Statistics
| Branch: | Revision:

root / cpu-exec.c @ eddf68a6

History | View | Annotate | Download (50.4 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
44
    defined(TARGET_ALPHA)
45
/* XXX: unify with i386 target */
46
void cpu_loop_exit(void)
47
{
48
    longjmp(env->jmp_env, 1);
49
}
50
#endif
51
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
52
#define reg_T2
53
#endif
54

    
55
/* exit the current TB from a signal handler. The host registers are
56
   restored in a state compatible with the CPU emulator
57
 */
58
void cpu_resume_from_signal(CPUState *env1, void *puc) 
59
{
60
#if !defined(CONFIG_SOFTMMU)
61
    struct ucontext *uc = puc;
62
#endif
63

    
64
    env = env1;
65

    
66
    /* XXX: restore cpu registers saved in host registers */
67

    
68
#if !defined(CONFIG_SOFTMMU)
69
    if (puc) {
70
        /* XXX: use siglongjmp ? */
71
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
72
    }
73
#endif
74
    longjmp(env->jmp_env, 1);
75
}
76

    
77

    
78
static TranslationBlock *tb_find_slow(target_ulong pc,
79
                                      target_ulong cs_base,
80
                                      unsigned int flags)
81
{
82
    TranslationBlock *tb, **ptb1;
83
    int code_gen_size;
84
    unsigned int h;
85
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
86
    uint8_t *tc_ptr;
87
    
88
    spin_lock(&tb_lock);
89

    
90
    tb_invalidated_flag = 0;
91
    
92
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
93
    
94
    /* find translated block using physical mappings */
95
    phys_pc = get_phys_addr_code(env, pc);
96
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
97
    phys_page2 = -1;
98
    h = tb_phys_hash_func(phys_pc);
99
    ptb1 = &tb_phys_hash[h];
100
    for(;;) {
101
        tb = *ptb1;
102
        if (!tb)
103
            goto not_found;
104
        if (tb->pc == pc && 
105
            tb->page_addr[0] == phys_page1 &&
106
            tb->cs_base == cs_base && 
107
            tb->flags == flags) {
108
            /* check next page if needed */
109
            if (tb->page_addr[1] != -1) {
110
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
111
                    TARGET_PAGE_SIZE;
112
                phys_page2 = get_phys_addr_code(env, virt_page2);
113
                if (tb->page_addr[1] == phys_page2)
114
                    goto found;
115
            } else {
116
                goto found;
117
            }
118
        }
119
        ptb1 = &tb->phys_hash_next;
120
    }
121
 not_found:
122
    /* if no translated code available, then translate it now */
123
    tb = tb_alloc(pc);
124
    if (!tb) {
125
        /* flush must be done */
126
        tb_flush(env);
127
        /* cannot fail at this point */
128
        tb = tb_alloc(pc);
129
        /* don't forget to invalidate previous TB info */
130
        tb_invalidated_flag = 1;
131
    }
132
    tc_ptr = code_gen_ptr;
133
    tb->tc_ptr = tc_ptr;
134
    tb->cs_base = cs_base;
135
    tb->flags = flags;
136
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
137
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
138
    
139
    /* check next page if needed */
140
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
141
    phys_page2 = -1;
142
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
143
        phys_page2 = get_phys_addr_code(env, virt_page2);
144
    }
145
    tb_link_phys(tb, phys_pc, phys_page2);
146
    
147
 found:
148
    /* we add the TB in the virtual pc hash table */
149
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
150
    spin_unlock(&tb_lock);
151
    return tb;
152
}
153

    
154
static inline TranslationBlock *tb_find_fast(void)
155
{
156
    TranslationBlock *tb;
157
    target_ulong cs_base, pc;
158
    unsigned int flags;
159

    
160
    /* we record a subset of the CPU state. It will
161
       always be the same before a given translated block
162
       is executed. */
163
#if defined(TARGET_I386)
164
    flags = env->hflags;
165
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
166
    cs_base = env->segs[R_CS].base;
167
    pc = cs_base + env->eip;
168
#elif defined(TARGET_ARM)
169
    flags = env->thumb | (env->vfp.vec_len << 1)
170
            | (env->vfp.vec_stride << 4);
171
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
172
        flags |= (1 << 6);
173
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
174
        flags |= (1 << 7);
175
    cs_base = 0;
176
    pc = env->regs[15];
177
#elif defined(TARGET_SPARC)
178
#ifdef TARGET_SPARC64
179
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
180
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
181
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
182
#else
183
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
184
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
185
        | env->psrs;
186
#endif
187
    cs_base = env->npc;
188
    pc = env->pc;
189
#elif defined(TARGET_PPC)
190
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
191
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
192
    cs_base = 0;
193
    pc = env->nip;
194
#elif defined(TARGET_MIPS)
195
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
196
    cs_base = 0;
197
    pc = env->PC;
198
#elif defined(TARGET_M68K)
199
    flags = env->fpcr & M68K_FPCR_PREC;
200
    cs_base = 0;
201
    pc = env->pc;
202
#elif defined(TARGET_SH4)
203
    flags = env->sr & (SR_MD | SR_RB);
204
    cs_base = 0;         /* XXXXX */
205
    pc = env->pc;
206
#elif defined(TARGET_ALPHA)
207
    flags = env->ps;
208
    cs_base = 0;
209
    pc = env->pc;
210
#else
211
#error unsupported CPU
212
#endif
213
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
214
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
215
                         tb->flags != flags, 0)) {
216
        tb = tb_find_slow(pc, cs_base, flags);
217
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
218
           doing it in tb_find_slow */
219
        if (tb_invalidated_flag) {
220
            /* as some TB could have been invalidated because
221
               of memory exceptions while generating the code, we
222
               must recompute the hash index here */
223
            T0 = 0;
224
        }
225
    }
226
    return tb;
227
}
228

    
229

    
230
/* main execution loop */
231

    
232
int cpu_exec(CPUState *env1)
233
{
234
#define DECLARE_HOST_REGS 1
235
#include "hostregs_helper.h"
236
#if defined(TARGET_SPARC)
237
#if defined(reg_REGWPTR)
238
    uint32_t *saved_regwptr;
239
#endif
240
#endif
241
#if defined(__sparc__) && !defined(HOST_SOLARIS)
242
    int saved_i7;
243
    target_ulong tmp_T0;
244
#endif
245
    int ret, interrupt_request;
246
    void (*gen_func)(void);
247
    TranslationBlock *tb;
248
    uint8_t *tc_ptr;
249

    
250
#if defined(TARGET_I386)
251
    /* handle exit of HALTED state */
252
    if (env1->hflags & HF_HALTED_MASK) {
253
        /* disable halt condition */
254
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
255
            (env1->eflags & IF_MASK)) {
256
            env1->hflags &= ~HF_HALTED_MASK;
257
        } else {
258
            return EXCP_HALTED;
259
        }
260
    }
261
#elif defined(TARGET_PPC)
262
    if (env1->halted) {
263
        if (env1->msr[MSR_EE] && 
264
            (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
265
            env1->halted = 0;
266
        } else {
267
            return EXCP_HALTED;
268
        }
269
    }
270
#elif defined(TARGET_SPARC)
271
    if (env1->halted) {
272
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273
            (env1->psret != 0)) {
274
            env1->halted = 0;
275
        } else {
276
            return EXCP_HALTED;
277
        }
278
    }
279
#elif defined(TARGET_ARM)
280
    if (env1->halted) {
281
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
282
           set.  */
283
        if (env1->interrupt_request
284
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
285
            env1->halted = 0;
286
        } else {
287
            return EXCP_HALTED;
288
        }
289
    }
290
#elif defined(TARGET_MIPS)
291
    if (env1->halted) {
292
        if (env1->interrupt_request &
293
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
294
            env1->halted = 0;
295
        } else {
296
            return EXCP_HALTED;
297
        }
298
    }
299
#elif defined(TARGET_ALPHA)
300
    if (env1->halted) {
301
        if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
302
            env1->halted = 0;
303
        } else {
304
            return EXCP_HALTED;
305
        }
306
    }
307
#endif
308

    
309
    cpu_single_env = env1; 
310

    
311
    /* first we save global registers */
312
#define SAVE_HOST_REGS 1
313
#include "hostregs_helper.h"
314
    env = env1;
315
#if defined(__sparc__) && !defined(HOST_SOLARIS)
316
    /* we also save i7 because longjmp may not restore it */
317
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
318
#endif
319

    
320
#if defined(TARGET_I386)
321
    env_to_regs();
322
    /* put eflags in CPU temporary format */
323
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
324
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
325
    CC_OP = CC_OP_EFLAGS;
326
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
327
#elif defined(TARGET_ARM)
328
#elif defined(TARGET_SPARC)
329
#if defined(reg_REGWPTR)
330
    saved_regwptr = REGWPTR;
331
#endif
332
#elif defined(TARGET_PPC)
333
#elif defined(TARGET_M68K)
334
    env->cc_op = CC_OP_FLAGS;
335
    env->cc_dest = env->sr & 0xf;
336
    env->cc_x = (env->sr >> 4) & 1;
337
#elif defined(TARGET_MIPS)
338
#elif defined(TARGET_SH4)
339
    /* XXXXX */
340
#elif defined(TARGET_ALPHA)
341
    env_to_regs();
342
#else
343
#error unsupported target CPU
344
#endif
345
    env->exception_index = -1;
346

    
347
    /* prepare setjmp context for exception handling */
348
    for(;;) {
349
        if (setjmp(env->jmp_env) == 0) {
350
            env->current_tb = NULL;
351
            /* if an exception is pending, we execute it here */
352
            if (env->exception_index >= 0) {
353
                if (env->exception_index >= EXCP_INTERRUPT) {
354
                    /* exit request from the cpu execution loop */
355
                    ret = env->exception_index;
356
                    break;
357
                } else if (env->user_mode_only) {
358
                    /* if user mode only, we simulate a fake exception
359
                       which will be handled outside the cpu execution
360
                       loop */
361
#if defined(TARGET_I386)
362
                    do_interrupt_user(env->exception_index, 
363
                                      env->exception_is_int, 
364
                                      env->error_code, 
365
                                      env->exception_next_eip);
366
#endif
367
                    ret = env->exception_index;
368
                    break;
369
                } else {
370
#if defined(TARGET_I386)
371
                    /* simulate a real cpu exception. On i386, it can
372
                       trigger new exceptions, but we do not handle
373
                       double or triple faults yet. */
374
                    do_interrupt(env->exception_index, 
375
                                 env->exception_is_int, 
376
                                 env->error_code, 
377
                                 env->exception_next_eip, 0);
378
                    /* successfully delivered */
379
                    env->old_exception = -1;
380
#elif defined(TARGET_PPC)
381
                    do_interrupt(env);
382
#elif defined(TARGET_MIPS)
383
                    do_interrupt(env);
384
#elif defined(TARGET_SPARC)
385
                    do_interrupt(env->exception_index);
386
#elif defined(TARGET_ARM)
387
                    do_interrupt(env);
388
#elif defined(TARGET_SH4)
389
                    do_interrupt(env);
390
#elif defined(TARGET_ALPHA)
391
                    do_interrupt(env);
392
#endif
393
                }
394
                env->exception_index = -1;
395
            } 
396
#ifdef USE_KQEMU
397
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
398
                int ret;
399
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
400
                ret = kqemu_cpu_exec(env);
401
                /* put eflags in CPU temporary format */
402
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
403
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
404
                CC_OP = CC_OP_EFLAGS;
405
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
406
                if (ret == 1) {
407
                    /* exception */
408
                    longjmp(env->jmp_env, 1);
409
                } else if (ret == 2) {
410
                    /* softmmu execution needed */
411
                } else {
412
                    if (env->interrupt_request != 0) {
413
                        /* hardware interrupt will be executed just after */
414
                    } else {
415
                        /* otherwise, we restart */
416
                        longjmp(env->jmp_env, 1);
417
                    }
418
                }
419
            }
420
#endif
421

    
422
            T0 = 0; /* force lookup of first TB */
423
            for(;;) {
424
#if defined(__sparc__) && !defined(HOST_SOLARIS)
425
                /* g1 can be modified by some libc? functions */ 
426
                tmp_T0 = T0;
427
#endif            
428
                interrupt_request = env->interrupt_request;
429
                if (__builtin_expect(interrupt_request, 0)) {
430
                    if (interrupt_request & CPU_INTERRUPT_DEBUG) {
431
                        env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
432
                        env->exception_index = EXCP_DEBUG;
433
                        cpu_loop_exit();
434
                    }
435
#if defined(TARGET_I386)
436
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
437
                        !(env->hflags & HF_SMM_MASK)) {
438
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
439
                        do_smm_enter();
440
#if defined(__sparc__) && !defined(HOST_SOLARIS)
441
                        tmp_T0 = 0;
442
#else
443
                        T0 = 0;
444
#endif
445
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
446
                        (env->eflags & IF_MASK) && 
447
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
448
                        int intno;
449
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
450
                        intno = cpu_get_pic_interrupt(env);
451
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
452
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
453
                        }
454
                        do_interrupt(intno, 0, 0, 0, 1);
455
                        /* ensure that no TB jump will be modified as
456
                           the program flow was changed */
457
#if defined(__sparc__) && !defined(HOST_SOLARIS)
458
                        tmp_T0 = 0;
459
#else
460
                        T0 = 0;
461
#endif
462
                    }
463
#elif defined(TARGET_PPC)
464
#if 0
465
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
466
                        cpu_ppc_reset(env);
467
                    }
468
#endif
469
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
470
                        if (ppc_hw_interrupt(env) == 1) {
471
                            /* Some exception was raised */
472
                            if (env->pending_interrupts == 0)
473
                                env->interrupt_request &= ~CPU_INTERRUPT_HARD;
474
#if defined(__sparc__) && !defined(HOST_SOLARIS)
475
                            tmp_T0 = 0;
476
#else
477
                            T0 = 0;
478
#endif
479
                        }
480
                    }
481
#elif defined(TARGET_MIPS)
482
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
483
                        (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
484
                        (env->CP0_Status & (1 << CP0St_IE)) &&
485
                        !(env->CP0_Status & (1 << CP0St_EXL)) &&
486
                        !(env->CP0_Status & (1 << CP0St_ERL)) &&
487
                        !(env->hflags & MIPS_HFLAG_DM)) {
488
                        /* Raise it */
489
                        env->exception_index = EXCP_EXT_INTERRUPT;
490
                        env->error_code = 0;
491
                        do_interrupt(env);
492
#if defined(__sparc__) && !defined(HOST_SOLARIS)
493
                        tmp_T0 = 0;
494
#else
495
                        T0 = 0;
496
#endif
497
                    }
498
#elif defined(TARGET_SPARC)
499
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
500
                        (env->psret != 0)) {
501
                        int pil = env->interrupt_index & 15;
502
                        int type = env->interrupt_index & 0xf0;
503

    
504
                        if (((type == TT_EXTINT) &&
505
                             (pil == 15 || pil > env->psrpil)) ||
506
                            type != TT_EXTINT) {
507
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
508
                            do_interrupt(env->interrupt_index);
509
                            env->interrupt_index = 0;
510
#if defined(__sparc__) && !defined(HOST_SOLARIS)
511
                            tmp_T0 = 0;
512
#else
513
                            T0 = 0;
514
#endif
515
                        }
516
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
517
                        //do_interrupt(0, 0, 0, 0, 0);
518
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
519
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
520
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
521
                        env->halted = 1;
522
                        env->exception_index = EXCP_HLT;
523
                        cpu_loop_exit();
524
                    }
525
#elif defined(TARGET_ARM)
526
                    if (interrupt_request & CPU_INTERRUPT_FIQ
527
                        && !(env->uncached_cpsr & CPSR_F)) {
528
                        env->exception_index = EXCP_FIQ;
529
                        do_interrupt(env);
530
                    }
531
                    if (interrupt_request & CPU_INTERRUPT_HARD
532
                        && !(env->uncached_cpsr & CPSR_I)) {
533
                        env->exception_index = EXCP_IRQ;
534
                        do_interrupt(env);
535
                    }
536
#elif defined(TARGET_SH4)
537
                    /* XXXXX */
538
#elif defined(TARGET_ALPHA)
539
                    if (interrupt_request & CPU_INTERRUPT_HARD) {
540
                        do_interrupt(env);
541
                    }
542
#endif
543
                   /* Don't use the cached interupt_request value,
544
                      do_interrupt may have updated the EXITTB flag. */
545
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
546
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
547
                        /* ensure that no TB jump will be modified as
548
                           the program flow was changed */
549
#if defined(__sparc__) && !defined(HOST_SOLARIS)
550
                        tmp_T0 = 0;
551
#else
552
                        T0 = 0;
553
#endif
554
                    }
555
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
556
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
557
                        env->exception_index = EXCP_INTERRUPT;
558
                        cpu_loop_exit();
559
                    }
560
                }
561
#ifdef DEBUG_EXEC
562
                if ((loglevel & CPU_LOG_TB_CPU)) {
563
#if defined(TARGET_I386)
564
                    /* restore flags in standard format */
565
#ifdef reg_EAX
566
                    env->regs[R_EAX] = EAX;
567
#endif
568
#ifdef reg_EBX
569
                    env->regs[R_EBX] = EBX;
570
#endif
571
#ifdef reg_ECX
572
                    env->regs[R_ECX] = ECX;
573
#endif
574
#ifdef reg_EDX
575
                    env->regs[R_EDX] = EDX;
576
#endif
577
#ifdef reg_ESI
578
                    env->regs[R_ESI] = ESI;
579
#endif
580
#ifdef reg_EDI
581
                    env->regs[R_EDI] = EDI;
582
#endif
583
#ifdef reg_EBP
584
                    env->regs[R_EBP] = EBP;
585
#endif
586
#ifdef reg_ESP
587
                    env->regs[R_ESP] = ESP;
588
#endif
589
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
590
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
591
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
592
#elif defined(TARGET_ARM)
593
                    cpu_dump_state(env, logfile, fprintf, 0);
594
#elif defined(TARGET_SPARC)
595
                    REGWPTR = env->regbase + (env->cwp * 16);
596
                    env->regwptr = REGWPTR;
597
                    cpu_dump_state(env, logfile, fprintf, 0);
598
#elif defined(TARGET_PPC)
599
                    cpu_dump_state(env, logfile, fprintf, 0);
600
#elif defined(TARGET_M68K)
601
                    cpu_m68k_flush_flags(env, env->cc_op);
602
                    env->cc_op = CC_OP_FLAGS;
603
                    env->sr = (env->sr & 0xffe0)
604
                              | env->cc_dest | (env->cc_x << 4);
605
                    cpu_dump_state(env, logfile, fprintf, 0);
606
#elif defined(TARGET_MIPS)
607
                    cpu_dump_state(env, logfile, fprintf, 0);
608
#elif defined(TARGET_SH4)
609
                    cpu_dump_state(env, logfile, fprintf, 0);
610
#elif defined(TARGET_ALPHA)
611
                    cpu_dump_state(env, logfile, fprintf, 0);
612
#else
613
#error unsupported target CPU 
614
#endif
615
                }
616
#endif
617
                tb = tb_find_fast();
618
#ifdef DEBUG_EXEC
619
                if ((loglevel & CPU_LOG_EXEC)) {
620
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
621
                            (long)tb->tc_ptr, tb->pc,
622
                            lookup_symbol(tb->pc));
623
                }
624
#endif
625
#if defined(__sparc__) && !defined(HOST_SOLARIS)
626
                T0 = tmp_T0;
627
#endif            
628
                /* see if we can patch the calling TB. When the TB
629
                   spans two pages, we cannot safely do a direct
630
                   jump. */
631
                {
632
                    if (T0 != 0 &&
633
#if USE_KQEMU
634
                        (env->kqemu_enabled != 2) &&
635
#endif
636
                        tb->page_addr[1] == -1
637
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
638
                    && (tb->cflags & CF_CODE_COPY) == 
639
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
640
#endif
641
                    ) {
642
                    spin_lock(&tb_lock);
643
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
644
#if defined(USE_CODE_COPY)
645
                    /* propagates the FP use info */
646
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
647
                        (tb->cflags & CF_FP_USED);
648
#endif
649
                    spin_unlock(&tb_lock);
650
                }
651
                }
652
                tc_ptr = tb->tc_ptr;
653
                env->current_tb = tb;
654
                /* execute the generated code */
655
                gen_func = (void *)tc_ptr;
656
#if defined(__sparc__)
657
                __asm__ __volatile__("call        %0\n\t"
658
                                     "mov        %%o7,%%i0"
659
                                     : /* no outputs */
660
                                     : "r" (gen_func) 
661
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
662
                                       "o0", "o1", "o2", "o3", "o4", "o5",
663
                                       "l0", "l1", "l2", "l3", "l4", "l5",
664
                                       "l6", "l7");
665
#elif defined(__arm__)
666
                asm volatile ("mov pc, %0\n\t"
667
                              ".global exec_loop\n\t"
668
                              "exec_loop:\n\t"
669
                              : /* no outputs */
670
                              : "r" (gen_func)
671
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
672
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
673
{
674
    if (!(tb->cflags & CF_CODE_COPY)) {
675
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
676
            save_native_fp_state(env);
677
        }
678
        gen_func();
679
    } else {
680
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
681
            restore_native_fp_state(env);
682
        }
683
        /* we work with native eflags */
684
        CC_SRC = cc_table[CC_OP].compute_all();
685
        CC_OP = CC_OP_EFLAGS;
686
        asm(".globl exec_loop\n"
687
            "\n"
688
            "debug1:\n"
689
            "    pushl %%ebp\n"
690
            "    fs movl %10, %9\n"
691
            "    fs movl %11, %%eax\n"
692
            "    andl $0x400, %%eax\n"
693
            "    fs orl %8, %%eax\n"
694
            "    pushl %%eax\n"
695
            "    popf\n"
696
            "    fs movl %%esp, %12\n"
697
            "    fs movl %0, %%eax\n"
698
            "    fs movl %1, %%ecx\n"
699
            "    fs movl %2, %%edx\n"
700
            "    fs movl %3, %%ebx\n"
701
            "    fs movl %4, %%esp\n"
702
            "    fs movl %5, %%ebp\n"
703
            "    fs movl %6, %%esi\n"
704
            "    fs movl %7, %%edi\n"
705
            "    fs jmp *%9\n"
706
            "exec_loop:\n"
707
            "    fs movl %%esp, %4\n"
708
            "    fs movl %12, %%esp\n"
709
            "    fs movl %%eax, %0\n"
710
            "    fs movl %%ecx, %1\n"
711
            "    fs movl %%edx, %2\n"
712
            "    fs movl %%ebx, %3\n"
713
            "    fs movl %%ebp, %5\n"
714
            "    fs movl %%esi, %6\n"
715
            "    fs movl %%edi, %7\n"
716
            "    pushf\n"
717
            "    popl %%eax\n"
718
            "    movl %%eax, %%ecx\n"
719
            "    andl $0x400, %%ecx\n"
720
            "    shrl $9, %%ecx\n"
721
            "    andl $0x8d5, %%eax\n"
722
            "    fs movl %%eax, %8\n"
723
            "    movl $1, %%eax\n"
724
            "    subl %%ecx, %%eax\n"
725
            "    fs movl %%eax, %11\n"
726
            "    fs movl %9, %%ebx\n" /* get T0 value */
727
            "    popl %%ebp\n"
728
            :
729
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
730
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
731
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
732
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
733
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
734
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
735
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
736
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
737
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
738
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
739
            "a" (gen_func),
740
            "m" (*(uint8_t *)offsetof(CPUState, df)),
741
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
742
            : "%ecx", "%edx"
743
            );
744
    }
745
}
746
#elif defined(__ia64)
747
                struct fptr {
748
                        void *ip;
749
                        void *gp;
750
                } fp;
751

    
752
                fp.ip = tc_ptr;
753
                fp.gp = code_gen_buffer + 2 * (1 << 20);
754
                (*(void (*)(void)) &fp)();
755
#else
756
                gen_func();
757
#endif
758
                env->current_tb = NULL;
759
                /* reset soft MMU for next block (it can currently
760
                   only be set by a memory fault) */
761
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
762
                if (env->hflags & HF_SOFTMMU_MASK) {
763
                    env->hflags &= ~HF_SOFTMMU_MASK;
764
                    /* do not allow linking to another block */
765
                    T0 = 0;
766
                }
767
#endif
768
#if defined(USE_KQEMU)
769
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
770
                if (kqemu_is_ok(env) &&
771
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
772
                    cpu_loop_exit();
773
                }
774
#endif
775
            }
776
        } else {
777
            env_to_regs();
778
        }
779
    } /* for(;;) */
780

    
781

    
782
#if defined(TARGET_I386)
783
#if defined(USE_CODE_COPY)
784
    if (env->native_fp_regs) {
785
        save_native_fp_state(env);
786
    }
787
#endif
788
    /* restore flags in standard format */
789
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
790
#elif defined(TARGET_ARM)
791
    /* XXX: Save/restore host fpu exception state?.  */
792
#elif defined(TARGET_SPARC)
793
#if defined(reg_REGWPTR)
794
    REGWPTR = saved_regwptr;
795
#endif
796
#elif defined(TARGET_PPC)
797
#elif defined(TARGET_M68K)
798
    cpu_m68k_flush_flags(env, env->cc_op);
799
    env->cc_op = CC_OP_FLAGS;
800
    env->sr = (env->sr & 0xffe0)
801
              | env->cc_dest | (env->cc_x << 4);
802
#elif defined(TARGET_MIPS)
803
#elif defined(TARGET_SH4)
804
#elif defined(TARGET_ALPHA)
805
    /* XXXXX */
806
#else
807
#error unsupported target CPU
808
#endif
809

    
810
    /* restore global registers */
811
#if defined(__sparc__) && !defined(HOST_SOLARIS)
812
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
813
#endif
814
#include "hostregs_helper.h"
815

    
816
    /* fail safe : never use cpu_single_env outside cpu_exec() */
817
    cpu_single_env = NULL; 
818
    return ret;
819
}
820

    
821
/* must only be called from the generated code as an exception can be
822
   generated */
823
void tb_invalidate_page_range(target_ulong start, target_ulong end)
824
{
825
    /* XXX: cannot enable it yet because it yields to MMU exception
826
       where NIP != read address on PowerPC */
827
#if 0
828
    target_ulong phys_addr;
829
    phys_addr = get_phys_addr_code(env, start);
830
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
831
#endif
832
}
833

    
834
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
835

    
836
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
837
{
838
    CPUX86State *saved_env;
839

    
840
    saved_env = env;
841
    env = s;
842
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
843
        selector &= 0xffff;
844
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
845
                               (selector << 4), 0xffff, 0);
846
    } else {
847
        load_seg(seg_reg, selector);
848
    }
849
    env = saved_env;
850
}
851

    
852
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
853
{
854
    CPUX86State *saved_env;
855

    
856
    saved_env = env;
857
    env = s;
858
    
859
    helper_fsave((target_ulong)ptr, data32);
860

    
861
    env = saved_env;
862
}
863

    
864
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
865
{
866
    CPUX86State *saved_env;
867

    
868
    saved_env = env;
869
    env = s;
870
    
871
    helper_frstor((target_ulong)ptr, data32);
872

    
873
    env = saved_env;
874
}
875

    
876
#endif /* TARGET_I386 */
877

    
878
#if !defined(CONFIG_SOFTMMU)
879

    
880
#if defined(TARGET_I386)
881

    
882
/* 'pc' is the host PC at which the exception was raised. 'address' is
883
   the effective address of the memory exception. 'is_write' is 1 if a
884
   write caused the exception and otherwise 0'. 'old_set' is the
885
   signal set which should be restored */
886
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
887
                                    int is_write, sigset_t *old_set, 
888
                                    void *puc)
889
{
890
    TranslationBlock *tb;
891
    int ret;
892

    
893
    if (cpu_single_env)
894
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
895
#if defined(DEBUG_SIGNAL)
896
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
897
                pc, address, is_write, *(unsigned long *)old_set);
898
#endif
899
    /* XXX: locking issue */
900
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
901
        return 1;
902
    }
903

    
904
    /* see if it is an MMU fault */
905
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
906
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
907
    if (ret < 0)
908
        return 0; /* not an MMU fault */
909
    if (ret == 0)
910
        return 1; /* the MMU fault was handled without causing real CPU fault */
911
    /* now we have a real cpu fault */
912
    tb = tb_find_pc(pc);
913
    if (tb) {
914
        /* the PC is inside the translated code. It means that we have
915
           a virtual CPU fault */
916
        cpu_restore_state(tb, env, pc, puc);
917
    }
918
    if (ret == 1) {
919
#if 0
920
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
921
               env->eip, env->cr[2], env->error_code);
922
#endif
923
        /* we restore the process signal mask as the sigreturn should
924
           do it (XXX: use sigsetjmp) */
925
        sigprocmask(SIG_SETMASK, old_set, NULL);
926
        raise_exception_err(env->exception_index, env->error_code);
927
    } else {
928
        /* activate soft MMU for this block */
929
        env->hflags |= HF_SOFTMMU_MASK;
930
        cpu_resume_from_signal(env, puc);
931
    }
932
    /* never comes here */
933
    return 1;
934
}
935

    
936
#elif defined(TARGET_ARM)
937
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
938
                                    int is_write, sigset_t *old_set,
939
                                    void *puc)
940
{
941
    TranslationBlock *tb;
942
    int ret;
943

    
944
    if (cpu_single_env)
945
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
946
#if defined(DEBUG_SIGNAL)
947
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
948
           pc, address, is_write, *(unsigned long *)old_set);
949
#endif
950
    /* XXX: locking issue */
951
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
952
        return 1;
953
    }
954
    /* see if it is an MMU fault */
955
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
956
    if (ret < 0)
957
        return 0; /* not an MMU fault */
958
    if (ret == 0)
959
        return 1; /* the MMU fault was handled without causing real CPU fault */
960
    /* now we have a real cpu fault */
961
    tb = tb_find_pc(pc);
962
    if (tb) {
963
        /* the PC is inside the translated code. It means that we have
964
           a virtual CPU fault */
965
        cpu_restore_state(tb, env, pc, puc);
966
    }
967
    /* we restore the process signal mask as the sigreturn should
968
       do it (XXX: use sigsetjmp) */
969
    sigprocmask(SIG_SETMASK, old_set, NULL);
970
    cpu_loop_exit();
971
}
972
#elif defined(TARGET_SPARC)
973
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
974
                                    int is_write, sigset_t *old_set,
975
                                    void *puc)
976
{
977
    TranslationBlock *tb;
978
    int ret;
979

    
980
    if (cpu_single_env)
981
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
982
#if defined(DEBUG_SIGNAL)
983
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
984
           pc, address, is_write, *(unsigned long *)old_set);
985
#endif
986
    /* XXX: locking issue */
987
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
988
        return 1;
989
    }
990
    /* see if it is an MMU fault */
991
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
992
    if (ret < 0)
993
        return 0; /* not an MMU fault */
994
    if (ret == 0)
995
        return 1; /* the MMU fault was handled without causing real CPU fault */
996
    /* now we have a real cpu fault */
997
    tb = tb_find_pc(pc);
998
    if (tb) {
999
        /* the PC is inside the translated code. It means that we have
1000
           a virtual CPU fault */
1001
        cpu_restore_state(tb, env, pc, puc);
1002
    }
1003
    /* we restore the process signal mask as the sigreturn should
1004
       do it (XXX: use sigsetjmp) */
1005
    sigprocmask(SIG_SETMASK, old_set, NULL);
1006
    cpu_loop_exit();
1007
}
1008
#elif defined (TARGET_PPC)
1009
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1010
                                    int is_write, sigset_t *old_set,
1011
                                    void *puc)
1012
{
1013
    TranslationBlock *tb;
1014
    int ret;
1015
    
1016
    if (cpu_single_env)
1017
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1018
#if defined(DEBUG_SIGNAL)
1019
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1020
           pc, address, is_write, *(unsigned long *)old_set);
1021
#endif
1022
    /* XXX: locking issue */
1023
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1024
        return 1;
1025
    }
1026

    
1027
    /* see if it is an MMU fault */
1028
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1029
    if (ret < 0)
1030
        return 0; /* not an MMU fault */
1031
    if (ret == 0)
1032
        return 1; /* the MMU fault was handled without causing real CPU fault */
1033

    
1034
    /* now we have a real cpu fault */
1035
    tb = tb_find_pc(pc);
1036
    if (tb) {
1037
        /* the PC is inside the translated code. It means that we have
1038
           a virtual CPU fault */
1039
        cpu_restore_state(tb, env, pc, puc);
1040
    }
1041
    if (ret == 1) {
1042
#if 0
1043
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1044
               env->nip, env->error_code, tb);
1045
#endif
1046
    /* we restore the process signal mask as the sigreturn should
1047
       do it (XXX: use sigsetjmp) */
1048
        sigprocmask(SIG_SETMASK, old_set, NULL);
1049
        do_raise_exception_err(env->exception_index, env->error_code);
1050
    } else {
1051
        /* activate soft MMU for this block */
1052
        cpu_resume_from_signal(env, puc);
1053
    }
1054
    /* never comes here */
1055
    return 1;
1056
}
1057

    
1058
#elif defined(TARGET_M68K)
1059
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1060
                                    int is_write, sigset_t *old_set,
1061
                                    void *puc)
1062
{
1063
    TranslationBlock *tb;
1064
    int ret;
1065

    
1066
    if (cpu_single_env)
1067
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1068
#if defined(DEBUG_SIGNAL)
1069
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1070
           pc, address, is_write, *(unsigned long *)old_set);
1071
#endif
1072
    /* XXX: locking issue */
1073
    if (is_write && page_unprotect(address, pc, puc)) {
1074
        return 1;
1075
    }
1076
    /* see if it is an MMU fault */
1077
    ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
1078
    if (ret < 0)
1079
        return 0; /* not an MMU fault */
1080
    if (ret == 0)
1081
        return 1; /* the MMU fault was handled without causing real CPU fault */
1082
    /* now we have a real cpu fault */
1083
    tb = tb_find_pc(pc);
1084
    if (tb) {
1085
        /* the PC is inside the translated code. It means that we have
1086
           a virtual CPU fault */
1087
        cpu_restore_state(tb, env, pc, puc);
1088
    }
1089
    /* we restore the process signal mask as the sigreturn should
1090
       do it (XXX: use sigsetjmp) */
1091
    sigprocmask(SIG_SETMASK, old_set, NULL);
1092
    cpu_loop_exit();
1093
    /* never comes here */
1094
    return 1;
1095
}
1096

    
1097
#elif defined (TARGET_MIPS)
1098
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1099
                                    int is_write, sigset_t *old_set,
1100
                                    void *puc)
1101
{
1102
    TranslationBlock *tb;
1103
    int ret;
1104
    
1105
    if (cpu_single_env)
1106
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1107
#if defined(DEBUG_SIGNAL)
1108
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1109
           pc, address, is_write, *(unsigned long *)old_set);
1110
#endif
1111
    /* XXX: locking issue */
1112
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1113
        return 1;
1114
    }
1115

    
1116
    /* see if it is an MMU fault */
1117
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1118
    if (ret < 0)
1119
        return 0; /* not an MMU fault */
1120
    if (ret == 0)
1121
        return 1; /* the MMU fault was handled without causing real CPU fault */
1122

    
1123
    /* now we have a real cpu fault */
1124
    tb = tb_find_pc(pc);
1125
    if (tb) {
1126
        /* the PC is inside the translated code. It means that we have
1127
           a virtual CPU fault */
1128
        cpu_restore_state(tb, env, pc, puc);
1129
    }
1130
    if (ret == 1) {
1131
#if 0
1132
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1133
               env->nip, env->error_code, tb);
1134
#endif
1135
    /* we restore the process signal mask as the sigreturn should
1136
       do it (XXX: use sigsetjmp) */
1137
        sigprocmask(SIG_SETMASK, old_set, NULL);
1138
        do_raise_exception_err(env->exception_index, env->error_code);
1139
    } else {
1140
        /* activate soft MMU for this block */
1141
        cpu_resume_from_signal(env, puc);
1142
    }
1143
    /* never comes here */
1144
    return 1;
1145
}
1146

    
1147
#elif defined (TARGET_SH4)
1148
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1149
                                    int is_write, sigset_t *old_set,
1150
                                    void *puc)
1151
{
1152
    TranslationBlock *tb;
1153
    int ret;
1154
    
1155
    if (cpu_single_env)
1156
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1157
#if defined(DEBUG_SIGNAL)
1158
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1159
           pc, address, is_write, *(unsigned long *)old_set);
1160
#endif
1161
    /* XXX: locking issue */
1162
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1163
        return 1;
1164
    }
1165

    
1166
    /* see if it is an MMU fault */
1167
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1168
    if (ret < 0)
1169
        return 0; /* not an MMU fault */
1170
    if (ret == 0)
1171
        return 1; /* the MMU fault was handled without causing real CPU fault */
1172

    
1173
    /* now we have a real cpu fault */
1174
    tb = tb_find_pc(pc);
1175
    if (tb) {
1176
        /* the PC is inside the translated code. It means that we have
1177
           a virtual CPU fault */
1178
        cpu_restore_state(tb, env, pc, puc);
1179
    }
1180
#if 0
1181
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1182
               env->nip, env->error_code, tb);
1183
#endif
1184
    /* we restore the process signal mask as the sigreturn should
1185
       do it (XXX: use sigsetjmp) */
1186
    sigprocmask(SIG_SETMASK, old_set, NULL);
1187
    cpu_loop_exit();
1188
    /* never comes here */
1189
    return 1;
1190
}
1191

    
1192
#elif defined (TARGET_ALPHA)
1193
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1194
                                    int is_write, sigset_t *old_set,
1195
                                    void *puc)
1196
{
1197
    TranslationBlock *tb;
1198
    int ret;
1199
    
1200
    if (cpu_single_env)
1201
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1202
#if defined(DEBUG_SIGNAL)
1203
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1204
           pc, address, is_write, *(unsigned long *)old_set);
1205
#endif
1206
    /* XXX: locking issue */
1207
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1208
        return 1;
1209
    }
1210

    
1211
    /* see if it is an MMU fault */
1212
    ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
1213
    if (ret < 0)
1214
        return 0; /* not an MMU fault */
1215
    if (ret == 0)
1216
        return 1; /* the MMU fault was handled without causing real CPU fault */
1217

    
1218
    /* now we have a real cpu fault */
1219
    tb = tb_find_pc(pc);
1220
    if (tb) {
1221
        /* the PC is inside the translated code. It means that we have
1222
           a virtual CPU fault */
1223
        cpu_restore_state(tb, env, pc, puc);
1224
    }
1225
#if 0
1226
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1227
               env->nip, env->error_code, tb);
1228
#endif
1229
    /* we restore the process signal mask as the sigreturn should
1230
       do it (XXX: use sigsetjmp) */
1231
    sigprocmask(SIG_SETMASK, old_set, NULL);
1232
    cpu_loop_exit();
1233
    /* never comes here */
1234
    return 1;
1235
}
1236
#else
1237
#error unsupported target CPU
1238
#endif
1239

    
1240
#if defined(__i386__)
1241

    
1242
#if defined(__APPLE__)
1243
# include <sys/ucontext.h>
1244

    
1245
# define EIP_sig(context)  (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1246
# define TRAP_sig(context)    ((context)->uc_mcontext->es.trapno)
1247
# define ERROR_sig(context)   ((context)->uc_mcontext->es.err)
1248
#else
1249
# define EIP_sig(context)     ((context)->uc_mcontext.gregs[REG_EIP])
1250
# define TRAP_sig(context)    ((context)->uc_mcontext.gregs[REG_TRAPNO])
1251
# define ERROR_sig(context)   ((context)->uc_mcontext.gregs[REG_ERR])
1252
#endif
1253

    
1254
#if defined(USE_CODE_COPY)
1255
static void cpu_send_trap(unsigned long pc, int trap, 
1256
                          struct ucontext *uc)
1257
{
1258
    TranslationBlock *tb;
1259

    
1260
    if (cpu_single_env)
1261
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1262
    /* now we have a real cpu fault */
1263
    tb = tb_find_pc(pc);
1264
    if (tb) {
1265
        /* the PC is inside the translated code. It means that we have
1266
           a virtual CPU fault */
1267
        cpu_restore_state(tb, env, pc, uc);
1268
    }
1269
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1270
    raise_exception_err(trap, env->error_code);
1271
}
1272
#endif
1273

    
1274
int cpu_signal_handler(int host_signum, void *pinfo, 
1275
                       void *puc)
1276
{
1277
    siginfo_t *info = pinfo;
1278
    struct ucontext *uc = puc;
1279
    unsigned long pc;
1280
    int trapno;
1281

    
1282
#ifndef REG_EIP
1283
/* for glibc 2.1 */
1284
#define REG_EIP    EIP
1285
#define REG_ERR    ERR
1286
#define REG_TRAPNO TRAPNO
1287
#endif
1288
    pc = EIP_sig(uc);
1289
    trapno = TRAP_sig(uc);
1290
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1291
    if (trapno == 0x00 || trapno == 0x05) {
1292
        /* send division by zero or bound exception */
1293
        cpu_send_trap(pc, trapno, uc);
1294
        return 1;
1295
    } else
1296
#endif
1297
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1298
                                 trapno == 0xe ? 
1299
                                 (ERROR_sig(uc) >> 1) & 1 : 0,
1300
                                 &uc->uc_sigmask, puc);
1301
}
1302

    
1303
#elif defined(__x86_64__)
1304

    
1305
int cpu_signal_handler(int host_signum, void *pinfo,
1306
                       void *puc)
1307
{
1308
    siginfo_t *info = pinfo;
1309
    struct ucontext *uc = puc;
1310
    unsigned long pc;
1311

    
1312
    pc = uc->uc_mcontext.gregs[REG_RIP];
1313
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1314
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1315
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1316
                             &uc->uc_sigmask, puc);
1317
}
1318

    
1319
#elif defined(__powerpc__)
1320

    
1321
/***********************************************************************
1322
 * signal context platform-specific definitions
1323
 * From Wine
1324
 */
1325
#ifdef linux
1326
/* All Registers access - only for local access */
1327
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1328
/* Gpr Registers access  */
1329
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1330
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1331
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1332
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1333
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1334
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1335
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1336
/* Float Registers access  */
1337
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1338
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1339
/* Exception Registers access */
1340
# define DAR_sig(context)                        REG_sig(dar, context)
1341
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1342
# define TRAP_sig(context)                        REG_sig(trap, context)
1343
#endif /* linux */
1344

    
1345
#ifdef __APPLE__
1346
# include <sys/ucontext.h>
1347
typedef struct ucontext SIGCONTEXT;
1348
/* All Registers access - only for local access */
1349
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1350
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1351
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1352
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1353
/* Gpr Registers access */
1354
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1355
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1356
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1357
# define CTR_sig(context)                        REG_sig(ctr, context)
1358
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1359
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1360
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1361
/* Float Registers access */
1362
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1363
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1364
/* Exception Registers access */
1365
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1366
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1367
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1368
#endif /* __APPLE__ */
1369

    
1370
int cpu_signal_handler(int host_signum, void *pinfo, 
1371
                       void *puc)
1372
{
1373
    siginfo_t *info = pinfo;
1374
    struct ucontext *uc = puc;
1375
    unsigned long pc;
1376
    int is_write;
1377

    
1378
    pc = IAR_sig(uc);
1379
    is_write = 0;
1380
#if 0
1381
    /* ppc 4xx case */
1382
    if (DSISR_sig(uc) & 0x00800000)
1383
        is_write = 1;
1384
#else
1385
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1386
        is_write = 1;
1387
#endif
1388
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1389
                             is_write, &uc->uc_sigmask, puc);
1390
}
1391

    
1392
#elif defined(__alpha__)
1393

    
1394
int cpu_signal_handler(int host_signum, void *pinfo, 
1395
                           void *puc)
1396
{
1397
    siginfo_t *info = pinfo;
1398
    struct ucontext *uc = puc;
1399
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1400
    uint32_t insn = *pc;
1401
    int is_write = 0;
1402

    
1403
    /* XXX: need kernel patch to get write flag faster */
1404
    switch (insn >> 26) {
1405
    case 0x0d: // stw
1406
    case 0x0e: // stb
1407
    case 0x0f: // stq_u
1408
    case 0x24: // stf
1409
    case 0x25: // stg
1410
    case 0x26: // sts
1411
    case 0x27: // stt
1412
    case 0x2c: // stl
1413
    case 0x2d: // stq
1414
    case 0x2e: // stl_c
1415
    case 0x2f: // stq_c
1416
        is_write = 1;
1417
    }
1418

    
1419
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1420
                             is_write, &uc->uc_sigmask, puc);
1421
}
1422
#elif defined(__sparc__)
1423

    
1424
int cpu_signal_handler(int host_signum, void *pinfo, 
1425
                       void *puc)
1426
{
1427
    siginfo_t *info = pinfo;
1428
    uint32_t *regs = (uint32_t *)(info + 1);
1429
    void *sigmask = (regs + 20);
1430
    unsigned long pc;
1431
    int is_write;
1432
    uint32_t insn;
1433
    
1434
    /* XXX: is there a standard glibc define ? */
1435
    pc = regs[1];
1436
    /* XXX: need kernel patch to get write flag faster */
1437
    is_write = 0;
1438
    insn = *(uint32_t *)pc;
1439
    if ((insn >> 30) == 3) {
1440
      switch((insn >> 19) & 0x3f) {
1441
      case 0x05: // stb
1442
      case 0x06: // sth
1443
      case 0x04: // st
1444
      case 0x07: // std
1445
      case 0x24: // stf
1446
      case 0x27: // stdf
1447
      case 0x25: // stfsr
1448
        is_write = 1;
1449
        break;
1450
      }
1451
    }
1452
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1453
                             is_write, sigmask, NULL);
1454
}
1455

    
1456
#elif defined(__arm__)
1457

    
1458
int cpu_signal_handler(int host_signum, void *pinfo, 
1459
                       void *puc)
1460
{
1461
    siginfo_t *info = pinfo;
1462
    struct ucontext *uc = puc;
1463
    unsigned long pc;
1464
    int is_write;
1465
    
1466
    pc = uc->uc_mcontext.gregs[R15];
1467
    /* XXX: compute is_write */
1468
    is_write = 0;
1469
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1470
                             is_write,
1471
                             &uc->uc_sigmask, puc);
1472
}
1473

    
1474
#elif defined(__mc68000)
1475

    
1476
int cpu_signal_handler(int host_signum, void *pinfo, 
1477
                       void *puc)
1478
{
1479
    siginfo_t *info = pinfo;
1480
    struct ucontext *uc = puc;
1481
    unsigned long pc;
1482
    int is_write;
1483
    
1484
    pc = uc->uc_mcontext.gregs[16];
1485
    /* XXX: compute is_write */
1486
    is_write = 0;
1487
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1488
                             is_write,
1489
                             &uc->uc_sigmask, puc);
1490
}
1491

    
1492
#elif defined(__ia64)
1493

    
1494
#ifndef __ISR_VALID
1495
  /* This ought to be in <bits/siginfo.h>... */
1496
# define __ISR_VALID        1
1497
#endif
1498

    
1499
int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
1500
{
1501
    siginfo_t *info = pinfo;
1502
    struct ucontext *uc = puc;
1503
    unsigned long ip;
1504
    int is_write = 0;
1505

    
1506
    ip = uc->uc_mcontext.sc_ip;
1507
    switch (host_signum) {
1508
      case SIGILL:
1509
      case SIGFPE:
1510
      case SIGSEGV:
1511
      case SIGBUS:
1512
      case SIGTRAP:
1513
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1514
              /* ISR.W (write-access) is bit 33:  */
1515
              is_write = (info->si_isr >> 33) & 1;
1516
          break;
1517

    
1518
      default:
1519
          break;
1520
    }
1521
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1522
                             is_write,
1523
                             &uc->uc_sigmask, puc);
1524
}
1525

    
1526
#elif defined(__s390__)
1527

    
1528
int cpu_signal_handler(int host_signum, void *pinfo, 
1529
                       void *puc)
1530
{
1531
    siginfo_t *info = pinfo;
1532
    struct ucontext *uc = puc;
1533
    unsigned long pc;
1534
    int is_write;
1535
    
1536
    pc = uc->uc_mcontext.psw.addr;
1537
    /* XXX: compute is_write */
1538
    is_write = 0;
1539
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1540
                             is_write,
1541
                             &uc->uc_sigmask, puc);
1542
}
1543

    
1544
#else
1545

    
1546
#error host CPU specific signal handler needed
1547

    
1548
#endif
1549

    
1550
#endif /* !defined(CONFIG_SOFTMMU) */