & (1 << 31))                        /* MCBSP3_CLK_HIZ_DI */
1376
            omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
1377
                            (value >> 31) & 1);
1378
        if (diff & (1 << 1))                        /* CLK32K */
1379
            omap_clk_onoff(omap_findclk(s, "clk32k_out"),
1380
                            (~value >> 1) & 1);
1381
    }
1382
}
1383

    
1384
static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s,
1385
                uint32_t diff, uint32_t value)
1386
{
1387
    if (diff & (1 << 31))                        /* CONF_MOD_UART3_CLK_MODE_R */
1388
         omap_clk_reparent(omap_findclk(s, "uart3_ck"),
1389
                         omap_findclk(s, ((value >> 31) & 1) ?
1390
                                 "ck_48m" : "armper_ck"));
1391
    if (diff & (1 << 30))                        /* CONF_MOD_UART2_CLK_MODE_R */
1392
         omap_clk_reparent(omap_findclk(s, "uart2_ck"),
1393
                         omap_findclk(s, ((value >> 30) & 1) ?
1394
                                 "ck_48m" : "armper_ck"));
1395
    if (diff & (1 << 29))                        /* CONF_MOD_UART1_CLK_MODE_R */
1396
         omap_clk_reparent(omap_findclk(s, "uart1_ck"),
1397
                         omap_findclk(s, ((value >> 29) & 1) ?
1398
                                 "ck_48m" : "armper_ck"));
1399
    if (diff & (1 << 23))                        /* CONF_MOD_MMC_SD_CLK_REQ_R */
1400
         omap_clk_reparent(omap_findclk(s, "mmc_ck"),
1401
                         omap_findclk(s, ((value >> 23) & 1) ?
1402
                                 "ck_48m" : "armper_ck"));
1403
    if (diff & (1 << 12))                        /* CONF_MOD_COM_MCLK_12_48_S */
1404
         omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
1405
                         omap_findclk(s, ((value >> 12) & 1) ?
1406
                                 "ck_48m" : "armper_ck"));
1407
    if (diff & (1 << 9))                        /* CONF_MOD_USB_HOST_HHC_UHO */
1408
         omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1);
1409
}
1410

    
1411
static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr,
1412
                uint32_t value)
1413
{
1414
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1415
    int offset = addr - s->pin_cfg_base;
1416
    uint32_t diff;
1417

    
1418
    switch (offset) {
1419
    case 0x00:        /* FUNC_MUX_CTRL_0 */
1420
        diff = s->func_mux_ctrl[offset >> 2] ^ value;
1421
        s->func_mux_ctrl[offset >> 2] = value;
1422
        omap_pin_funcmux0_update(s, diff, value);
1423
        return;
1424

    
1425
    case 0x04:        /* FUNC_MUX_CTRL_1 */
1426
        diff = s->func_mux_ctrl[offset >> 2] ^ value;
1427
        s->func_mux_ctrl[offset >> 2] = value;
1428
        omap_pin_funcmux1_update(s, diff, value);
1429
        return;
1430

    
1431
    case 0x08:        /* FUNC_MUX_CTRL_2 */
1432
        s->func_mux_ctrl[offset >> 2] = value;
1433
        return;
1434

    
1435
    case 0x0c:        /* COMP_MODE_CTRL_0 */
1436
        s->comp_mode_ctrl[0] = value;
1437
        s->compat1509 = (value != 0x0000eaef);
1438
        omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]);
1439
        omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]);
1440
        return;
1441

    
1442
    case 0x10:        /* FUNC_MUX_CTRL_3 */
1443
    case 0x14:        /* FUNC_MUX_CTRL_4 */
1444
    case 0x18:        /* FUNC_MUX_CTRL_5 */
1445
    case 0x1c:        /* FUNC_MUX_CTRL_6 */
1446
    case 0x20:        /* FUNC_MUX_CTRL_7 */
1447
    case 0x24:        /* FUNC_MUX_CTRL_8 */
1448
    case 0x28:        /* FUNC_MUX_CTRL_9 */
1449
    case 0x2c:        /* FUNC_MUX_CTRL_A */
1450
    case 0x30:        /* FUNC_MUX_CTRL_B */
1451
    case 0x34:        /* FUNC_MUX_CTRL_C */
1452
    case 0x38:        /* FUNC_MUX_CTRL_D */
1453
        s->func_mux_ctrl[(offset >> 2) - 1] = value;
1454
        return;
1455

    
1456
    case 0x40:        /* PULL_DWN_CTRL_0 */
1457
    case 0x44:        /* PULL_DWN_CTRL_1 */
1458
    case 0x48:        /* PULL_DWN_CTRL_2 */
1459
    case 0x4c:        /* PULL_DWN_CTRL_3 */
1460
        s->pull_dwn_ctrl[(offset & 0xf) >> 2] = value;
1461
        return;
1462

    
1463
    case 0x50:        /* GATE_INH_CTRL_0 */
1464
        s->gate_inh_ctrl[0] = value;
1465
        return;
1466

    
1467
    case 0x60:        /* VOLTAGE_CTRL_0 */
1468
        s->voltage_ctrl[0] = value;
1469
        return;
1470

    
1471
    case 0x70:        /* TEST_DBG_CTRL_0 */
1472
        s->test_dbg_ctrl[0] = value;
1473
        return;
1474

    
1475
    case 0x80:        /* MOD_CONF_CTRL_0 */
1476
        diff = s->mod_conf_ctrl[0] ^ value;
1477
        s->mod_conf_ctrl[0] = value;
1478
        omap_pin_modconf1_update(s, diff, value);
1479
        return;
1480

    
1481
    default:
1482
        OMAP_BAD_REG(addr);
1483
    }
1484
}
1485

    
1486
static CPUReadMemoryFunc *omap_pin_cfg_readfn[] = {
1487
    omap_badwidth_read32,
1488
    omap_badwidth_read32,
1489
    omap_pin_cfg_read,
1490
};
1491

    
1492
static CPUWriteMemoryFunc *omap_pin_cfg_writefn[] = {
1493
    omap_badwidth_write32,
1494
    omap_badwidth_write32,
1495
    omap_pin_cfg_write,
1496
};
1497

    
1498
static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu)
1499
{
1500
    /* Start in Compatibility Mode.  */
1501
    mpu->compat1509 = 1;
1502
    omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0);
1503
    omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0);
1504
    omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0);
1505
    memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl));
1506
    memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl));
1507
    memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl));
1508
    memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl));
1509
    memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl));
1510
    memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl));
1511
    memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl));
1512
}
1513

    
1514
static void omap_pin_cfg_init(target_phys_addr_t base,
1515
                struct omap_mpu_state_s *mpu)
1516
{
1517
    int iomemtype = cpu_register_io_memory(0, omap_pin_cfg_readfn,
1518
                    omap_pin_cfg_writefn, mpu);
1519

    
1520
    mpu->pin_cfg_base = base;
1521
    cpu_register_physical_memory(mpu->pin_cfg_base, 0x800, iomemtype);
1522
    omap_pin_cfg_reset(mpu);
1523
}
1524

    
1525
/* Device Identification, Die Identification */
1526
static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr)
1527
{
1528
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1529

    
1530
    switch (addr) {
1531
    case 0xfffe1800:        /* DIE_ID_LSB */
1532
        return 0xc9581f0e;
1533
    case 0xfffe1804:        /* DIE_ID_MSB */
1534
        return 0xa8858bfa;
1535

    
1536
    case 0xfffe2000:        /* PRODUCT_ID_LSB */
1537
        return 0x00aaaafc;
1538
    case 0xfffe2004:        /* PRODUCT_ID_MSB */
1539
        return 0xcafeb574;
1540

    
1541
    case 0xfffed400:        /* JTAG_ID_LSB */
1542
        switch (s->mpu_model) {
1543
        case omap310:
1544
            return 0x03310315;
1545
        case omap1510:
1546
            return 0x03310115;
1547
        default:
1548
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1549
        }
1550
        break;
1551

    
1552
    case 0xfffed404:        /* JTAG_ID_MSB */
1553
        switch (s->mpu_model) {
1554
        case omap310:
1555
            return 0xfb57402f;
1556
        case omap1510:
1557
            return 0xfb47002f;
1558
        default:
1559
            cpu_abort(cpu_single_env, "%s: bad mpu model\n", __FUNCTION__);
1560
        }
1561
        break;
1562
    }
1563

    
1564
    OMAP_BAD_REG(addr);
1565
    return 0;
1566
}
1567

    
1568
static void omap_id_write(void *opaque, target_phys_addr_t addr,
1569
                uint32_t value)
1570
{
1571
    OMAP_BAD_REG(addr);
1572
}
1573

    
1574
static CPUReadMemoryFunc *omap_id_readfn[] = {
1575
    omap_badwidth_read32,
1576
    omap_badwidth_read32,
1577
    omap_id_read,
1578
};
1579

    
1580
static CPUWriteMemoryFunc *omap_id_writefn[] = {
1581
    omap_badwidth_write32,
1582
    omap_badwidth_write32,
1583
    omap_id_write,
1584
};
1585

    
1586
static void omap_id_init(struct omap_mpu_state_s *mpu)
1587
{
1588
    int iomemtype = cpu_register_io_memory(0, omap_id_readfn,
1589
                    omap_id_writefn, mpu);
1590
    cpu_register_physical_memory(0xfffe1800, 0x800, iomemtype);
1591
    cpu_register_physical_memory(0xfffed400, 0x100, iomemtype);
1592
    if (!cpu_is_omap15xx(mpu))
1593
        cpu_register_physical_memory(0xfffe2000, 0x800, iomemtype);
1594
}
1595

    
1596
/* MPUI Control (Dummy) */
1597
static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr)
1598
{
1599
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1600
    int offset = addr - s->mpui_base;
1601

    
1602
    switch (offset) {
1603
    case 0x00:        /* CTRL */
1604
        return s->mpui_ctrl;
1605
    case 0x04:        /* DEBUG_ADDR */
1606
        return 0x01ffffff;
1607
    case 0x08:        /* DEBUG_DATA */
1608
        return 0xffffffff;
1609
    case 0x0c:        /* DEBUG_FLAG */
1610
        return 0x00000800;
1611
    case 0x10:        /* STATUS */
1612
        return 0x00000000;
1613

    
1614
    /* Not in OMAP310 */
1615
    case 0x14:        /* DSP_STATUS */
1616
    case 0x18:        /* DSP_BOOT_CONFIG */
1617
        return 0x00000000;
1618
    case 0x1c:        /* DSP_MPUI_CONFIG */
1619
        return 0x0000ffff;
1620
    }
1621

    
1622
    OMAP_BAD_REG(addr);
1623
    return 0;
1624
}
1625

    
1626
static void omap_mpui_write(void *opaque, target_phys_addr_t addr,
1627
                uint32_t value)
1628
{
1629
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1630
    int offset = addr - s->mpui_base;
1631

    
1632
    switch (offset) {
1633
    case 0x00:        /* CTRL */
1634
        s->mpui_ctrl = value & 0x007fffff;
1635
        break;
1636

    
1637
    case 0x04:        /* DEBUG_ADDR */
1638
    case 0x08:        /* DEBUG_DATA */
1639
    case 0x0c:        /* DEBUG_FLAG */
1640
    case 0x10:        /* STATUS */
1641
    /* Not in OMAP310 */
1642
    case 0x14:        /* DSP_STATUS */
1643
        OMAP_RO_REG(addr);
1644
    case 0x18:        /* DSP_BOOT_CONFIG */
1645
    case 0x1c:        /* DSP_MPUI_CONFIG */
1646
        break;
1647

    
1648
    default:
1649
        OMAP_BAD_REG(addr);
1650
    }
1651
}
1652

    
1653
static CPUReadMemoryFunc *omap_mpui_readfn[] = {
1654
    omap_badwidth_read32,
1655
    omap_badwidth_read32,
1656
    omap_mpui_read,
1657
};
1658

    
1659
static CPUWriteMemoryFunc *omap_mpui_writefn[] = {
1660
    omap_badwidth_write32,
1661
    omap_badwidth_write32,
1662
    omap_mpui_write,
1663
};
1664

    
1665
static void omap_mpui_reset(struct omap_mpu_state_s *s)
1666
{
1667
    s->mpui_ctrl = 0x0003ff1b;
1668
}
1669

    
1670
static void omap_mpui_init(target_phys_addr_t base,
1671
                struct omap_mpu_state_s *mpu)
1672
{
1673
    int iomemtype = cpu_register_io_memory(0, omap_mpui_readfn,
1674
                    omap_mpui_writefn, mpu);
1675

    
1676
    mpu->mpui_base = base;
1677
    cpu_register_physical_memory(mpu->mpui_base, 0x100, iomemtype);
1678

    
1679
    omap_mpui_reset(mpu);
1680
}
1681

    
1682
/* TIPB Bridges */
1683
struct omap_tipb_bridge_s {
1684
    target_phys_addr_t base;
1685
    qemu_irq abort;
1686

    
1687
    int width_intr;
1688
    uint16_t control;
1689
    uint16_t alloc;
1690
    uint16_t buffer;
1691
    uint16_t enh_control;
1692
};
1693

    
1694
static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr)
1695
{
1696
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1697
    int offset = addr - s->base;
1698

    
1699
    switch (offset) {
1700
    case 0x00:        /* TIPB_CNTL */
1701
        return s->control;
1702
    case 0x04:        /* TIPB_BUS_ALLOC */
1703
        return s->alloc;
1704
    case 0x08:        /* MPU_TIPB_CNTL */
1705
        return s->buffer;
1706
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1707
        return s->enh_control;
1708
    case 0x10:        /* ADDRESS_DBG */
1709
    case 0x14:        /* DATA_DEBUG_LOW */
1710
    case 0x18:        /* DATA_DEBUG_HIGH */
1711
        return 0xffff;
1712
    case 0x1c:        /* DEBUG_CNTR_SIG */
1713
        return 0x00f8;
1714
    }
1715

    
1716
    OMAP_BAD_REG(addr);
1717
    return 0;
1718
}
1719

    
1720
static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr,
1721
                uint32_t value)
1722
{
1723
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque;
1724
    int offset = addr - s->base;
1725

    
1726
    switch (offset) {
1727
    case 0x00:        /* TIPB_CNTL */
1728
        s->control = value & 0xffff;
1729
        break;
1730

    
1731
    case 0x04:        /* TIPB_BUS_ALLOC */
1732
        s->alloc = value & 0x003f;
1733
        break;
1734

    
1735
    case 0x08:        /* MPU_TIPB_CNTL */
1736
        s->buffer = value & 0x0003;
1737
        break;
1738

    
1739
    case 0x0c:        /* ENHANCED_TIPB_CNTL */
1740
        s->width_intr = !(value & 2);
1741
        s->enh_control = value & 0x000f;
1742
        break;
1743

    
1744
    case 0x10:        /* ADDRESS_DBG */
1745
    case 0x14:        /* DATA_DEBUG_LOW */
1746
    case 0x18:        /* DATA_DEBUG_HIGH */
1747
    case 0x1c:        /* DEBUG_CNTR_SIG */
1748
        OMAP_RO_REG(addr);
1749
        break;
1750

    
1751
    default:
1752
        OMAP_BAD_REG(addr);
1753
    }
1754
}
1755

    
1756
static CPUReadMemoryFunc *omap_tipb_bridge_readfn[] = {
1757
    omap_badwidth_read16,
1758
    omap_tipb_bridge_read,
1759
    omap_tipb_bridge_read,
1760
};
1761

    
1762
static CPUWriteMemoryFunc *omap_tipb_bridge_writefn[] = {
1763
    omap_badwidth_write16,
1764
    omap_tipb_bridge_write,
1765
    omap_tipb_bridge_write,
1766
};
1767

    
1768
static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s)
1769
{
1770
    s->control = 0xffff;
1771
    s->alloc = 0x0009;
1772
    s->buffer = 0x0000;
1773
    s->enh_control = 0x000f;
1774
}
1775

    
1776
struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
1777
                qemu_irq abort_irq, omap_clk clk)
1778
{
1779
    int iomemtype;
1780
    struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *)
1781
            qemu_mallocz(sizeof(struct omap_tipb_bridge_s));
1782

    
1783
    s->abort = abort_irq;
1784
    s->base = base;
1785
    omap_tipb_bridge_reset(s);
1786

    
1787
    iomemtype = cpu_register_io_memory(0, omap_tipb_bridge_readfn,
1788
                    omap_tipb_bridge_writefn, s);
1789
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
1790

    
1791
    return s;
1792
}
1793

    
1794
/* Dummy Traffic Controller's Memory Interface */
1795
static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr)
1796
{
1797
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1798
    int offset = addr - s->tcmi_base;
1799
    uint32_t ret;
1800

    
1801
    switch (offset) {
1802
    case 0x00:        /* IMIF_PRIO */
1803
    case 0x04:        /* EMIFS_PRIO */
1804
    case 0x08:        /* EMIFF_PRIO */
1805
    case 0x0c:        /* EMIFS_CONFIG */
1806
    case 0x10:        /* EMIFS_CS0_CONFIG */
1807
    case 0x14:        /* EMIFS_CS1_CONFIG */
1808
    case 0x18:        /* EMIFS_CS2_CONFIG */
1809
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1810
    case 0x24:        /* EMIFF_MRS */
1811
    case 0x28:        /* TIMEOUT1 */
1812
    case 0x2c:        /* TIMEOUT2 */
1813
    case 0x30:        /* TIMEOUT3 */
1814
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1815
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1816
        return s->tcmi_regs[offset >> 2];
1817

    
1818
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1819
        ret = s->tcmi_regs[offset >> 2];
1820
        s->tcmi_regs[offset >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */
1821
        /* XXX: We can try using the VGA_DIRTY flag for this */
1822
        return ret;
1823
    }
1824

    
1825
    OMAP_BAD_REG(addr);
1826
    return 0;
1827
}
1828

    
1829
static void omap_tcmi_write(void *opaque, target_phys_addr_t addr,
1830
                uint32_t value)
1831
{
1832
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
1833
    int offset = addr - s->tcmi_base;
1834

    
1835
    switch (offset) {
1836
    case 0x00:        /* IMIF_PRIO */
1837
    case 0x04:        /* EMIFS_PRIO */
1838
    case 0x08:        /* EMIFF_PRIO */
1839
    case 0x10:        /* EMIFS_CS0_CONFIG */
1840
    case 0x14:        /* EMIFS_CS1_CONFIG */
1841
    case 0x18:        /* EMIFS_CS2_CONFIG */
1842
    case 0x1c:        /* EMIFS_CS3_CONFIG */
1843
    case 0x20:        /* EMIFF_SDRAM_CONFIG */
1844
    case 0x24:        /* EMIFF_MRS */
1845
    case 0x28:        /* TIMEOUT1 */
1846
    case 0x2c:        /* TIMEOUT2 */
1847
    case 0x30:        /* TIMEOUT3 */
1848
    case 0x3c:        /* EMIFF_SDRAM_CONFIG_2 */
1849
    case 0x40:        /* EMIFS_CFG_DYN_WAIT */
1850
        s->tcmi_regs[offset >> 2] = value;
1851
        break;
1852
    case 0x0c:        /* EMIFS_CONFIG */
1853
        s->tcmi_regs[offset >> 2] = (value & 0xf) | (1 << 4);
1854
        break;
1855

    
1856
    default:
1857
        OMAP_BAD_REG(addr);
1858
    }
1859
}
1860

    
1861
static CPUReadMemoryFunc *omap_tcmi_readfn[] = {
1862
    omap_badwidth_read32,
1863
    omap_badwidth_read32,
1864
    omap_tcmi_read,
1865
};
1866

    
1867
static CPUWriteMemoryFunc *omap_tcmi_writefn[] = {
1868
    omap_badwidth_write32,
1869
    omap_badwidth_write32,
1870
    omap_tcmi_write,
1871
};
1872

    
1873
static void omap_tcmi_reset(struct omap_mpu_state_s *mpu)
1874
{
1875
    mpu->tcmi_regs[0x00 >> 2] = 0x00000000;
1876
    mpu->tcmi_regs[0x04 >> 2] = 0x00000000;
1877
    mpu->tcmi_regs[0x08 >> 2] = 0x00000000;
1878
    mpu->tcmi_regs[0x0c >> 2] = 0x00000010;
1879
    mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb;
1880
    mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb;
1881
    mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb;
1882
    mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb;
1883
    mpu->tcmi_regs[0x20 >> 2] = 0x00618800;
1884
    mpu->tcmi_regs[0x24 >> 2] = 0x00000037;
1885
    mpu->tcmi_regs[0x28 >> 2] = 0x00000000;
1886
    mpu->tcmi_regs[0x2c >> 2] = 0x00000000;
1887
    mpu->tcmi_regs[0x30 >> 2] = 0x00000000;
1888
    mpu->tcmi_regs[0x3c >> 2] = 0x00000003;
1889
    mpu->tcmi_regs[0x40 >> 2] = 0x00000000;
1890
}
1891

    
1892
static void omap_tcmi_init(target_phys_addr_t base,
1893
                struct omap_mpu_state_s *mpu)
1894
{
1895
    int iomemtype = cpu_register_io_memory(0, omap_tcmi_readfn,
1896
                    omap_tcmi_writefn, mpu);
1897

    
1898
    mpu->tcmi_base = base;
1899
    cpu_register_physical_memory(mpu->tcmi_base, 0x100, iomemtype);
1900
    omap_tcmi_reset(mpu);
1901
}
1902

    
1903
/* Digital phase-locked loops control */
1904
static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr)
1905
{
1906
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1907
    int offset = addr - s->base;
1908

    
1909
    if (offset == 0x00)        /* CTL_REG */
1910
        return s->mode;
1911

    
1912
    OMAP_BAD_REG(addr);
1913
    return 0;
1914
}
1915

    
1916
static void omap_dpll_write(void *opaque, target_phys_addr_t addr,
1917
                uint32_t value)
1918
{
1919
    struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque;
1920
    uint16_t diff;
1921
    int offset = addr - s->base;
1922
    static const int bypass_div[4] = { 1, 2, 4, 4 };
1923
    int div, mult;
1924

    
1925
    if (offset == 0x00) {        /* CTL_REG */
1926
        /* See omap_ulpd_pm_write() too */
1927
        diff = s->mode & value;
1928
        s->mode = value & 0x2fff;
1929
        if (diff & (0x3ff << 2)) {
1930
            if (value & (1 << 4)) {                        /* PLL_ENABLE */
1931
                div = ((value >> 5) & 3) + 1;                /* PLL_DIV */
1932
                mult = MIN((value >> 7) & 0x1f, 1);        /* PLL_MULT */
1933
            } else {
1934
                div = bypass_div[((value >> 2) & 3)];        /* BYPASS_DIV */
1935
                mult = 1;
1936
            }
1937
            omap_clk_setrate(s->dpll, div, mult);
1938
        }
1939

    
1940
        /* Enter the desired mode.  */
1941
        s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1);
1942

    
1943
        /* Act as if the lock is restored.  */
1944
        s->mode |= 2;
1945
    } else {
1946
        OMAP_BAD_REG(addr);
1947
    }
1948
}
1949

    
1950
static CPUReadMemoryFunc *omap_dpll_readfn[] = {
1951
    omap_badwidth_read16,
1952
    omap_dpll_read,
1953
    omap_badwidth_read16,
1954
};
1955

    
1956
static CPUWriteMemoryFunc *omap_dpll_writefn[] = {
1957
    omap_badwidth_write16,
1958
    omap_dpll_write,
1959
    omap_badwidth_write16,
1960
};
1961

    
1962
static void omap_dpll_reset(struct dpll_ctl_s *s)
1963
{
1964
    s->mode = 0x2002;
1965
    omap_clk_setrate(s->dpll, 1, 1);
1966
}
1967

    
1968
static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base,
1969
                omap_clk clk)
1970
{
1971
    int iomemtype = cpu_register_io_memory(0, omap_dpll_readfn,
1972
                    omap_dpll_writefn, s);
1973

    
1974
    s->base = base;
1975
    s->dpll = clk;
1976
    omap_dpll_reset(s);
1977

    
1978
    cpu_register_physical_memory(s->base, 0x100, iomemtype);
1979
}
1980

    
1981
/* UARTs */
1982
struct omap_uart_s {
1983
    SerialState *serial; /* TODO */
1984
    struct omap_target_agent_s *ta;
1985
    target_phys_addr_t base;
1986

    
1987
    uint8_t eblr;
1988
    uint8_t syscontrol;
1989
    uint8_t wkup;
1990
    uint8_t cfps;
1991
    uint8_t mdr[2];
1992
    uint8_t scr;
1993
};
1994

    
1995
void omap_uart_reset(struct omap_uart_s *s)
1996
{
1997
    s->eblr = 0x00;
1998
    s->syscontrol = 0;
1999
    s->wkup = 0x3f;
2000
    s->cfps = 0x69;
2001
}
2002

    
2003
struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
2004
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
2005
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2006
{
2007
    struct omap_uart_s *s = (struct omap_uart_s *)
2008
            qemu_mallocz(sizeof(struct omap_uart_s));
2009

    
2010
    s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16,
2011
                               chr ?: qemu_chr_open("null"), 1);
2012

    
2013
    return s;
2014
}
2015

    
2016
static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr)
2017
{
2018
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2019
    int offset = addr - s->base;
2020

    
2021
    switch (offset) {
2022
    case 0x20:        /* MDR1 */
2023
        return s->mdr[0];
2024
    case 0x24:        /* MDR2 */
2025
        return s->mdr[1];
2026
    case 0x40:        /* SCR */
2027
        return s->scr;
2028
    case 0x44:        /* SSR */
2029
        return 0x0;
2030
    case 0x48:        /* EBLR */
2031
        return s->eblr;
2032
    case 0x50:        /* MVR */
2033
        return 0x30;
2034
    case 0x54:        /* SYSC */
2035
        return s->syscontrol;
2036
    case 0x58:        /* SYSS */
2037
        return 1;
2038
    case 0x5c:        /* WER */
2039
        return s->wkup;
2040
    case 0x60:        /* CFPS */
2041
        return s->cfps;
2042
    }
2043

    
2044
    OMAP_BAD_REG(addr);
2045
    return 0;
2046
}
2047

    
2048
static void omap_uart_write(void *opaque, target_phys_addr_t addr,
2049
                uint32_t value)
2050
{
2051
    struct omap_uart_s *s = (struct omap_uart_s *) opaque;
2052
    int offset = addr - s->base;
2053

    
2054
    switch (offset) {
2055
    case 0x20:        /* MDR1 */
2056
        s->mdr[0] = value & 0x7f;
2057
        break;
2058
    case 0x24:        /* MDR2 */
2059
        s->mdr[1] = value & 0xff;
2060
        break;
2061
    case 0x40:        /* SCR */
2062
        s->scr = value & 0xff;
2063
        break;
2064
    case 0x48:        /* EBLR */
2065
        s->eblr = value & 0xff;
2066
        break;
2067
    case 0x44:        /* SSR */
2068
    case 0x50:        /* MVR */
2069
    case 0x58:        /* SYSS */
2070
        OMAP_RO_REG(addr);
2071
        break;
2072
    case 0x54:        /* SYSC */
2073
        s->syscontrol = value & 0x1d;
2074
        if (value & 2)
2075
            omap_uart_reset(s);
2076
        break;
2077
    case 0x5c:        /* WER */
2078
        s->wkup = value & 0x7f;
2079
        break;
2080
    case 0x60:        /* CFPS */
2081
        s->cfps = value & 0xff;
2082
        break;
2083
    default:
2084
        OMAP_BAD_REG(addr);
2085
    }
2086
}
2087

    
2088
static CPUReadMemoryFunc *omap_uart_readfn[] = {
2089
    omap_uart_read,
2090
    omap_uart_read,
2091
    omap_badwidth_read8,
2092
};
2093

    
2094
static CPUWriteMemoryFunc *omap_uart_writefn[] = {
2095
    omap_uart_write,
2096
    omap_uart_write,
2097
    omap_badwidth_write8,
2098
};
2099

    
2100
struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta,
2101
                qemu_irq irq, omap_clk fclk, omap_clk iclk,
2102
                qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr)
2103
{
2104
    target_phys_addr_t base = omap_l4_attach(ta, 0, 0);
2105
    struct omap_uart_s *s = omap_uart_init(base, irq,
2106
                    fclk, iclk, txdma, rxdma, chr);
2107
    int iomemtype = cpu_register_io_memory(0, omap_uart_readfn,
2108
                    omap_uart_writefn, s);
2109

    
2110
    s->ta = ta;
2111
    s->base = base;
2112

    
2113
    cpu_register_physical_memory(s->base + 0x20, 0x100, iomemtype);
2114

    
2115
    return s;
2116
}
2117

    
2118
/* MPU Clock/Reset/Power Mode Control */
2119
static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr)
2120
{
2121
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2122
    int offset = addr - s->clkm.mpu_base;
2123

    
2124
    switch (offset) {
2125
    case 0x00:        /* ARM_CKCTL */
2126
        return s->clkm.arm_ckctl;
2127

    
2128
    case 0x04:        /* ARM_IDLECT1 */
2129
        return s->clkm.arm_idlect1;
2130

    
2131
    case 0x08:        /* ARM_IDLECT2 */
2132
        return s->clkm.arm_idlect2;
2133

    
2134
    case 0x0c:        /* ARM_EWUPCT */
2135
        return s->clkm.arm_ewupct;
2136

    
2137
    case 0x10:        /* ARM_RSTCT1 */
2138
        return s->clkm.arm_rstct1;
2139

    
2140
    case 0x14:        /* ARM_RSTCT2 */
2141
        return s->clkm.arm_rstct2;
2142

    
2143
    case 0x18:        /* ARM_SYSST */
2144
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start;
2145

    
2146
    case 0x1c:        /* ARM_CKOUT1 */
2147
        return s->clkm.arm_ckout1;
2148

    
2149
    case 0x20:        /* ARM_CKOUT2 */
2150
        break;
2151
    }
2152

    
2153
    OMAP_BAD_REG(addr);
2154
    return 0;
2155
}
2156

    
2157
static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s,
2158
                uint16_t diff, uint16_t value)
2159
{
2160
    omap_clk clk;
2161

    
2162
    if (diff & (1 << 14)) {                                /* ARM_INTHCK_SEL */
2163
        if (value & (1 << 14))
2164
            /* Reserved */;
2165
        else {
2166
            clk = omap_findclk(s, "arminth_ck");
2167
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2168
        }
2169
    }
2170
    if (diff & (1 << 12)) {                                /* ARM_TIMXO */
2171
        clk = omap_findclk(s, "armtim_ck");
2172
        if (value & (1 << 12))
2173
            omap_clk_reparent(clk, omap_findclk(s, "clkin"));
2174
        else
2175
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2176
    }
2177
    /* XXX: en_dspck */
2178
    if (diff & (3 << 10)) {                                /* DSPMMUDIV */
2179
        clk = omap_findclk(s, "dspmmu_ck");
2180
        omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1);
2181
    }
2182
    if (diff & (3 << 8)) {                                /* TCDIV */
2183
        clk = omap_findclk(s, "tc_ck");
2184
        omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1);
2185
    }
2186
    if (diff & (3 << 6)) {                                /* DSPDIV */
2187
        clk = omap_findclk(s, "dsp_ck");
2188
        omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1);
2189
    }
2190
    if (diff & (3 << 4)) {                                /* ARMDIV */
2191
        clk = omap_findclk(s, "arm_ck");
2192
        omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1);
2193
    }
2194
    if (diff & (3 << 2)) {                                /* LCDDIV */
2195
        clk = omap_findclk(s, "lcd_ck");
2196
        omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1);
2197
    }
2198
    if (diff & (3 << 0)) {                                /* PERDIV */
2199
        clk = omap_findclk(s, "armper_ck");
2200
        omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1);
2201
    }
2202
}
2203

    
2204
static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s,
2205
                uint16_t diff, uint16_t value)
2206
{
2207
    omap_clk clk;
2208

    
2209
    if (value & (1 << 11))                                /* SETARM_IDLE */
2210
        cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
2211
    if (!(value & (1 << 10)))                                /* WKUP_MODE */
2212
        qemu_system_shutdown_request();        /* XXX: disable wakeup from IRQ */
2213

    
2214
#define SET_CANIDLE(clock, bit)                                \
2215
    if (diff & (1 << bit)) {                                \
2216
        clk = omap_findclk(s, clock);                        \
2217
        omap_clk_canidle(clk, (value >> bit) & 1);        \
2218
    }
2219
    SET_CANIDLE("mpuwd_ck", 0)                                /* IDLWDT_ARM */
2220
    SET_CANIDLE("armxor_ck", 1)                                /* IDLXORP_ARM */
2221
    SET_CANIDLE("mpuper_ck", 2)                                /* IDLPER_ARM */
2222
    SET_CANIDLE("lcd_ck", 3)                                /* IDLLCD_ARM */
2223
    SET_CANIDLE("lb_ck", 4)                                /* IDLLB_ARM */
2224
    SET_CANIDLE("hsab_ck", 5)                                /* IDLHSAB_ARM */
2225
    SET_CANIDLE("tipb_ck", 6)                                /* IDLIF_ARM */
2226
    SET_CANIDLE("dma_ck", 6)                                /* IDLIF_ARM */
2227
    SET_CANIDLE("tc_ck", 6)                                /* IDLIF_ARM */
2228
    SET_CANIDLE("dpll1", 7)                                /* IDLDPLL_ARM */
2229
    SET_CANIDLE("dpll2", 7)                                /* IDLDPLL_ARM */
2230
    SET_CANIDLE("dpll3", 7)                                /* IDLDPLL_ARM */
2231
    SET_CANIDLE("mpui_ck", 8)                                /* IDLAPI_ARM */
2232
    SET_CANIDLE("armtim_ck", 9)                                /* IDLTIM_ARM */
2233
}
2234

    
2235
static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s,
2236
                uint16_t diff, uint16_t value)
2237
{
2238
    omap_clk clk;
2239

    
2240
#define SET_ONOFF(clock, bit)                                \
2241
    if (diff & (1 << bit)) {                                \
2242
        clk = omap_findclk(s, clock);                        \
2243
        omap_clk_onoff(clk, (value >> bit) & 1);        \
2244
    }
2245
    SET_ONOFF("mpuwd_ck", 0)                                /* EN_WDTCK */
2246
    SET_ONOFF("armxor_ck", 1)                                /* EN_XORPCK */
2247
    SET_ONOFF("mpuper_ck", 2)                                /* EN_PERCK */
2248
    SET_ONOFF("lcd_ck", 3)                                /* EN_LCDCK */
2249
    SET_ONOFF("lb_ck", 4)                                /* EN_LBCK */
2250
    SET_ONOFF("hsab_ck", 5)                                /* EN_HSABCK */
2251
    SET_ONOFF("mpui_ck", 6)                                /* EN_APICK */
2252
    SET_ONOFF("armtim_ck", 7)                                /* EN_TIMCK */
2253
    SET_CANIDLE("dma_ck", 8)                                /* DMACK_REQ */
2254
    SET_ONOFF("arm_gpio_ck", 9)                                /* EN_GPIOCK */
2255
    SET_ONOFF("lbfree_ck", 10)                                /* EN_LBFREECK */
2256
}
2257

    
2258
static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s,
2259
                uint16_t diff, uint16_t value)
2260
{
2261
    omap_clk clk;
2262

    
2263
    if (diff & (3 << 4)) {                                /* TCLKOUT */
2264
        clk = omap_findclk(s, "tclk_out");
2265
        switch ((value >> 4) & 3) {
2266
        case 1:
2267
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
2268
            omap_clk_onoff(clk, 1);
2269
            break;
2270
        case 2:
2271
            omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
2272
            omap_clk_onoff(clk, 1);
2273
            break;
2274
        default:
2275
            omap_clk_onoff(clk, 0);
2276
        }
2277
    }
2278
    if (diff & (3 << 2)) {                                /* DCLKOUT */
2279
        clk = omap_findclk(s, "dclk_out");
2280
        switch ((value >> 2) & 3) {
2281
        case 0:
2282
            omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
2283
            break;
2284
        case 1:
2285
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
2286
            break;
2287
        case 2:
2288
            omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
2289
            break;
2290
        case 3:
2291
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2292
            break;
2293
        }
2294
    }
2295
    if (diff & (3 << 0)) {                                /* ACLKOUT */
2296
        clk = omap_findclk(s, "aclk_out");
2297
        switch ((value >> 0) & 3) {
2298
        case 1:
2299
            omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
2300
            omap_clk_onoff(clk, 1);
2301
            break;
2302
        case 2:
2303
            omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
2304
            omap_clk_onoff(clk, 1);
2305
            break;
2306
        case 3:
2307
            omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
2308
            omap_clk_onoff(clk, 1);
2309
            break;
2310
        default:
2311
            omap_clk_onoff(clk, 0);
2312
        }
2313
    }
2314
}
2315

    
2316
static void omap_clkm_write(void *opaque, target_phys_addr_t addr,
2317
                uint32_t value)
2318
{
2319
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2320
    int offset = addr - s->clkm.mpu_base;
2321
    uint16_t diff;
2322
    omap_clk clk;
2323
    static const char *clkschemename[8] = {
2324
        "fully synchronous", "fully asynchronous", "synchronous scalable",
2325
        "mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4",
2326
    };
2327

    
2328
    switch (offset) {
2329
    case 0x00:        /* ARM_CKCTL */
2330
        diff = s->clkm.arm_ckctl ^ value;
2331
        s->clkm.arm_ckctl = value & 0x7fff;
2332
        omap_clkm_ckctl_update(s, diff, value);
2333
        return;
2334

    
2335
    case 0x04:        /* ARM_IDLECT1 */
2336
        diff = s->clkm.arm_idlect1 ^ value;
2337
        s->clkm.arm_idlect1 = value & 0x0fff;
2338
        omap_clkm_idlect1_update(s, diff, value);
2339
        return;
2340

    
2341
    case 0x08:        /* ARM_IDLECT2 */
2342
        diff = s->clkm.arm_idlect2 ^ value;
2343
        s->clkm.arm_idlect2 = value & 0x07ff;
2344
        omap_clkm_idlect2_update(s, diff, value);
2345
        return;
2346

    
2347
    case 0x0c:        /* ARM_EWUPCT */
2348
        diff = s->clkm.arm_ewupct ^ value;
2349
        s->clkm.arm_ewupct = value & 0x003f;
2350
        return;
2351

    
2352
    case 0x10:        /* ARM_RSTCT1 */
2353
        diff = s->clkm.arm_rstct1 ^ value;
2354
        s->clkm.arm_rstct1 = value & 0x0007;
2355
        if (value & 9) {
2356
            qemu_system_reset_request();
2357
            s->clkm.cold_start = 0xa;
2358
        }
2359
        if (diff & ~value & 4) {                                /* DSP_RST */
2360
            omap_mpui_reset(s);
2361
            omap_tipb_bridge_reset(s->private_tipb);
2362
            omap_tipb_bridge_reset(s->public_tipb);
2363
        }
2364
        if (diff & 2) {                                                /* DSP_EN */
2365
            clk = omap_findclk(s, "dsp_ck");
2366
            omap_clk_canidle(clk, (~value >> 1) & 1);
2367
        }
2368
        return;
2369

    
2370
    case 0x14:        /* ARM_RSTCT2 */
2371
        s->clkm.arm_rstct2 = value & 0x0001;
2372
        return;
2373

    
2374
    case 0x18:        /* ARM_SYSST */
2375
        if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) {
2376
            s->clkm.clocking_scheme = (value >> 11) & 7;
2377
            printf("%s: clocking scheme set to %s\n", __FUNCTION__,
2378
                            clkschemename[s->clkm.clocking_scheme]);
2379
        }
2380
        s->clkm.cold_start &= value & 0x3f;
2381
        return;
2382

    
2383
    case 0x1c:        /* ARM_CKOUT1 */
2384
        diff = s->clkm.arm_ckout1 ^ value;
2385
        s->clkm.arm_ckout1 = value & 0x003f;
2386
        omap_clkm_ckout1_update(s, diff, value);
2387
        return;
2388

    
2389
    case 0x20:        /* ARM_CKOUT2 */
2390
    default:
2391
        OMAP_BAD_REG(addr);
2392
    }
2393
}
2394

    
2395
static CPUReadMemoryFunc *omap_clkm_readfn[] = {
2396
    omap_badwidth_read16,
2397
    omap_clkm_read,
2398
    omap_badwidth_read16,
2399
};
2400

    
2401
static CPUWriteMemoryFunc *omap_clkm_writefn[] = {
2402
    omap_badwidth_write16,
2403
    omap_clkm_write,
2404
    omap_badwidth_write16,
2405
};
2406

    
2407
static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr)
2408
{
2409
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2410
    int offset = addr - s->clkm.dsp_base;
2411

    
2412
    switch (offset) {
2413
    case 0x04:        /* DSP_IDLECT1 */
2414
        return s->clkm.dsp_idlect1;
2415

    
2416
    case 0x08:        /* DSP_IDLECT2 */
2417
        return s->clkm.dsp_idlect2;
2418

    
2419
    case 0x14:        /* DSP_RSTCT2 */
2420
        return s->clkm.dsp_rstct2;
2421

    
2422
    case 0x18:        /* DSP_SYSST */
2423
        return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start |
2424
                (s->env->halted << 6);        /* Quite useless... */
2425
    }
2426

    
2427
    OMAP_BAD_REG(addr);
2428
    return 0;
2429
}
2430

    
2431
static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s,
2432
                uint16_t diff, uint16_t value)
2433
{
2434
    omap_clk clk;
2435

    
2436
    SET_CANIDLE("dspxor_ck", 1);                        /* IDLXORP_DSP */
2437
}
2438

    
2439
static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s,
2440
                uint16_t diff, uint16_t value)
2441
{
2442
    omap_clk clk;
2443

    
2444
    SET_ONOFF("dspxor_ck", 1);                                /* EN_XORPCK */
2445
}
2446

    
2447
static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr,
2448
                uint32_t value)
2449
{
2450
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
2451
    int offset = addr - s->clkm.dsp_base;
2452
    uint16_t diff;
2453

    
2454
    switch (offset) {
2455
    case 0x04:        /* DSP_IDLECT1 */
2456
        diff = s->clkm.dsp_idlect1 ^ value;
2457
        s->clkm.dsp_idlect1 = value & 0x01f7;
2458
        omap_clkdsp_idlect1_update(s, diff, value);
2459
        break;
2460

    
2461
    case 0x08:        /* DSP_IDLECT2 */
2462
        s->clkm.dsp_idlect2 = value & 0x0037;
2463
        diff = s->clkm.dsp_idlect1 ^ value;
2464
        omap_clkdsp_idlect2_update(s, diff, value);
2465
        break;
2466

    
2467
    case 0x14:        /* DSP_RSTCT2 */
2468
        s->clkm.dsp_rstct2 = value & 0x0001;
2469
        break;
2470

    
2471
    case 0x18:        /* DSP_SYSST */
2472
        s->clkm.cold_start &= value & 0x3f;
2473
        break;
2474

    
2475
    default:
2476
        OMAP_BAD_REG(addr);
2477
    }
2478
}
2479

    
2480
static CPUReadMemoryFunc *omap_clkdsp_readfn[] = {
2481
    omap_badwidth_read16,
2482
    omap_clkdsp_read,
2483
    omap_badwidth_read16,
2484
};
2485

    
2486
static CPUWriteMemoryFunc *omap_clkdsp_writefn[] = {
2487
    omap_badwidth_write16,
2488
    omap_clkdsp_write,
2489
    omap_badwidth_write16,
2490
};
2491

    
2492
static void omap_clkm_reset(struct omap_mpu_state_s *s)
2493
{
2494
    if (s->wdt && s->wdt->reset)
2495
        s->clkm.cold_start = 0x6;
2496
    s->clkm.clocking_scheme = 0;
2497
    omap_clkm_ckctl_update(s, ~0, 0x3000);
2498
    s->clkm.arm_ckctl = 0x3000;
2499
    omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400);
2500
    s->clkm.arm_idlect1 = 0x0400;
2501
    omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100);
2502
    s->clkm.arm_idlect2 = 0x0100;
2503
    s->clkm.arm_ewupct = 0x003f;
2504
    s->clkm.arm_rstct1 = 0x0000;
2505
    s->clkm.arm_rstct2 = 0x0000;
2506
    s->clkm.arm_ckout1 = 0x0015;
2507
    s->clkm.dpll1_mode = 0x2002;
2508
    omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040);
2509
    s->clkm.dsp_idlect1 = 0x0040;
2510
    omap_clkdsp_idlect2_update(s, ~0, 0x0000);
2511
    s->clkm.dsp_idlect2 = 0x0000;
2512
    s->clkm.dsp_rstct2 = 0x0000;
2513
}
2514

    
2515
static void omap_clkm_init(target_phys_addr_t mpu_base,
2516
                target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
2517
{
2518
    int iomemtype[2] = {
2519
        cpu_register_io_memory(0, omap_clkm_readfn, omap_clkm_writefn, s),
2520
        cpu_register_io_memory(0, omap_clkdsp_readfn, omap_clkdsp_writefn, s),
2521
    };
2522

    
2523
    s->clkm.mpu_base = mpu_base;
2524
    s->clkm.dsp_base = dsp_base;
2525
    s->clkm.arm_idlect1 = 0x03ff;
2526
    s->clkm.arm_idlect2 = 0x0100;
2527
    s->clkm.dsp_idlect1 = 0x0002;
2528
    omap_clkm_reset(s);
2529
    s->clkm.cold_start = 0x3a;
2530

    
2531
    cpu_register_physical_memory(s->clkm.mpu_base, 0x100, iomemtype[0]);
2532
    cpu_register_physical_memory(s->clkm.dsp_base, 0x1000, iomemtype[1]);
2533
}
2534

    
2535
/* MPU I/O */
2536
struct omap_mpuio_s {
2537
    target_phys_addr_t base;
2538
    qemu_irq irq;
2539
    qemu_irq kbd_irq;
2540
    qemu_irq *in;
2541
    qemu_irq handler[16];
2542
    qemu_irq wakeup;
2543

    
2544
    uint16_t inputs;
2545
    uint16_t outputs;
2546
    uint16_t dir;
2547
    uint16_t edge;
2548
    uint16_t mask;
2549
    uint16_t ints;
2550

    
2551
    uint16_t debounce;
2552
    uint16_t latch;
2553
    uint8_t event;
2554

    
2555
    uint8_t buttons[5];
2556
    uint8_t row_latch;
2557
    uint8_t cols;
2558
    int kbd_mask;
2559
    int clk;
2560
};
2561

    
2562
static void omap_mpuio_set(void *opaque, int line, int level)
2563
{
2564
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2565
    uint16_t prev = s->inputs;
2566

    
2567
    if (level)
2568
        s->inputs |= 1 << line;
2569
    else
2570
        s->inputs &= ~(1 << line);
2571

    
2572
    if (((1 << line) & s->dir & ~s->mask) && s->clk) {
2573
        if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
2574
            s->ints |= 1 << line;
2575
            qemu_irq_raise(s->irq);
2576
            /* TODO: wakeup */
2577
        }
2578
        if ((s->event & (1 << 0)) &&                /* SET_GPIO_EVENT_MODE */
2579
                (s->event >> 1) == line)        /* PIN_SELECT */
2580
            s->latch = s->inputs;
2581
    }
2582
}
2583

    
2584
static void omap_mpuio_kbd_update(struct omap_mpuio_s *s)
2585
{
2586
    int i;
2587
    uint8_t *row, rows = 0, cols = ~s->cols;
2588

    
2589
    for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1)
2590
        if (*row & cols)
2591
            rows |= i;
2592

    
2593
    qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk);
2594
    s->row_latch = ~rows;
2595
}
2596

    
2597
static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr)
2598
{
2599
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2600
    int offset = addr & OMAP_MPUI_REG_MASK;
2601
    uint16_t ret;
2602

    
2603
    switch (offset) {
2604
    case 0x00:        /* INPUT_LATCH */
2605
        return s->inputs;
2606

    
2607
    case 0x04:        /* OUTPUT_REG */
2608
        return s->outputs;
2609

    
2610
    case 0x08:        /* IO_CNTL */
2611
        return s->dir;
2612

    
2613
    case 0x10:        /* KBR_LATCH */
2614
        return s->row_latch;
2615

    
2616
    case 0x14:        /* KBC_REG */
2617
        return s->cols;
2618

    
2619
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2620
        return s->event;
2621

    
2622
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2623
        return s->edge;
2624

    
2625
    case 0x20:        /* KBD_INT */
2626
        return (~s->row_latch & 0x1f) && !s->kbd_mask;
2627

    
2628
    case 0x24:        /* GPIO_INT */
2629
        ret = s->ints;
2630
        s->ints &= s->mask;
2631
        if (ret)
2632
            qemu_irq_lower(s->irq);
2633
        return ret;
2634

    
2635
    case 0x28:        /* KBD_MASKIT */
2636
        return s->kbd_mask;
2637

    
2638
    case 0x2c:        /* GPIO_MASKIT */
2639
        return s->mask;
2640

    
2641
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2642
        return s->debounce;
2643

    
2644
    case 0x34:        /* GPIO_LATCH_REG */
2645
        return s->latch;
2646
    }
2647

    
2648
    OMAP_BAD_REG(addr);
2649
    return 0;
2650
}
2651

    
2652
static void omap_mpuio_write(void *opaque, target_phys_addr_t addr,
2653
                uint32_t value)
2654
{
2655
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2656
    int offset = addr & OMAP_MPUI_REG_MASK;
2657
    uint16_t diff;
2658
    int ln;
2659

    
2660
    switch (offset) {
2661
    case 0x04:        /* OUTPUT_REG */
2662
        diff = (s->outputs ^ value) & ~s->dir;
2663
        s->outputs = value;
2664
        while ((ln = ffs(diff))) {
2665
            ln --;
2666
            if (s->handler[ln])
2667
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2668
            diff &= ~(1 << ln);
2669
        }
2670
        break;
2671

    
2672
    case 0x08:        /* IO_CNTL */
2673
        diff = s->outputs & (s->dir ^ value);
2674
        s->dir = value;
2675

    
2676
        value = s->outputs & ~s->dir;
2677
        while ((ln = ffs(diff))) {
2678
            ln --;
2679
            if (s->handler[ln])
2680
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2681
            diff &= ~(1 << ln);
2682
        }
2683
        break;
2684

    
2685
    case 0x14:        /* KBC_REG */
2686
        s->cols = value;
2687
        omap_mpuio_kbd_update(s);
2688
        break;
2689

    
2690
    case 0x18:        /* GPIO_EVENT_MODE_REG */
2691
        s->event = value & 0x1f;
2692
        break;
2693

    
2694
    case 0x1c:        /* GPIO_INT_EDGE_REG */
2695
        s->edge = value;
2696
        break;
2697

    
2698
    case 0x28:        /* KBD_MASKIT */
2699
        s->kbd_mask = value & 1;
2700
        omap_mpuio_kbd_update(s);
2701
        break;
2702

    
2703
    case 0x2c:        /* GPIO_MASKIT */
2704
        s->mask = value;
2705
        break;
2706

    
2707
    case 0x30:        /* GPIO_DEBOUNCING_REG */
2708
        s->debounce = value & 0x1ff;
2709
        break;
2710

    
2711
    case 0x00:        /* INPUT_LATCH */
2712
    case 0x10:        /* KBR_LATCH */
2713
    case 0x20:        /* KBD_INT */
2714
    case 0x24:        /* GPIO_INT */
2715
    case 0x34:        /* GPIO_LATCH_REG */
2716
        OMAP_RO_REG(addr);
2717
        return;
2718

    
2719
    default:
2720
        OMAP_BAD_REG(addr);
2721
        return;
2722
    }
2723
}
2724

    
2725
static CPUReadMemoryFunc *omap_mpuio_readfn[] = {
2726
    omap_badwidth_read16,
2727
    omap_mpuio_read,
2728
    omap_badwidth_read16,
2729
};
2730

    
2731
static CPUWriteMemoryFunc *omap_mpuio_writefn[] = {
2732
    omap_badwidth_write16,
2733
    omap_mpuio_write,
2734
    omap_badwidth_write16,
2735
};
2736

    
2737
static void omap_mpuio_reset(struct omap_mpuio_s *s)
2738
{
2739
    s->inputs = 0;
2740
    s->outputs = 0;
2741
    s->dir = ~0;
2742
    s->event = 0;
2743
    s->edge = 0;
2744
    s->kbd_mask = 0;
2745
    s->mask = 0;
2746
    s->debounce = 0;
2747
    s->latch = 0;
2748
    s->ints = 0;
2749
    s->row_latch = 0x1f;
2750
    s->clk = 1;
2751
}
2752

    
2753
static void omap_mpuio_onoff(void *opaque, int line, int on)
2754
{
2755
    struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque;
2756

    
2757
    s->clk = on;
2758
    if (on)
2759
        omap_mpuio_kbd_update(s);
2760
}
2761

    
2762
struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
2763
                qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup,
2764
                omap_clk clk)
2765
{
2766
    int iomemtype;
2767
    struct omap_mpuio_s *s = (struct omap_mpuio_s *)
2768
            qemu_mallocz(sizeof(struct omap_mpuio_s));
2769

    
2770
    s->base = base;
2771
    s->irq = gpio_int;
2772
    s->kbd_irq = kbd_int;
2773
    s->wakeup = wakeup;
2774
    s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
2775
    omap_mpuio_reset(s);
2776

    
2777
    iomemtype = cpu_register_io_memory(0, omap_mpuio_readfn,
2778
                    omap_mpuio_writefn, s);
2779
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
2780

    
2781
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]);
2782

    
2783
    return s;
2784
}
2785

    
2786
qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
2787
{
2788
    return s->in;
2789
}
2790

    
2791
void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler)
2792
{
2793
    if (line >= 16 || line < 0)
2794
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2795
    s->handler[line] = handler;
2796
}
2797

    
2798
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down)
2799
{
2800
    if (row >= 5 || row < 0)
2801
        cpu_abort(cpu_single_env, "%s: No key %i-%i\n",
2802
                        __FUNCTION__, col, row);
2803

    
2804
    if (down)
2805
        s->buttons[row] |= 1 << col;
2806
    else
2807
        s->buttons[row] &= ~(1 << col);
2808

    
2809
    omap_mpuio_kbd_update(s);
2810
}
2811

    
2812
/* General-Purpose I/O */
2813
struct omap_gpio_s {
2814
    target_phys_addr_t base;
2815
    qemu_irq irq;
2816
    qemu_irq *in;
2817
    qemu_irq handler[16];
2818

    
2819
    uint16_t inputs;
2820
    uint16_t outputs;
2821
    uint16_t dir;
2822
    uint16_t edge;
2823
    uint16_t mask;
2824
    uint16_t ints;
2825
    uint16_t pins;
2826
};
2827

    
2828
static void omap_gpio_set(void *opaque, int line, int level)
2829
{
2830
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2831
    uint16_t prev = s->inputs;
2832

    
2833
    if (level)
2834
        s->inputs |= 1 << line;
2835
    else
2836
        s->inputs &= ~(1 << line);
2837

    
2838
    if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
2839
                    (1 << line) & s->dir & ~s->mask) {
2840
        s->ints |= 1 << line;
2841
        qemu_irq_raise(s->irq);
2842
    }
2843
}
2844

    
2845
static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr)
2846
{
2847
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2848
    int offset = addr & OMAP_MPUI_REG_MASK;
2849

    
2850
    switch (offset) {
2851
    case 0x00:        /* DATA_INPUT */
2852
        return s->inputs & s->pins;
2853

    
2854
    case 0x04:        /* DATA_OUTPUT */
2855
        return s->outputs;
2856

    
2857
    case 0x08:        /* DIRECTION_CONTROL */
2858
        return s->dir;
2859

    
2860
    case 0x0c:        /* INTERRUPT_CONTROL */
2861
        return s->edge;
2862

    
2863
    case 0x10:        /* INTERRUPT_MASK */
2864
        return s->mask;
2865

    
2866
    case 0x14:        /* INTERRUPT_STATUS */
2867
        return s->ints;
2868

    
2869
    case 0x18:        /* PIN_CONTROL (not in OMAP310) */
2870
        OMAP_BAD_REG(addr);
2871
        return s->pins;
2872
    }
2873

    
2874
    OMAP_BAD_REG(addr);
2875
    return 0;
2876
}
2877

    
2878
static void omap_gpio_write(void *opaque, target_phys_addr_t addr,
2879
                uint32_t value)
2880
{
2881
    struct omap_gpio_s *s = (struct omap_gpio_s *) opaque;
2882
    int offset = addr & OMAP_MPUI_REG_MASK;
2883
    uint16_t diff;
2884
    int ln;
2885

    
2886
    switch (offset) {
2887
    case 0x00:        /* DATA_INPUT */
2888
        OMAP_RO_REG(addr);
2889
        return;
2890

    
2891
    case 0x04:        /* DATA_OUTPUT */
2892
        diff = (s->outputs ^ value) & ~s->dir;
2893
        s->outputs = value;
2894
        while ((ln = ffs(diff))) {
2895
            ln --;
2896
            if (s->handler[ln])
2897
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2898
            diff &= ~(1 << ln);
2899
        }
2900
        break;
2901

    
2902
    case 0x08:        /* DIRECTION_CONTROL */
2903
        diff = s->outputs & (s->dir ^ value);
2904
        s->dir = value;
2905

    
2906
        value = s->outputs & ~s->dir;
2907
        while ((ln = ffs(diff))) {
2908
            ln --;
2909
            if (s->handler[ln])
2910
                qemu_set_irq(s->handler[ln], (value >> ln) & 1);
2911
            diff &= ~(1 << ln);
2912
        }
2913
        break;
2914

    
2915
    case 0x0c:        /* INTERRUPT_CONTROL */
2916
        s->edge = value;
2917
        break;
2918

    
2919
    case 0x10:        /* INTERRUPT_MASK */
2920
        s->mask = value;
2921
        break;
2922

    
2923
    case 0x14:        /* INTERRUPT_STATUS */
2924
        s->ints &= ~value;
2925
        if (!s->ints)
2926
            qemu_irq_lower(s->irq);
2927
        break;
2928

    
2929
    case 0x18:        /* PIN_CONTROL (not in OMAP310 TRM) */
2930
        OMAP_BAD_REG(addr);
2931
        s->pins = value;
2932
        break;
2933

    
2934
    default:
2935
        OMAP_BAD_REG(addr);
2936
        return;
2937
    }
2938
}
2939

    
2940
/* *Some* sources say the memory region is 32-bit.  */
2941
static CPUReadMemoryFunc *omap_gpio_readfn[] = {
2942
    omap_badwidth_read16,
2943
    omap_gpio_read,
2944
    omap_badwidth_read16,
2945
};
2946

    
2947
static CPUWriteMemoryFunc *omap_gpio_writefn[] = {
2948
    omap_badwidth_write16,
2949
    omap_gpio_write,
2950
    omap_badwidth_write16,
2951
};
2952

    
2953
static void omap_gpio_reset(struct omap_gpio_s *s)
2954
{
2955
    s->inputs = 0;
2956
    s->outputs = ~0;
2957
    s->dir = ~0;
2958
    s->edge = ~0;
2959
    s->mask = ~0;
2960
    s->ints = 0;
2961
    s->pins = ~0;
2962
}
2963

    
2964
struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
2965
                qemu_irq irq, omap_clk clk)
2966
{
2967
    int iomemtype;
2968
    struct omap_gpio_s *s = (struct omap_gpio_s *)
2969
            qemu_mallocz(sizeof(struct omap_gpio_s));
2970

    
2971
    s->base = base;
2972
    s->irq = irq;
2973
    s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
2974
    omap_gpio_reset(s);
2975

    
2976
    iomemtype = cpu_register_io_memory(0, omap_gpio_readfn,
2977
                    omap_gpio_writefn, s);
2978
    cpu_register_physical_memory(s->base, 0x1000, iomemtype);
2979

    
2980
    return s;
2981
}
2982

    
2983
qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
2984
{
2985
    return s->in;
2986
}
2987

    
2988
void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler)
2989
{
2990
    if (line >= 16 || line < 0)
2991
        cpu_abort(cpu_single_env, "%s: No GPIO line %i\n", __FUNCTION__, line);
2992
    s->handler[line] = handler;
2993
}
2994

    
2995
/* MicroWire Interface */
2996
struct omap_uwire_s {
2997
    target_phys_addr_t base;
2998
    qemu_irq txirq;
2999
    qemu_irq rxirq;
3000
    qemu_irq txdrq;
3001

    
3002
    uint16_t txbuf;
3003
    uint16_t rxbuf;
3004
    uint16_t control;
3005
    uint16_t setup[5];
3006

    
3007
    struct uwire_slave_s *chip[4];
3008
};
3009

    
3010
static void omap_uwire_transfer_start(struct omap_uwire_s *s)
3011
{
3012
    int chipselect = (s->control >> 10) & 3;                /* INDEX */
3013
    struct uwire_slave_s *slave = s->chip[chipselect];
3014

    
3015
    if ((s->control >> 5) & 0x1f) {                        /* NB_BITS_WR */
3016
        if (s->control & (1 << 12))                        /* CS_CMD */
3017
            if (slave && slave->send)
3018
                slave->send(slave->opaque,
3019
                                s->txbuf >> (16 - ((s->control >> 5) & 0x1f)));
3020
        s->control &= ~(1 << 14);                        /* CSRB */
3021
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3022
         * a DRQ.  When is the level IRQ supposed to be reset?  */
3023
    }
3024

    
3025
    if ((s->control >> 0) & 0x1f) {                        /* NB_BITS_RD */
3026
        if (s->control & (1 << 12))                        /* CS_CMD */
3027
            if (slave && slave->receive)
3028
                s->rxbuf = slave->receive(slave->opaque);
3029
        s->control |= 1 << 15;                                /* RDRB */
3030
        /* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
3031
         * a DRQ.  When is the level IRQ supposed to be reset?  */
3032
    }
3033
}
3034

    
3035
static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr)
3036
{
3037
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3038
    int offset = addr & OMAP_MPUI_REG_MASK;
3039

    
3040
    switch (offset) {
3041
    case 0x00:        /* RDR */
3042
        s->control &= ~(1 << 15);                        /* RDRB */
3043
        return s->rxbuf;
3044

    
3045
    case 0x04:        /* CSR */
3046
        return s->control;
3047

    
3048
    case 0x08:        /* SR1 */
3049
        return s->setup[0];
3050
    case 0x0c:        /* SR2 */
3051
        return s->setup[1];
3052
    case 0x10:        /* SR3 */
3053
        return s->setup[2];
3054
    case 0x14:        /* SR4 */
3055
        return s->setup[3];
3056
    case 0x18:        /* SR5 */
3057
        return s->setup[4];
3058
    }
3059

    
3060
    OMAP_BAD_REG(addr);
3061
    return 0;
3062
}
3063

    
3064
static void omap_uwire_write(void *opaque, target_phys_addr_t addr,
3065
                uint32_t value)
3066
{
3067
    struct omap_uwire_s *s = (struct omap_uwire_s *) opaque;
3068
    int offset = addr & OMAP_MPUI_REG_MASK;
3069

    
3070
    switch (offset) {
3071
    case 0x00:        /* TDR */
3072
        s->txbuf = value;                                /* TD */
3073
        if ((s->setup[4] & (1 << 2)) &&                        /* AUTO_TX_EN */
3074
                        ((s->setup[4] & (1 << 3)) ||        /* CS_TOGGLE_TX_EN */
3075
                         (s->control & (1 << 12)))) {        /* CS_CMD */
3076
            s->control |= 1 << 14;                        /* CSRB */
3077
            omap_uwire_transfer_start(s);
3078
        }
3079
        break;
3080

    
3081
    case 0x04:        /* CSR */
3082
        s->control = value & 0x1fff;
3083
        if (value & (1 << 13))                                /* START */
3084
            omap_uwire_transfer_start(s);
3085
        break;
3086

    
3087
    case 0x08:        /* SR1 */
3088
        s->setup[0] = value & 0x003f;
3089
        break;
3090

    
3091
    case 0x0c:        /* SR2 */
3092
        s->setup[1] = value & 0x0fc0;
3093
        break;
3094

    
3095
    case 0x10:        /* SR3 */
3096
        s->setup[2] = value & 0x0003;
3097
        break;
3098

    
3099
    case 0x14:        /* SR4 */
3100
        s->setup[3] = value & 0x0001;
3101
        break;
3102

    
3103
    case 0x18:        /* SR5 */
3104
        s->setup[4] = value & 0x000f;
3105
        break;
3106

    
3107
    default:
3108
        OMAP_BAD_REG(addr);
3109
        return;
3110
    }
3111
}
3112

    
3113
static CPUReadMemoryFunc *omap_uwire_readfn[] = {
3114
    omap_badwidth_read16,
3115
    omap_uwire_read,
3116
    omap_badwidth_read16,
3117
};
3118

    
3119
static CPUWriteMemoryFunc *omap_uwire_writefn[] = {
3120
    omap_badwidth_write16,
3121
    omap_uwire_write,
3122
    omap_badwidth_write16,
3123
};
3124

    
3125
static void omap_uwire_reset(struct omap_uwire_s *s)
3126
{
3127
    s->control = 0;
3128
    s->setup[0] = 0;
3129
    s->setup[1] = 0;
3130
    s->setup[2] = 0;
3131
    s->setup[3] = 0;
3132
    s->setup[4] = 0;
3133
}
3134

    
3135
struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
3136
                qemu_irq *irq, qemu_irq dma, omap_clk clk)
3137
{
3138
    int iomemtype;
3139
    struct omap_uwire_s *s = (struct omap_uwire_s *)
3140
            qemu_mallocz(sizeof(struct omap_uwire_s));
3141

    
3142
    s->base = base;
3143
    s->txirq = irq[0];
3144
    s->rxirq = irq[1];
3145
    s->txdrq = dma;
3146
    omap_uwire_reset(s);
3147

    
3148
    iomemtype = cpu_register_io_memory(0, omap_uwire_readfn,
3149
                    omap_uwire_writefn, s);
3150
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
3151

    
3152
    return s;
3153
}
3154

    
3155
void omap_uwire_attach(struct omap_uwire_s *s,
3156
                struct uwire_slave_s *slave, int chipselect)
3157
{
3158
    if (chipselect < 0 || chipselect > 3) {
3159
        fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
3160
        exit(-1);
3161
    }
3162

    
3163
    s->chip[chipselect] = slave;
3164
}
3165

    
3166
/* Pseudonoise Pulse-Width Light Modulator */
3167
static void omap_pwl_update(struct omap_mpu_state_s *s)
3168
{
3169
    int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0;
3170

    
3171
    if (output != s->pwl.output) {
3172
        s->pwl.output = output;
3173
        printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
3174
    }
3175
}
3176

    
3177
static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr)
3178
{
3179
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3180
    int offset = addr & OMAP_MPUI_REG_MASK;
3181

    
3182
    switch (offset) {
3183
    case 0x00:        /* PWL_LEVEL */
3184
        return s->pwl.level;
3185
    case 0x04:        /* PWL_CTRL */
3186
        return s->pwl.enable;
3187
    }
3188
    OMAP_BAD_REG(addr);
3189
    return 0;
3190
}
3191

    
3192
static void omap_pwl_write(void *opaque, target_phys_addr_t addr,
3193
                uint32_t value)
3194
{
3195
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3196
    int offset = addr & OMAP_MPUI_REG_MASK;
3197

    
3198
    switch (offset) {
3199
    case 0x00:        /* PWL_LEVEL */
3200
        s->pwl.level = value;
3201
        omap_pwl_update(s);
3202
        break;
3203
    case 0x04:        /* PWL_CTRL */
3204
        s->pwl.enable = value & 1;
3205
        omap_pwl_update(s);
3206
        break;
3207
    default:
3208
        OMAP_BAD_REG(addr);
3209
        return;
3210
    }
3211
}
3212

    
3213
static CPUReadMemoryFunc *omap_pwl_readfn[] = {
3214
    omap_pwl_read,
3215
    omap_badwidth_read8,
3216
    omap_badwidth_read8,
3217
};
3218

    
3219
static CPUWriteMemoryFunc *omap_pwl_writefn[] = {
3220
    omap_pwl_write,
3221
    omap_badwidth_write8,
3222
    omap_badwidth_write8,
3223
};
3224

    
3225
static void omap_pwl_reset(struct omap_mpu_state_s *s)
3226
{
3227
    s->pwl.output = 0;
3228
    s->pwl.level = 0;
3229
    s->pwl.enable = 0;
3230
    s->pwl.clk = 1;
3231
    omap_pwl_update(s);
3232
}
3233

    
3234
static void omap_pwl_clk_update(void *opaque, int line, int on)
3235
{
3236
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3237

    
3238
    s->pwl.clk = on;
3239
    omap_pwl_update(s);
3240
}
3241

    
3242
static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3243
                omap_clk clk)
3244
{
3245
    int iomemtype;
3246

    
3247
    omap_pwl_reset(s);
3248

    
3249
    iomemtype = cpu_register_io_memory(0, omap_pwl_readfn,
3250
                    omap_pwl_writefn, s);
3251
    cpu_register_physical_memory(base, 0x800, iomemtype);
3252

    
3253
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]);
3254
}
3255

    
3256
/* Pulse-Width Tone module */
3257
static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr)
3258
{
3259
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3260
    int offset = addr & OMAP_MPUI_REG_MASK;
3261

    
3262
    switch (offset) {
3263
    case 0x00:        /* FRC */
3264
        return s->pwt.frc;
3265
    case 0x04:        /* VCR */
3266
        return s->pwt.vrc;
3267
    case 0x08:        /* GCR */
3268
        return s->pwt.gcr;
3269
    }
3270
    OMAP_BAD_REG(addr);
3271
    return 0;
3272
}
3273

    
3274
static void omap_pwt_write(void *opaque, target_phys_addr_t addr,
3275
                uint32_t value)
3276
{
3277
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque;
3278
    int offset = addr & OMAP_MPUI_REG_MASK;
3279

    
3280
    switch (offset) {
3281
    case 0x00:        /* FRC */
3282
        s->pwt.frc = value & 0x3f;
3283
        break;
3284
    case 0x04:        /* VRC */
3285
        if ((value ^ s->pwt.vrc) & 1) {
3286
            if (value & 1)
3287
                printf("%s: %iHz buzz on\n", __FUNCTION__, (int)
3288
                                /* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
3289
                                ((omap_clk_getrate(s->pwt.clk) >> 3) /
3290
                                 /* Pre-multiplexer divider */
3291
                                 ((s->pwt.gcr & 2) ? 1 : 154) /
3292
                                 /* Octave multiplexer */
3293
                                 (2 << (value & 3)) *
3294
                                 /* 101/107 divider */
3295
                                 ((value & (1 << 2)) ? 101 : 107) *
3296
                                 /*  49/55 divider */
3297
                                 ((value & (1 << 3)) ?  49 : 55) *
3298
                                 /*  50/63 divider */
3299
                                 ((value & (1 << 4)) ?  50 : 63) *
3300
                                 /*  80/127 divider */
3301
                                 ((value & (1 << 5)) ?  80 : 127) /
3302
                                 (107 * 55 * 63 * 127)));
3303
            else
3304
                printf("%s: silence!\n", __FUNCTION__);
3305
        }
3306
        s->pwt.vrc = value & 0x7f;
3307
        break;
3308
    case 0x08:        /* GCR */
3309
        s->pwt.gcr = value & 3;
3310
        break;
3311
    default:
3312
        OMAP_BAD_REG(addr);
3313
        return;
3314
    }
3315
}
3316

    
3317
static CPUReadMemoryFunc *omap_pwt_readfn[] = {
3318
    omap_pwt_read,
3319
    omap_badwidth_read8,
3320
    omap_badwidth_read8,
3321
};
3322

    
3323
static CPUWriteMemoryFunc *omap_pwt_writefn[] = {
3324
    omap_pwt_write,
3325
    omap_badwidth_write8,
3326
    omap_badwidth_write8,
3327
};
3328

    
3329
static void omap_pwt_reset(struct omap_mpu_state_s *s)
3330
{
3331
    s->pwt.frc = 0;
3332
    s->pwt.vrc = 0;
3333
    s->pwt.gcr = 0;
3334
}
3335

    
3336
static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s,
3337
                omap_clk clk)
3338
{
3339
    int iomemtype;
3340

    
3341
    s->pwt.clk = clk;
3342
    omap_pwt_reset(s);
3343

    
3344
    iomemtype = cpu_register_io_memory(0, omap_pwt_readfn,
3345
                    omap_pwt_writefn, s);
3346
    cpu_register_physical_memory(base, 0x800, iomemtype);
3347
}
3348

    
3349
/* Real-time Clock module */
3350
struct omap_rtc_s {
3351
    target_phys_addr_t base;
3352
    qemu_irq irq;
3353
    qemu_irq alarm;
3354
    QEMUTimer *clk;
3355

    
3356
    uint8_t interrupts;
3357
    uint8_t status;
3358
    int16_t comp_reg;
3359
    int running;
3360
    int pm_am;
3361
    int auto_comp;
3362
    int round;
3363
    struct tm alarm_tm;
3364
    time_t alarm_ti;
3365

    
3366
    struct tm current_tm;
3367
    time_t ti;
3368
    uint64_t tick;
3369
};
3370

    
3371
static void omap_rtc_interrupts_update(struct omap_rtc_s *s)
3372
{
3373
    /* s->alarm is level-triggered */
3374
    qemu_set_irq(s->alarm, (s->status >> 6) & 1);
3375
}
3376

    
3377
static void omap_rtc_alarm_update(struct omap_rtc_s *s)
3378
{
3379
    s->alarm_ti = mktime(&s->alarm_tm);
3380
    if (s->alarm_ti == -1)
3381
        printf("%s: conversion failed\n", __FUNCTION__);
3382
}
3383

    
3384
static inline uint8_t omap_rtc_bcd(int num)
3385
{
3386
    return ((num / 10) << 4) | (num % 10);
3387
}
3388

    
3389
static inline int omap_rtc_bin(uint8_t num)
3390
{
3391
    return (num & 15) + 10 * (num >> 4);
3392
}
3393

    
3394
static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr)
3395
{
3396
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3397
    int offset = addr & OMAP_MPUI_REG_MASK;
3398
    uint8_t i;
3399

    
3400
    switch (offset) {
3401
    case 0x00:        /* SECONDS_REG */
3402
        return omap_rtc_bcd(s->current_tm.tm_sec);
3403

    
3404
    case 0x04:        /* MINUTES_REG */
3405
        return omap_rtc_bcd(s->current_tm.tm_min);
3406

    
3407
    case 0x08:        /* HOURS_REG */
3408
        if (s->pm_am)
3409
            return ((s->current_tm.tm_hour > 11) << 7) |
3410
                    omap_rtc_bcd(((s->current_tm.tm_hour - 1) % 12) + 1);
3411
        else
3412
            return omap_rtc_bcd(s->current_tm.tm_hour);
3413

    
3414
    case 0x0c:        /* DAYS_REG */
3415
        return omap_rtc_bcd(s->current_tm.tm_mday);
3416

    
3417
    case 0x10:        /* MONTHS_REG */
3418
        return omap_rtc_bcd(s->current_tm.tm_mon + 1);
3419

    
3420
    case 0x14:        /* YEARS_REG */
3421
        return omap_rtc_bcd(s->current_tm.tm_year % 100);
3422

    
3423
    case 0x18:        /* WEEK_REG */
3424
        return s->current_tm.tm_wday;
3425

    
3426
    case 0x20:        /* ALARM_SECONDS_REG */
3427
        return omap_rtc_bcd(s->alarm_tm.tm_sec);
3428

    
3429
    case 0x24:        /* ALARM_MINUTES_REG */
3430
        return omap_rtc_bcd(s->alarm_tm.tm_min);
3431

    
3432
    case 0x28:        /* ALARM_HOURS_REG */
3433
        if (s->pm_am)
3434
            return ((s->alarm_tm.tm_hour > 11) << 7) |
3435
                    omap_rtc_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1);
3436
        else
3437
            return omap_rtc_bcd(s->alarm_tm.tm_hour);
3438

    
3439
    case 0x2c:        /* ALARM_DAYS_REG */
3440
        return omap_rtc_bcd(s->alarm_tm.tm_mday);
3441

    
3442
    case 0x30:        /* ALARM_MONTHS_REG */
3443
        return omap_rtc_bcd(s->alarm_tm.tm_mon + 1);
3444

    
3445
    case 0x34:        /* ALARM_YEARS_REG */
3446
        return omap_rtc_bcd(s->alarm_tm.tm_year % 100);
3447

    
3448
    case 0x40:        /* RTC_CTRL_REG */
3449
        return (s->pm_am << 3) | (s->auto_comp << 2) |
3450
                (s->round << 1) | s->running;
3451

    
3452
    case 0x44:        /* RTC_STATUS_REG */
3453
        i = s->status;
3454
        s->status &= ~0x3d;
3455
        return i;
3456

    
3457
    case 0x48:        /* RTC_INTERRUPTS_REG */
3458
        return s->interrupts;
3459

    
3460
    case 0x4c:        /* RTC_COMP_LSB_REG */
3461
        return ((uint16_t) s->comp_reg) & 0xff;
3462

    
3463
    case 0x50:        /* RTC_COMP_MSB_REG */
3464
        return ((uint16_t) s->comp_reg) >> 8;
3465
    }
3466

    
3467
    OMAP_BAD_REG(addr);
3468
    return 0;
3469
}
3470

    
3471
static void omap_rtc_write(void *opaque, target_phys_addr_t addr,
3472
                uint32_t value)
3473
{
3474
    struct omap_rtc_s *s = (struct omap_rtc_s *) opaque;
3475
    int offset = addr & OMAP_MPUI_REG_MASK;
3476
    struct tm new_tm;
3477
    time_t ti[2];
3478

    
3479
    switch (offset) {
3480
    case 0x00:        /* SECONDS_REG */
3481
#ifdef ALMDEBUG
3482
        printf("RTC SEC_REG <-- %02x\n", value);
3483
#endif
3484
        s->ti -= s->current_tm.tm_sec;
3485
        s->ti += omap_rtc_bin(value);
3486
        return;
3487

    
3488
    case 0x04:        /* MINUTES_REG */
3489
#ifdef ALMDEBUG
3490
        printf("RTC MIN_REG <-- %02x\n", value);
3491
#endif
3492
        s->ti -= s->current_tm.tm_min * 60;
3493
        s->ti += omap_rtc_bin(value) * 60;
3494
        return;
3495

    
3496
    case 0x08:        /* HOURS_REG */
3497
#ifdef ALMDEBUG
3498
        printf("RTC HRS_REG <-- %02x\n", value);
3499
#endif
3500
        s->ti -= s->current_tm.tm_hour * 3600;
3501
        if (s->pm_am) {
3502
            s->ti += (omap_rtc_bin(value & 0x3f) & 12) * 3600;
3503
            s->ti += ((value >> 7) & 1) * 43200;
3504
        } else
3505
            s->ti += omap_rtc_bin(value & 0x3f) * 3600;
3506
        return;
3507

    
3508
    case 0x0c:        /* DAYS_REG */
3509
#ifdef ALMDEBUG
3510
        printf("RTC DAY_REG <-- %02x\n", value);
3511
#endif
3512
        s->ti -= s->current_tm.tm_mday * 86400;
3513
        s->ti += omap_rtc_bin(value) * 86400;
3514
        return;
3515

    
3516
    case 0x10:        /* MONTHS_REG */
3517
#ifdef ALMDEBUG
3518
        printf("RTC MTH_REG <-- %02x\n", value);
3519
#endif
3520
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3521
        new_tm.tm_mon = omap_rtc_bin(value);
3522
        ti[0] = mktime(&s->current_tm);
3523
        ti[1] = mktime(&new_tm);
3524

    
3525
        if (ti[0] != -1 && ti[1] != -1) {
3526
            s->ti -= ti[0];
3527
            s->ti += ti[1];
3528
        } else {
3529
            /* A less accurate version */
3530
            s->ti -= s->current_tm.tm_mon * 2592000;
3531
            s->ti += omap_rtc_bin(value) * 2592000;
3532
        }
3533
        return;
3534

    
3535
    case 0x14:        /* YEARS_REG */
3536
#ifdef ALMDEBUG
3537
        printf("RTC YRS_REG <-- %02x\n", value);
3538
#endif
3539
        memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
3540
        new_tm.tm_year += omap_rtc_bin(value) - (new_tm.tm_year % 100);
3541
        ti[0] = mktime(&s->current_tm);
3542
        ti[1] = mktime(&new_tm);
3543

    
3544
        if (ti[0] != -1 && ti[1] != -1) {
3545
            s->ti -= ti[0];
3546
            s->ti += ti[1];
3547
        } else {
3548
            /* A less accurate version */
3549
            s->ti -= (s->current_tm.tm_year % 100) * 31536000;
3550
            s->ti += omap_rtc_bin(value) * 31536000;
3551
        }
3552
        return;
3553

    
3554
    case 0x18:        /* WEEK_REG */
3555
        return;        /* Ignored */
3556

    
3557
    case 0x20:        /* ALARM_SECONDS_REG */
3558
#ifdef ALMDEBUG
3559
        printf("ALM SEC_REG <-- %02x\n", value);
3560
#endif
3561
        s->alarm_tm.tm_sec = omap_rtc_bin(value);
3562
        omap_rtc_alarm_update(s);
3563
        return;
3564

    
3565
    case 0x24:        /* ALARM_MINUTES_REG */
3566
#ifdef ALMDEBUG
3567
        printf("ALM MIN_REG <-- %02x\n", value);
3568
#endif
3569
        s->alarm_tm.tm_min = omap_rtc_bin(value);
3570
        omap_rtc_alarm_update(s);
3571
        return;
3572

    
3573
    case 0x28:        /* ALARM_HOURS_REG */
3574
#ifdef ALMDEBUG
3575
        printf("ALM HRS_REG <-- %02x\n", value);
3576
#endif
3577
        if (s->pm_am)
3578
            s->alarm_tm.tm_hour =
3579
                    ((omap_rtc_bin(value & 0x3f)) % 12) +
3580
                    ((value >> 7) & 1) * 12;
3581
        else
3582
            s->alarm_tm.tm_hour = omap_rtc_bin(value);
3583
        omap_rtc_alarm_update(s);
3584
        return;
3585

    
3586
    case 0x2c:        /* ALARM_DAYS_REG */
3587
#ifdef ALMDEBUG
3588
        printf("ALM DAY_REG <-- %02x\n", value);
3589
#endif
3590
        s->alarm_tm.tm_mday = omap_rtc_bin(value);
3591
        omap_rtc_alarm_update(s);
3592
        return;
3593

    
3594
    case 0x30:        /* ALARM_MONTHS_REG */
3595
#ifdef ALMDEBUG
3596
        printf("ALM MON_REG <-- %02x\n", value);
3597
#endif
3598
        s->alarm_tm.tm_mon = omap_rtc_bin(value);
3599
        omap_rtc_alarm_update(s);
3600
        return;
3601

    
3602
    case 0x34:        /* ALARM_YEARS_REG */
3603
#ifdef ALMDEBUG
3604
        printf("ALM YRS_REG <-- %02x\n", value);
3605
#endif
3606
        s->alarm_tm.tm_year = omap_rtc_bin(value);
3607
        omap_rtc_alarm_update(s);
3608
        return;
3609

    
3610
    case 0x40:        /* RTC_CTRL_REG */
3611
#ifdef ALMDEBUG
3612
        printf("RTC CONTROL <-- %02x\n", value);
3613
#endif
3614
        s->pm_am = (value >> 3) & 1;
3615
        s->auto_comp = (value >> 2) & 1;
3616
        s->round = (value >> 1) & 1;
3617
        s->running = value & 1;
3618
        s->status &= 0xfd;
3619
        s->status |= s->running << 1;
3620
        return;
3621

    
3622
    case 0x44:        /* RTC_STATUS_REG */
3623
#ifdef ALMDEBUG
3624
        printf("RTC STATUSL <-- %02x\n", value);
3625
#endif
3626
        s->status &= ~((value & 0xc0) ^ 0x80);
3627
        omap_rtc_interrupts_update(s);
3628
        return;
3629

    
3630
    case 0x48:        /* RTC_INTERRUPTS_REG */
3631
#ifdef ALMDEBUG
3632
        printf("RTC INTRS <-- %02x\n", value);
3633
#endif
3634
        s->interrupts = value;
3635
        return;
3636

    
3637
    case 0x4c:        /* RTC_COMP_LSB_REG */
3638
#ifdef ALMDEBUG
3639
        printf("RTC COMPLSB <-- %02x\n", value);
3640
#endif
3641
        s->comp_reg &= 0xff00;
3642
        s->comp_reg |= 0x00ff & value;
3643
        return;
3644

    
3645
    case 0x50:        /* RTC_COMP_MSB_REG */
3646
#ifdef ALMDEBUG
3647
        printf("RTC COMPMSB <-- %02x\n", value);
3648
#endif
3649
        s->comp_reg &= 0x00ff;
3650
        s->comp_reg |= 0xff00 & (value << 8);
3651
        return;
3652

    
3653
    default:
3654
        OMAP_BAD_REG(addr);
3655
        return;
3656
    }
3657
}
3658

    
3659
static CPUReadMemoryFunc *omap_rtc_readfn[] = {
3660
    omap_rtc_read,
3661
    omap_badwidth_read8,
3662
    omap_badwidth_read8,
3663
};
3664

    
3665
static CPUWriteMemoryFunc *omap_rtc_writefn[] = {
3666
    omap_rtc_write,
3667
    omap_badwidth_write8,
3668
    omap_badwidth_write8,
3669
};
3670

    
3671
static void omap_rtc_tick(void *opaque)
3672
{
3673
    struct omap_rtc_s *s = opaque;
3674

    
3675
    if (s->round) {
3676
        /* Round to nearest full minute.  */
3677
        if (s->current_tm.tm_sec < 30)
3678
            s->ti -= s->current_tm.tm_sec;
3679
        else
3680
            s->ti += 60 - s->current_tm.tm_sec;
3681

    
3682
        s->round = 0;
3683
    }
3684

    
3685
    memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
3686

    
3687
    if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) {
3688
        s->status |= 0x40;
3689
        omap_rtc_interrupts_update(s);
3690
    }
3691

    
3692
    if (s->interrupts & 0x04)
3693
        switch (s->interrupts & 3) {
3694
        case 0:
3695
            s->status |= 0x04;
3696
            qemu_irq_pulse(s->irq);
3697
            break;
3698
        case 1:
3699
            if (s->current_tm.tm_sec)
3700
                break;
3701
            s->status |= 0x08;
3702
            qemu_irq_pulse(s->irq);
3703
            break;
3704
        case 2:
3705
            if (s->current_tm.tm_sec || s->current_tm.tm_min)
3706
                break;
3707
            s->status |= 0x10;
3708
            qemu_irq_pulse(s->irq);
3709
            break;
3710
        case 3:
3711
            if (s->current_tm.tm_sec ||
3712
                            s->current_tm.tm_min || s->current_tm.tm_hour)
3713
                break;
3714
            s->status |= 0x20;
3715
            qemu_irq_pulse(s->irq);
3716
            break;
3717
        }
3718

    
3719
    /* Move on */
3720
    if (s->running)
3721
        s->ti ++;
3722
    s->tick += 1000;
3723

    
3724
    /*
3725
     * Every full hour add a rough approximation of the compensation
3726
     * register to the 32kHz Timer (which drives the RTC) value. 
3727
     */
3728
    if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
3729
        s->tick += s->comp_reg * 1000 / 32768;
3730

    
3731
    qemu_mod_timer(s->clk, s->tick);
3732
}
3733

    
3734
static void omap_rtc_reset(struct omap_rtc_s *s)
3735
{
3736
    struct tm tm;
3737

    
3738
    s->interrupts = 0;
3739
    s->comp_reg = 0;
3740
    s->running = 0;
3741
    s->pm_am = 0;
3742
    s->auto_comp = 0;
3743
    s->round = 0;
3744
    s->tick = qemu_get_clock(rt_clock);
3745
    memset(&s->alarm_tm, 0, sizeof(s->alarm_tm));
3746
    s->alarm_tm.tm_mday = 0x01;
3747
    s->status = 1 << 7;
3748
    qemu_get_timedate(&tm, 0);
3749
    s->ti = mktime(&tm);
3750

    
3751
    omap_rtc_alarm_update(s);
3752
    omap_rtc_tick(s);
3753
}
3754

    
3755
struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
3756
                qemu_irq *irq, omap_clk clk)
3757
{
3758
    int iomemtype;
3759
    struct omap_rtc_s *s = (struct omap_rtc_s *)
3760
            qemu_mallocz(sizeof(struct omap_rtc_s));
3761

    
3762
    s->base = base;
3763
    s->irq = irq[0];
3764
    s->alarm = irq[1];
3765
    s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s);
3766

    
3767
    omap_rtc_reset(s);
3768

    
3769
    iomemtype = cpu_register_io_memory(0, omap_rtc_readfn,
3770
                    omap_rtc_writefn, s);
3771
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
3772

    
3773
    return s;
3774
}
3775

    
3776
/* Multi-channel Buffered Serial Port interfaces */
3777
struct omap_mcbsp_s {
3778
    target_phys_addr_t base;
3779
    qemu_irq txirq;
3780
    qemu_irq rxirq;
3781
    qemu_irq txdrq;
3782
    qemu_irq rxdrq;
3783

    
3784
    uint16_t spcr[2];
3785
    uint16_t rcr[2];
3786
    uint16_t xcr[2];
3787
    uint16_t srgr[2];
3788
    uint16_t mcr[2];
3789
    uint16_t pcr;
3790
    uint16_t rcer[8];
3791
    uint16_t xcer[8];
3792
    int tx_rate;
3793
    int rx_rate;
3794
    int tx_req;
3795
    int rx_req;
3796

    
3797
    struct i2s_codec_s *codec;
3798
    QEMUTimer *source_timer;
3799
    QEMUTimer *sink_timer;
3800
};
3801

    
3802
static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s)
3803
{
3804
    int irq;
3805

    
3806
    switch ((s->spcr[0] >> 4) & 3) {                        /* RINTM */
3807
    case 0:
3808
        irq = (s->spcr[0] >> 1) & 1;                        /* RRDY */
3809
        break;
3810
    case 3:
3811
        irq = (s->spcr[0] >> 3) & 1;                        /* RSYNCERR */
3812
        break;
3813
    default:
3814
        irq = 0;
3815
        break;
3816
    }
3817

    
3818
    if (irq)
3819
        qemu_irq_pulse(s->rxirq);
3820

    
3821
    switch ((s->spcr[1] >> 4) & 3) {                        /* XINTM */
3822
    case 0:
3823
        irq = (s->spcr[1] >> 1) & 1;                        /* XRDY */
3824
        break;
3825
    case 3:
3826
        irq = (s->spcr[1] >> 3) & 1;                        /* XSYNCERR */
3827
        break;
3828
    default:
3829
        irq = 0;
3830
        break;
3831
    }
3832

    
3833
    if (irq)
3834
        qemu_irq_pulse(s->txirq);
3835
}
3836

    
3837
static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s)
3838
{
3839
    if ((s->spcr[0] >> 1) & 1)                                /* RRDY */
3840
        s->spcr[0] |= 1 << 2;                                /* RFULL */
3841
    s->spcr[0] |= 1 << 1;                                /* RRDY */
3842
    qemu_irq_raise(s->rxdrq);
3843
    omap_mcbsp_intr_update(s);
3844
}
3845

    
3846
static void omap_mcbsp_source_tick(void *opaque)
3847
{
3848
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3849
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3850

    
3851
    if (!s->rx_rate)
3852
        return;
3853
    if (s->rx_req)
3854
        printf("%s: Rx FIFO overrun\n", __FUNCTION__);
3855

    
3856
    s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7];
3857

    
3858
    omap_mcbsp_rx_newdata(s);
3859
    qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3860
}
3861

    
3862
static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s)
3863
{
3864
    if (!s->codec || !s->codec->rts)
3865
        omap_mcbsp_source_tick(s);
3866
    else if (s->codec->in.len) {
3867
        s->rx_req = s->codec->in.len;
3868
        omap_mcbsp_rx_newdata(s);
3869
    }
3870
}
3871

    
3872
static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s)
3873
{
3874
    qemu_del_timer(s->source_timer);
3875
}
3876

    
3877
static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s)
3878
{
3879
    s->spcr[0] &= ~(1 << 1);                                /* RRDY */
3880
    qemu_irq_lower(s->rxdrq);
3881
    omap_mcbsp_intr_update(s);
3882
}
3883

    
3884
static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s)
3885
{
3886
    s->spcr[1] |= 1 << 1;                                /* XRDY */
3887
    qemu_irq_raise(s->txdrq);
3888
    omap_mcbsp_intr_update(s);
3889
}
3890

    
3891
static void omap_mcbsp_sink_tick(void *opaque)
3892
{
3893
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3894
    static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 };
3895

    
3896
    if (!s->tx_rate)
3897
        return;
3898
    if (s->tx_req)
3899
        printf("%s: Tx FIFO underrun\n", __FUNCTION__);
3900

    
3901
    s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7];
3902

    
3903
    omap_mcbsp_tx_newdata(s);
3904
    qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + ticks_per_sec);
3905
}
3906

    
3907
static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s)
3908
{
3909
    if (!s->codec || !s->codec->cts)
3910
        omap_mcbsp_sink_tick(s);
3911
    else if (s->codec->out.size) {
3912
        s->tx_req = s->codec->out.size;
3913
        omap_mcbsp_tx_newdata(s);
3914
    }
3915
}
3916

    
3917
static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s)
3918
{
3919
    s->spcr[1] &= ~(1 << 1);                                /* XRDY */
3920
    qemu_irq_lower(s->txdrq);
3921
    omap_mcbsp_intr_update(s);
3922
    if (s->codec && s->codec->cts)
3923
        s->codec->tx_swallow(s->codec->opaque);
3924
}
3925

    
3926
static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s)
3927
{
3928
    s->tx_req = 0;
3929
    omap_mcbsp_tx_done(s);
3930
    qemu_del_timer(s->sink_timer);
3931
}
3932

    
3933
static void omap_mcbsp_req_update(struct omap_mcbsp_s *s)
3934
{
3935
    int prev_rx_rate, prev_tx_rate;
3936
    int rx_rate = 0, tx_rate = 0;
3937
    int cpu_rate = 1500000;        /* XXX */
3938

    
3939
    /* TODO: check CLKSTP bit */
3940
    if (s->spcr[1] & (1 << 6)) {                        /* GRST */
3941
        if (s->spcr[0] & (1 << 0)) {                        /* RRST */
3942
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3943
                            (s->pcr & (1 << 8))) {        /* CLKRM */
3944
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3945
                    rx_rate = cpu_rate /
3946
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3947
            } else
3948
                if (s->codec)
3949
                    rx_rate = s->codec->rx_rate;
3950
        }
3951

    
3952
        if (s->spcr[1] & (1 << 0)) {                        /* XRST */
3953
            if ((s->srgr[1] & (1 << 13)) &&                /* CLKSM */
3954
                            (s->pcr & (1 << 9))) {        /* CLKXM */
3955
                if (~s->pcr & (1 << 7))                        /* SCLKME */
3956
                    tx_rate = cpu_rate /
3957
                            ((s->srgr[0] & 0xff) + 1);        /* CLKGDV */
3958
            } else
3959
                if (s->codec)
3960
                    tx_rate = s->codec->tx_rate;
3961
        }
3962
    }
3963
    prev_tx_rate = s->tx_rate;
3964
    prev_rx_rate = s->rx_rate;
3965
    s->tx_rate = tx_rate;
3966
    s->rx_rate = rx_rate;
3967

    
3968
    if (s->codec)
3969
        s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate);
3970

    
3971
    if (!prev_tx_rate && tx_rate)
3972
        omap_mcbsp_tx_start(s);
3973
    else if (s->tx_rate && !tx_rate)
3974
        omap_mcbsp_tx_stop(s);
3975

    
3976
    if (!prev_rx_rate && rx_rate)
3977
        omap_mcbsp_rx_start(s);
3978
    else if (prev_tx_rate && !tx_rate)
3979
        omap_mcbsp_rx_stop(s);
3980
}
3981

    
3982
static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr)
3983
{
3984
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
3985
    int offset = addr & OMAP_MPUI_REG_MASK;
3986
    uint16_t ret;
3987

    
3988
    switch (offset) {
3989
    case 0x00:        /* DRR2 */
3990
        if (((s->rcr[0] >> 5) & 7) < 3)                        /* RWDLEN1 */
3991
            return 0x0000;
3992
        /* Fall through.  */
3993
    case 0x02:        /* DRR1 */
3994
        if (s->rx_req < 2) {
3995
            printf("%s: Rx FIFO underrun\n", __FUNCTION__);
3996
            omap_mcbsp_rx_done(s);
3997
        } else {
3998
            s->tx_req -= 2;
3999
            if (s->codec && s->codec->in.len >= 2) {
4000
                ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
4001
                ret |= s->codec->in.fifo[s->codec->in.start ++];
4002
                s->codec->in.len -= 2;
4003
            } else
4004
                ret = 0x0000;
4005
            if (!s->tx_req)
4006
                omap_mcbsp_rx_done(s);
4007
            return ret;
4008
        }
4009
        return 0x0000;
4010

    
4011
    case 0x04:        /* DXR2 */
4012
    case 0x06:        /* DXR1 */
4013
        return 0x0000;
4014

    
4015
    case 0x08:        /* SPCR2 */
4016
        return s->spcr[1];
4017
    case 0x0a:        /* SPCR1 */
4018
        return s->spcr[0];
4019
    case 0x0c:        /* RCR2 */
4020
        return s->rcr[1];
4021
    case 0x0e:        /* RCR1 */
4022
        return s->rcr[0];
4023
    case 0x10:        /* XCR2 */
4024
        return s->xcr[1];
4025
    case 0x12:        /* XCR1 */
4026
        return s->xcr[0];
4027
    case 0x14:        /* SRGR2 */
4028
        return s->srgr[1];
4029
    case 0x16:        /* SRGR1 */
4030
        return s->srgr[0];
4031
    case 0x18:        /* MCR2 */
4032
        return s->mcr[1];
4033
    case 0x1a:        /* MCR1 */
4034
        return s->mcr[0];
4035
    case 0x1c:        /* RCERA */
4036
        return s->rcer[0];
4037
    case 0x1e:        /* RCERB */
4038
        return s->rcer[1];
4039
    case 0x20:        /* XCERA */
4040
        return s->xcer[0];
4041
    case 0x22:        /* XCERB */
4042
        return s->xcer[1];
4043
    case 0x24:        /* PCR0 */
4044
        return s->pcr;
4045
    case 0x26:        /* RCERC */
4046
        return s->rcer[2];
4047
    case 0x28:        /* RCERD */
4048
        return s->rcer[3];
4049
    case 0x2a:        /* XCERC */
4050
        return s->xcer[2];
4051
    case 0x2c:        /* XCERD */
4052
        return s->xcer[3];
4053
    case 0x2e:        /* RCERE */
4054
        return s->rcer[4];
4055
    case 0x30:        /* RCERF */
4056
        return s->rcer[5];
4057
    case 0x32:        /* XCERE */
4058
        return s->xcer[4];
4059
    case 0x34:        /* XCERF */
4060
        return s->xcer[5];
4061
    case 0x36:        /* RCERG */
4062
        return s->rcer[6];
4063
    case 0x38:        /* RCERH */
4064
        return s->rcer[7];
4065
    case 0x3a:        /* XCERG */
4066
        return s->xcer[6];
4067
    case 0x3c:        /* XCERH */
4068
        return s->xcer[7];
4069
    }
4070

    
4071
    OMAP_BAD_REG(addr);
4072
    return 0;
4073
}
4074

    
4075
static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr,
4076
                uint32_t value)
4077
{
4078
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4079
    int offset = addr & OMAP_MPUI_REG_MASK;
4080

    
4081
    switch (offset) {
4082
    case 0x00:        /* DRR2 */
4083
    case 0x02:        /* DRR1 */
4084
        OMAP_RO_REG(addr);
4085
        return;
4086

    
4087
    case 0x04:        /* DXR2 */
4088
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4089
            return;
4090
        /* Fall through.  */
4091
    case 0x06:        /* DXR1 */
4092
        if (s->tx_req > 1) {
4093
            s->tx_req -= 2;
4094
            if (s->codec && s->codec->cts) {
4095
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff;
4096
                s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff;
4097
            }
4098
            if (s->tx_req < 2)
4099
                omap_mcbsp_tx_done(s);
4100
        } else
4101
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4102
        return;
4103

    
4104
    case 0x08:        /* SPCR2 */
4105
        s->spcr[1] &= 0x0002;
4106
        s->spcr[1] |= 0x03f9 & value;
4107
        s->spcr[1] |= 0x0004 & (value << 2);                /* XEMPTY := XRST */
4108
        if (~value & 1)                                        /* XRST */
4109
            s->spcr[1] &= ~6;
4110
        omap_mcbsp_req_update(s);
4111
        return;
4112
    case 0x0a:        /* SPCR1 */
4113
        s->spcr[0] &= 0x0006;
4114
        s->spcr[0] |= 0xf8f9 & value;
4115
        if (value & (1 << 15))                                /* DLB */
4116
            printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
4117
        if (~value & 1) {                                /* RRST */
4118
            s->spcr[0] &= ~6;
4119
            s->rx_req = 0;
4120
            omap_mcbsp_rx_done(s);
4121
        }
4122
        omap_mcbsp_req_update(s);
4123
        return;
4124

    
4125
    case 0x0c:        /* RCR2 */
4126
        s->rcr[1] = value & 0xffff;
4127
        return;
4128
    case 0x0e:        /* RCR1 */
4129
        s->rcr[0] = value & 0x7fe0;
4130
        return;
4131
    case 0x10:        /* XCR2 */
4132
        s->xcr[1] = value & 0xffff;
4133
        return;
4134
    case 0x12:        /* XCR1 */
4135
        s->xcr[0] = value & 0x7fe0;
4136
        return;
4137
    case 0x14:        /* SRGR2 */
4138
        s->srgr[1] = value & 0xffff;
4139
        omap_mcbsp_req_update(s);
4140
        return;
4141
    case 0x16:        /* SRGR1 */
4142
        s->srgr[0] = value & 0xffff;
4143
        omap_mcbsp_req_update(s);
4144
        return;
4145
    case 0x18:        /* MCR2 */
4146
        s->mcr[1] = value & 0x03e3;
4147
        if (value & 3)                                        /* XMCM */
4148
            printf("%s: Tx channel selection mode enable attempt\n",
4149
                            __FUNCTION__);
4150
        return;
4151
    case 0x1a:        /* MCR1 */
4152
        s->mcr[0] = value & 0x03e1;
4153
        if (value & 1)                                        /* RMCM */
4154
            printf("%s: Rx channel selection mode enable attempt\n",
4155
                            __FUNCTION__);
4156
        return;
4157
    case 0x1c:        /* RCERA */
4158
        s->rcer[0] = value & 0xffff;
4159
        return;
4160
    case 0x1e:        /* RCERB */
4161
        s->rcer[1] = value & 0xffff;
4162
        return;
4163
    case 0x20:        /* XCERA */
4164
        s->xcer[0] = value & 0xffff;
4165
        return;
4166
    case 0x22:        /* XCERB */
4167
        s->xcer[1] = value & 0xffff;
4168
        return;
4169
    case 0x24:        /* PCR0 */
4170
        s->pcr = value & 0x7faf;
4171
        return;
4172
    case 0x26:        /* RCERC */
4173
        s->rcer[2] = value & 0xffff;
4174
        return;
4175
    case 0x28:        /* RCERD */
4176
        s->rcer[3] = value & 0xffff;
4177
        return;
4178
    case 0x2a:        /* XCERC */
4179
        s->xcer[2] = value & 0xffff;
4180
        return;
4181
    case 0x2c:        /* XCERD */
4182
        s->xcer[3] = value & 0xffff;
4183
        return;
4184
    case 0x2e:        /* RCERE */
4185
        s->rcer[4] = value & 0xffff;
4186
        return;
4187
    case 0x30:        /* RCERF */
4188
        s->rcer[5] = value & 0xffff;
4189
        return;
4190
    case 0x32:        /* XCERE */
4191
        s->xcer[4] = value & 0xffff;
4192
        return;
4193
    case 0x34:        /* XCERF */
4194
        s->xcer[5] = value & 0xffff;
4195
        return;
4196
    case 0x36:        /* RCERG */
4197
        s->rcer[6] = value & 0xffff;
4198
        return;
4199
    case 0x38:        /* RCERH */
4200
        s->rcer[7] = value & 0xffff;
4201
        return;
4202
    case 0x3a:        /* XCERG */
4203
        s->xcer[6] = value & 0xffff;
4204
        return;
4205
    case 0x3c:        /* XCERH */
4206
        s->xcer[7] = value & 0xffff;
4207
        return;
4208
    }
4209

    
4210
    OMAP_BAD_REG(addr);
4211
}
4212

    
4213
static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr,
4214
                uint32_t value)
4215
{
4216
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4217
    int offset = addr & OMAP_MPUI_REG_MASK;
4218

    
4219
    if (offset == 0x04) {                                /* DXR */
4220
        if (((s->xcr[0] >> 5) & 7) < 3)                        /* XWDLEN1 */
4221
            return;
4222
        if (s->tx_req > 3) {
4223
            s->tx_req -= 4;
4224
            if (s->codec && s->codec->cts) {
4225
                s->codec->out.fifo[s->codec->out.len ++] =
4226
                        (value >> 24) & 0xff;
4227
                s->codec->out.fifo[s->codec->out.len ++] =
4228
                        (value >> 16) & 0xff;
4229
                s->codec->out.fifo[s->codec->out.len ++] =
4230
                        (value >> 8) & 0xff;
4231
                s->codec->out.fifo[s->codec->out.len ++] =
4232
                        (value >> 0) & 0xff;
4233
            }
4234
            if (s->tx_req < 4)
4235
                omap_mcbsp_tx_done(s);
4236
        } else
4237
            printf("%s: Tx FIFO overrun\n", __FUNCTION__);
4238
        return;
4239
    }
4240

    
4241
    omap_badwidth_write16(opaque, addr, value);
4242
}
4243

    
4244
static CPUReadMemoryFunc *omap_mcbsp_readfn[] = {
4245
    omap_badwidth_read16,
4246
    omap_mcbsp_read,
4247
    omap_badwidth_read16,
4248
};
4249

    
4250
static CPUWriteMemoryFunc *omap_mcbsp_writefn[] = {
4251
    omap_badwidth_write16,
4252
    omap_mcbsp_writeh,
4253
    omap_mcbsp_writew,
4254
};
4255

    
4256
static void omap_mcbsp_reset(struct omap_mcbsp_s *s)
4257
{
4258
    memset(&s->spcr, 0, sizeof(s->spcr));
4259
    memset(&s->rcr, 0, sizeof(s->rcr));
4260
    memset(&s->xcr, 0, sizeof(s->xcr));
4261
    s->srgr[0] = 0x0001;
4262
    s->srgr[1] = 0x2000;
4263
    memset(&s->mcr, 0, sizeof(s->mcr));
4264
    memset(&s->pcr, 0, sizeof(s->pcr));
4265
    memset(&s->rcer, 0, sizeof(s->rcer));
4266
    memset(&s->xcer, 0, sizeof(s->xcer));
4267
    s->tx_req = 0;
4268
    s->rx_req = 0;
4269
    s->tx_rate = 0;
4270
    s->rx_rate = 0;
4271
    qemu_del_timer(s->source_timer);
4272
    qemu_del_timer(s->sink_timer);
4273
}
4274

    
4275
struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
4276
                qemu_irq *irq, qemu_irq *dma, omap_clk clk)
4277
{
4278
    int iomemtype;
4279
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *)
4280
            qemu_mallocz(sizeof(struct omap_mcbsp_s));
4281

    
4282
    s->base = base;
4283
    s->txirq = irq[0];
4284
    s->rxirq = irq[1];
4285
    s->txdrq = dma[0];
4286
    s->rxdrq = dma[1];
4287
    s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s);
4288
    s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s);
4289
    omap_mcbsp_reset(s);
4290

    
4291
    iomemtype = cpu_register_io_memory(0, omap_mcbsp_readfn,
4292
                    omap_mcbsp_writefn, s);
4293
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
4294

    
4295
    return s;
4296
}
4297

    
4298
static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level)
4299
{
4300
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4301

    
4302
    if (s->rx_rate) {
4303
        s->rx_req = s->codec->in.len;
4304
        omap_mcbsp_rx_newdata(s);
4305
    }
4306
}
4307

    
4308
static void omap_mcbsp_i2s_start(void *opaque, int line, int level)
4309
{
4310
    struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque;
4311

    
4312
    if (s->tx_rate) {
4313
        s->tx_req = s->codec->out.size;
4314
        omap_mcbsp_tx_newdata(s);
4315
    }
4316
}
4317

    
4318
void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, struct i2s_codec_s *slave)
4319
{
4320
    s->codec = slave;
4321
    slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0];
4322
    slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0];
4323
}
4324

    
4325
/* LED Pulse Generators */
4326
struct omap_lpg_s {
4327
    target_phys_addr_t base;
4328
    QEMUTimer *tm;
4329

    
4330
    uint8_t control;
4331
    uint8_t power;
4332
    int64_t on;
4333
    int64_t period;
4334
    int clk;
4335
    int cycle;
4336
};
4337

    
4338
static void omap_lpg_tick(void *opaque)
4339
{
4340
    struct omap_lpg_s *s = opaque;
4341

    
4342
    if (s->cycle)
4343
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on);
4344
    else
4345
        qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on);
4346

    
4347
    s->cycle = !s->cycle;
4348
    printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off");
4349
}
4350

    
4351
static void omap_lpg_update(struct omap_lpg_s *s)
4352
{
4353
    int64_t on, period = 1, ticks = 1000;
4354
    static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 };
4355

    
4356
    if (~s->control & (1 << 6))                                        /* LPGRES */
4357
        on = 0;
4358
    else if (s->control & (1 << 7))                                /* PERM_ON */
4359
        on = period;
4360
    else {
4361
        period = muldiv64(ticks, per[s->control & 7],                /* PERCTRL */
4362
                        256 / 32);
4363
        on = (s->clk && s->power) ? muldiv64(ticks,
4364
                        per[(s->control >> 3) & 7], 256) : 0;        /* ONCTRL */
4365
    }
4366

    
4367
    qemu_del_timer(s->tm);
4368
    if (on == period && s->on < s->period)
4369
        printf("%s: LED is on\n", __FUNCTION__);
4370
    else if (on == 0 && s->on)
4371
        printf("%s: LED is off\n", __FUNCTION__);
4372
    else if (on && (on != s->on || period != s->period)) {
4373
        s->cycle = 0;
4374
        s->on = on;
4375
        s->period = period;
4376
        omap_lpg_tick(s);
4377
        return;
4378
    }
4379

    
4380
    s->on = on;
4381
    s->period = period;
4382
}
4383

    
4384
static void omap_lpg_reset(struct omap_lpg_s *s)
4385
{
4386
    s->control = 0x00;
4387
    s->power = 0x00;
4388
    s->clk = 1;
4389
    omap_lpg_update(s);
4390
}
4391

    
4392
static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr)
4393
{
4394
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4395
    int offset = addr & OMAP_MPUI_REG_MASK;
4396

    
4397
    switch (offset) {
4398
    case 0x00:        /* LCR */
4399
        return s->control;
4400

    
4401
    case 0x04:        /* PMR */
4402
        return s->power;
4403
    }
4404

    
4405
    OMAP_BAD_REG(addr);
4406
    return 0;
4407
}
4408

    
4409
static void omap_lpg_write(void *opaque, target_phys_addr_t addr,
4410
                uint32_t value)
4411
{
4412
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4413
    int offset = addr & OMAP_MPUI_REG_MASK;
4414

    
4415
    switch (offset) {
4416
    case 0x00:        /* LCR */
4417
        if (~value & (1 << 6))                                        /* LPGRES */
4418
            omap_lpg_reset(s);
4419
        s->control = value & 0xff;
4420
        omap_lpg_update(s);
4421
        return;
4422

    
4423
    case 0x04:        /* PMR */
4424
        s->power = value & 0x01;
4425
        omap_lpg_update(s);
4426
        return;
4427

    
4428
    default:
4429
        OMAP_BAD_REG(addr);
4430
        return;
4431
    }
4432
}
4433

    
4434
static CPUReadMemoryFunc *omap_lpg_readfn[] = {
4435
    omap_lpg_read,
4436
    omap_badwidth_read8,
4437
    omap_badwidth_read8,
4438
};
4439

    
4440
static CPUWriteMemoryFunc *omap_lpg_writefn[] = {
4441
    omap_lpg_write,
4442
    omap_badwidth_write8,
4443
    omap_badwidth_write8,
4444
};
4445

    
4446
static void omap_lpg_clk_update(void *opaque, int line, int on)
4447
{
4448
    struct omap_lpg_s *s = (struct omap_lpg_s *) opaque;
4449

    
4450
    s->clk = on;
4451
    omap_lpg_update(s);
4452
}
4453

    
4454
struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
4455
{
4456
    int iomemtype;
4457
    struct omap_lpg_s *s = (struct omap_lpg_s *)
4458
            qemu_mallocz(sizeof(struct omap_lpg_s));
4459

    
4460
    s->base = base;
4461
    s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s);
4462

    
4463
    omap_lpg_reset(s);
4464

    
4465
    iomemtype = cpu_register_io_memory(0, omap_lpg_readfn,
4466
                    omap_lpg_writefn, s);
4467
    cpu_register_physical_memory(s->base, 0x800, iomemtype);
4468

    
4469
    omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]);
4470

    
4471
    return s;
4472
}
4473

    
4474
/* MPUI Peripheral Bridge configuration */
4475
static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr)
4476
{
4477
    if (addr == OMAP_MPUI_BASE)        /* CMR */
4478
        return 0xfe4d;
4479

    
4480
    OMAP_BAD_REG(addr);
4481
    return 0;
4482
}
4483

    
4484
static CPUReadMemoryFunc *omap_mpui_io_readfn[] = {
4485
    omap_badwidth_read16,
4486
    omap_mpui_io_read,
4487
    omap_badwidth_read16,
4488
};
4489

    
4490
static CPUWriteMemoryFunc *omap_mpui_io_writefn[] = {
4491
    omap_badwidth_write16,
4492
    omap_badwidth_write16,
4493
    omap_badwidth_write16,
4494
};
4495

    
4496
static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu)
4497
{
4498
    int iomemtype = cpu_register_io_memory(0, omap_mpui_io_readfn,
4499
                    omap_mpui_io_writefn, mpu);
4500
    cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
4501
}
4502

    
4503
/* General chip reset */
4504
static void omap1_mpu_reset(void *opaque)
4505
{
4506
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4507

    
4508
    omap_inth_reset(mpu->ih[0]);
4509
    omap_inth_reset(mpu->ih[1]);
4510
    omap_dma_reset(mpu->dma);
4511
    omap_mpu_timer_reset(mpu->timer[0]);
4512
    omap_mpu_timer_reset(mpu->timer[1]);
4513
    omap_mpu_timer_reset(mpu->timer[2]);
4514
    omap_wd_timer_reset(mpu->wdt);
4515
    omap_os_timer_reset(mpu->os_timer);
4516
    omap_lcdc_reset(mpu->lcd);
4517
    omap_ulpd_pm_reset(mpu);
4518
    omap_pin_cfg_reset(mpu);
4519
    omap_mpui_reset(mpu);
4520
    omap_tipb_bridge_reset(mpu->private_tipb);
4521
    omap_tipb_bridge_reset(mpu->public_tipb);
4522
    omap_dpll_reset(&mpu->dpll[0]);
4523
    omap_dpll_reset(&mpu->dpll[1]);
4524
    omap_dpll_reset(&mpu->dpll[2]);
4525
    omap_uart_reset(mpu->uart[0]);
4526
    omap_uart_reset(mpu->uart[1]);
4527
    omap_uart_reset(mpu->uart[2]);
4528
    omap_mmc_reset(mpu->mmc);
4529
    omap_mpuio_reset(mpu->mpuio);
4530
    omap_gpio_reset(mpu->gpio);
4531
    omap_uwire_reset(mpu->microwire);
4532
    omap_pwl_reset(mpu);
4533
    omap_pwt_reset(mpu);
4534
    omap_i2c_reset(mpu->i2c[0]);
4535
    omap_rtc_reset(mpu->rtc);
4536
    omap_mcbsp_reset(mpu->mcbsp1);
4537
    omap_mcbsp_reset(mpu->mcbsp2);
4538
    omap_mcbsp_reset(mpu->mcbsp3);
4539
    omap_lpg_reset(mpu->led[0]);
4540
    omap_lpg_reset(mpu->led[1]);
4541
    omap_clkm_reset(mpu);
4542
    cpu_reset(mpu->env);
4543
}
4544

    
4545
static const struct omap_map_s {
4546
    target_phys_addr_t phys_dsp;
4547
    target_phys_addr_t phys_mpu;
4548
    uint32_t size;
4549
    const char *name;
4550
} omap15xx_dsp_mm[] = {
4551
    /* Strobe 0 */
4552
    { 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" },                /* CS0 */
4553
    { 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" },                /* CS1 */
4554
    { 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" },                /* CS3 */
4555
    { 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" },        /* CS4 */
4556
    { 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" },        /* CS5 */
4557
    { 0xe1013000, 0xfffb3000, 0x800, "uWire" },                        /* CS6 */
4558
    { 0xe1013800, 0xfffb3800, 0x800, "I^2C" },                        /* CS7 */
4559
    { 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" },                /* CS8 */
4560
    { 0xe1014800, 0xfffb4800, 0x800, "RTC" },                        /* CS9 */
4561
    { 0xe1015000, 0xfffb5000, 0x800, "MPUIO" },                        /* CS10 */
4562
    { 0xe1015800, 0xfffb5800, 0x800, "PWL" },                        /* CS11 */
4563
    { 0xe1016000, 0xfffb6000, 0x800, "PWT" },                        /* CS12 */
4564
    { 0xe1017000, 0xfffb7000, 0x800, "McBSP3" },                /* CS14 */
4565
    { 0xe1017800, 0xfffb7800, 0x800, "MMC" },                        /* CS15 */
4566
    { 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" },                /* CS18 */
4567
    { 0xe1019800, 0xfffb9800, 0x800, "UART3" },                        /* CS19 */
4568
    { 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" },                /* CS25 */
4569
    /* Strobe 1 */
4570
    { 0xe101e000, 0xfffce000, 0x800, "GPIOs" },                        /* CS28 */
4571

    
4572
    { 0 }
4573
};
4574

    
4575
static void omap_setup_dsp_mapping(const struct omap_map_s *map)
4576
{
4577
    int io;
4578

    
4579
    for (; map->phys_dsp; map ++) {
4580
        io = cpu_get_physical_page_desc(map->phys_mpu);
4581

    
4582
        cpu_register_physical_memory(map->phys_dsp, map->size, io);
4583
    }
4584
}
4585

    
4586
void omap_mpu_wakeup(void *opaque, int irq, int req)
4587
{
4588
    struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque;
4589

    
4590
    if (mpu->env->halted)
4591
        cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB);
4592
}
4593

    
4594
static const struct dma_irq_map omap1_dma_irq_map[] = {
4595
    { 0, OMAP_INT_DMA_CH0_6 },
4596
    { 0, OMAP_INT_DMA_CH1_7 },
4597
    { 0, OMAP_INT_DMA_CH2_8 },
4598
    { 0, OMAP_INT_DMA_CH3 },
4599
    { 0, OMAP_INT_DMA_CH4 },
4600
    { 0, OMAP_INT_DMA_CH5 },
4601
    { 1, OMAP_INT_1610_DMA_CH6 },
4602
    { 1, OMAP_INT_1610_DMA_CH7 },
4603
    { 1, OMAP_INT_1610_DMA_CH8 },
4604
    { 1, OMAP_INT_1610_DMA_CH9 },
4605
    { 1, OMAP_INT_1610_DMA_CH10 },
4606
    { 1, OMAP_INT_1610_DMA_CH11 },
4607
    { 1, OMAP_INT_1610_DMA_CH12 },
4608
    { 1, OMAP_INT_1610_DMA_CH13 },
4609
    { 1, OMAP_INT_1610_DMA_CH14 },
4610
    { 1, OMAP_INT_1610_DMA_CH15 }
4611
};
4612

    
4613
/* DMA ports for OMAP1 */
4614
static int omap_validate_emiff_addr(struct omap_mpu_state_s *s,
4615
                target_phys_addr_t addr)
4616
{
4617
    return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
4618
}
4619

    
4620
static int omap_validate_emifs_addr(struct omap_mpu_state_s *s,
4621
                target_phys_addr_t addr)
4622
{
4623
    return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
4624
}
4625

    
4626
static int omap_validate_imif_addr(struct omap_mpu_state_s *s,
4627
                target_phys_addr_t addr)
4628
{
4629
    return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
4630
}
4631

    
4632
static int omap_validate_tipb_addr(struct omap_mpu_state_s *s,
4633
                target_phys_addr_t addr)
4634
{
4635
    return addr >= 0xfffb0000 && addr < 0xffff0000;
4636
}
4637

    
4638
static int omap_validate_local_addr(struct omap_mpu_state_s *s,
4639
                target_phys_addr_t addr)
4640
{
4641
    return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000;
4642
}
4643

    
4644
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s,
4645
                target_phys_addr_t addr)
4646
{
4647
    return addr >= 0xe1010000 && addr < 0xe1020004;
4648
}
4649

    
4650
struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size,
4651
                DisplayState *ds, const char *core)
4652
{
4653
    int i;
4654
    struct omap_mpu_state_s *s = (struct omap_mpu_state_s *)
4655
            qemu_mallocz(sizeof(struct omap_mpu_state_s));
4656
    ram_addr_t imif_base, emiff_base;
4657
    qemu_irq *cpu_irq;
4658
    qemu_irq dma_irqs[6];
4659
    int sdindex;
4660

    
4661
    if (!core)
4662
        core = "ti925t";
4663

    
4664
    /* Core */
4665
    s->mpu_model = omap310;
4666
    s->env = cpu_init(core);
4667
    if (!s->env) {
4668
        fprintf(stderr, "Unable to find CPU definition\n");
4669
        exit(1);
4670
    }
4671
    s->sdram_size = sdram_size;
4672
    s->sram_size = OMAP15XX_SRAM_SIZE;
4673

    
4674
    s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0];
4675

    
4676
    /* Clocks */
4677
    omap_clk_init(s);
4678

    
4679
    /* Memory-mapped stuff */
4680
    cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size,
4681
                    (emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM);
4682
    cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size,
4683
                    (imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM);
4684

    
4685
    omap_clkm_init(0xfffece00, 0xe1008000, s);
4686

    
4687
    cpu_irq = arm_pic_init_cpu(s->env);
4688
    s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0],
4689
                    cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ],
4690
                    omap_findclk(s, "arminth_ck"));
4691
    s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1],
4692
                    s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL,
4693
                    omap_findclk(s, "arminth_ck"));
4694

    
4695
    for (i = 0; i < 6; i ++)
4696
        dma_irqs[i] =
4697
                s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr];
4698
    s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD],
4699
                           s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
4700

    
4701
    s->port[emiff    ].addr_valid = omap_validate_emiff_addr;
4702
    s->port[emifs    ].addr_valid = omap_validate_emifs_addr;
4703
    s->port[imif     ].addr_valid = omap_validate_imif_addr;
4704
    s->port[tipb     ].addr_valid = omap_validate_tipb_addr;
4705
    s->port[local    ].addr_valid = omap_validate_local_addr;
4706
    s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr;
4707

    
4708
    /* Register SDRAM and SRAM DMA ports for fast transfers.  */
4709
    soc_dma_port_add_mem_ram(s->dma,
4710
                    emiff_base, OMAP_EMIFF_BASE, s->sdram_size);
4711
    soc_dma_port_add_mem_ram(s->dma,
4712
                    imif_base, OMAP_IMIF_BASE, s->sram_size);
4713

    
4714
    s->timer[0] = omap_mpu_timer_init(0xfffec500,
4715
                    s->irq[0][OMAP_INT_TIMER1],
4716
                    omap_findclk(s, "mputim_ck"));
4717
    s->timer[1] = omap_mpu_timer_init(0xfffec600,
4718
                    s->irq[0][OMAP_INT_TIMER2],
4719
                    omap_findclk(s, "mputim_ck"));
4720
    s->timer[2] = omap_mpu_timer_init(0xfffec700,
4721
                    s->irq[0][OMAP_INT_TIMER3],
4722
                    omap_findclk(s, "mputim_ck"));
4723

    
4724
    s->wdt = omap_wd_timer_init(0xfffec800,
4725
                    s->irq[0][OMAP_INT_WD_TIMER],
4726
                    omap_findclk(s, "armwdt_ck"));
4727

    
4728
    s->os_timer = omap_os_timer_init(0xfffb9000,
4729
                    s->irq[1][OMAP_INT_OS_TIMER],
4730
                    omap_findclk(s, "clk32-kHz"));
4731

    
4732
    s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL],
4733
                    omap_dma_get_lcdch(s->dma), ds, imif_base, emiff_base,
4734
                    omap_findclk(s, "lcd_ck"));
4735

    
4736
    omap_ulpd_pm_init(0xfffe0800, s);
4737
    omap_pin_cfg_init(0xfffe1000, s);
4738
    omap_id_init(s);
4739

    
4740
    omap_mpui_init(0xfffec900, s);
4741

    
4742
    s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
4743
                    s->irq[0][OMAP_INT_BRIDGE_PRIV],
4744
                    omap_findclk(s, "tipb_ck"));
4745
    s->public_tipb = omap_tipb_bridge_init(0xfffed300,
4746
                    s->irq[0][OMAP_INT_BRIDGE_PUB],
4747
                    omap_findclk(s, "tipb_ck"));
4748

    
4749
    omap_tcmi_init(0xfffecc00, s);
4750

    
4751
    s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1],
4752
                    omap_findclk(s, "uart1_ck"),
4753
                    omap_findclk(s, "uart1_ck"),
4754
                    s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX],
4755
                    serial_hds[0]);
4756
    s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2],
4757
                    omap_findclk(s, "uart2_ck"),
4758
                    omap_findclk(s, "uart2_ck"),
4759
                    s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX],
4760
                    serial_hds[0] ? serial_hds[1] : 0);
4761
    s->uart[2] = omap_uart_init(0xe1019800, s->irq[0][OMAP_INT_UART3],
4762
                    omap_findclk(s, "uart3_ck"),
4763
                    omap_findclk(s, "uart3_ck"),
4764
                    s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX],
4765
                    serial_hds[0] && serial_hds[1] ? serial_hds[2] : 0);
4766

    
4767
    omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1"));
4768
    omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2"));
4769
    omap_dpll_init(&s->dpll[2], 0xfffed100, omap_findclk(s, "dpll3"));
4770

    
4771
    sdindex = drive_get_index(IF_SD, 0, 0);
4772
    if (sdindex == -1) {
4773
        fprintf(stderr, "qemu: missing SecureDigital device\n");
4774
        exit(1);
4775
    }
4776
    s->mmc = omap_mmc_init(0xfffb7800, drives_table[sdindex].bdrv,
4777
                    s->irq[1][OMAP_INT_OQN], &s->drq[OMAP_DMA_MMC_TX],
4778
                    omap_findclk(s, "mmc_ck"));
4779

    
4780
    s->mpuio = omap_mpuio_init(0xfffb5000,
4781
                    s->irq[1][OMAP_INT_KEYBOARD], s->irq[1][OMAP_INT_MPUIO],
4782
                    s->wakeup, omap_findclk(s, "clk32-kHz"));
4783

    
4784
    s->gpio = omap_gpio_init(0xfffce000, s->irq[0][OMAP_INT_GPIO_BANK1],
4785
                    omap_findclk(s, "arm_gpio_ck"));
4786

    
4787
    s->microwire = omap_uwire_init(0xfffb3000, &s->irq[1][OMAP_INT_uWireTX],
4788
                    s->drq[OMAP_DMA_UWIRE_TX], omap_findclk(s, "mpuper_ck"));
4789

    
4790
    omap_pwl_init(0xfffb5800, s, omap_findclk(s, "armxor_ck"));
4791
    omap_pwt_init(0xfffb6000, s, omap_findclk(s, "armxor_ck"));
4792

    
4793
    s->i2c[0] = omap_i2c_init(0xfffb3800, s->irq[1][OMAP_INT_I2C],
4794
                    &s->drq[OMAP_DMA_I2C_RX], omap_findclk(s, "mpuper_ck"));
4795

    
4796
    s->rtc = omap_rtc_init(0xfffb4800, &s->irq[1][OMAP_INT_RTC_TIMER],
4797
                    omap_findclk(s, "clk32-kHz"));
4798

    
4799
    s->mcbsp1 = omap_mcbsp_init(0xfffb1800, &s->irq[1][OMAP_INT_McBSP1TX],
4800
                    &s->drq[OMAP_DMA_MCBSP1_TX], omap_findclk(s, "dspxor_ck"));
4801
    s->mcbsp2 = omap_mcbsp_init(0xfffb1000, &s->irq[0][OMAP_INT_310_McBSP2_TX],
4802
                    &s->drq[OMAP_DMA_MCBSP2_TX], omap_findclk(s, "mpuper_ck"));
4803
    s->mcbsp3 = omap_mcbsp_init(0xfffb7000, &s->irq[1][OMAP_INT_McBSP3TX],
4804
                    &s->drq[OMAP_DMA_MCBSP3_TX], omap_findclk(s, "dspxor_ck"));
4805

    
4806
    s->led[0] = omap_lpg_init(0xfffbd000, omap_findclk(s, "clk32-kHz"));
4807
    s->led[1] = omap_lpg_init(0xfffbd800, omap_findclk(s, "clk32-kHz"));
4808

    
4809
    /* Register mappings not currenlty implemented:
4810
     * MCSI2 Comm        fffb2000 - fffb27ff (not mapped on OMAP310)
4811
     * MCSI1 Bluetooth        fffb2800 - fffb2fff (not mapped on OMAP310)
4812
     * USB W2FC                fffb4000 - fffb47ff
4813
     * Camera Interface        fffb6800 - fffb6fff
4814
     * USB Host                fffba000 - fffba7ff
4815
     * FAC                fffba800 - fffbafff
4816
     * HDQ/1-Wire        fffbc000 - fffbc7ff
4817
     * TIPB switches        fffbc800 - fffbcfff
4818
     * Mailbox                fffcf000 - fffcf7ff
4819
     * Local bus IF        fffec100 - fffec1ff
4820
     * Local bus MMU        fffec200 - fffec2ff
4821
     * DSP MMU                fffed200 - fffed2ff
4822
     */
4823

    
4824
    omap_setup_dsp_mapping(omap15xx_dsp_mm);
4825
    omap_setup_mpui_io(s);
4826

    
4827
    qemu_register_reset(omap1_mpu_reset, s);
4828

    
4829
    return s;
4830
}