Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ ee0b03fd

History | View | Annotate | Download (40.8 kB)

1 e8af50a3 bellard
#include "exec.h"
2 e8af50a3 bellard
3 83469015 bellard
//#define DEBUG_PCALL
4 e80cfcfc bellard
//#define DEBUG_MMU
5 94554550 blueswir1
//#define DEBUG_UNALIGNED
6 6c36d3fa blueswir1
//#define DEBUG_UNASSIGNED
7 e80cfcfc bellard
8 9d893301 bellard
void raise_exception(int tt)
9 9d893301 bellard
{
10 9d893301 bellard
    env->exception_index = tt;
11 9d893301 bellard
    cpu_loop_exit();
12 3b46e624 ths
}
13 9d893301 bellard
14 417454b0 blueswir1
void check_ieee_exceptions()
15 417454b0 blueswir1
{
16 417454b0 blueswir1
     T0 = get_float_exception_flags(&env->fp_status);
17 417454b0 blueswir1
     if (T0)
18 417454b0 blueswir1
     {
19 0f8a249a blueswir1
        /* Copy IEEE 754 flags into FSR */
20 0f8a249a blueswir1
        if (T0 & float_flag_invalid)
21 0f8a249a blueswir1
            env->fsr |= FSR_NVC;
22 0f8a249a blueswir1
        if (T0 & float_flag_overflow)
23 0f8a249a blueswir1
            env->fsr |= FSR_OFC;
24 0f8a249a blueswir1
        if (T0 & float_flag_underflow)
25 0f8a249a blueswir1
            env->fsr |= FSR_UFC;
26 0f8a249a blueswir1
        if (T0 & float_flag_divbyzero)
27 0f8a249a blueswir1
            env->fsr |= FSR_DZC;
28 0f8a249a blueswir1
        if (T0 & float_flag_inexact)
29 0f8a249a blueswir1
            env->fsr |= FSR_NXC;
30 0f8a249a blueswir1
31 0f8a249a blueswir1
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
32 0f8a249a blueswir1
        {
33 0f8a249a blueswir1
            /* Unmasked exception, generate a trap */
34 0f8a249a blueswir1
            env->fsr |= FSR_FTT_IEEE_EXCP;
35 0f8a249a blueswir1
            raise_exception(TT_FP_EXCP);
36 0f8a249a blueswir1
        }
37 0f8a249a blueswir1
        else
38 0f8a249a blueswir1
        {
39 0f8a249a blueswir1
            /* Accumulate exceptions */
40 0f8a249a blueswir1
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
41 0f8a249a blueswir1
        }
42 417454b0 blueswir1
     }
43 417454b0 blueswir1
}
44 417454b0 blueswir1
45 a0c4cb4a bellard
#ifdef USE_INT_TO_FLOAT_HELPERS
46 a0c4cb4a bellard
void do_fitos(void)
47 a0c4cb4a bellard
{
48 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
49 ec230928 ths
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
50 417454b0 blueswir1
    check_ieee_exceptions();
51 a0c4cb4a bellard
}
52 a0c4cb4a bellard
53 a0c4cb4a bellard
void do_fitod(void)
54 a0c4cb4a bellard
{
55 ec230928 ths
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
56 a0c4cb4a bellard
}
57 a0c4cb4a bellard
#endif
58 a0c4cb4a bellard
59 a0c4cb4a bellard
void do_fabss(void)
60 e8af50a3 bellard
{
61 7a0e1f41 bellard
    FT0 = float32_abs(FT1);
62 e8af50a3 bellard
}
63 e8af50a3 bellard
64 3475187d bellard
#ifdef TARGET_SPARC64
65 3475187d bellard
void do_fabsd(void)
66 3475187d bellard
{
67 3475187d bellard
    DT0 = float64_abs(DT1);
68 3475187d bellard
}
69 3475187d bellard
#endif
70 3475187d bellard
71 a0c4cb4a bellard
void do_fsqrts(void)
72 e8af50a3 bellard
{
73 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
74 7a0e1f41 bellard
    FT0 = float32_sqrt(FT1, &env->fp_status);
75 417454b0 blueswir1
    check_ieee_exceptions();
76 e8af50a3 bellard
}
77 e8af50a3 bellard
78 a0c4cb4a bellard
void do_fsqrtd(void)
79 e8af50a3 bellard
{
80 417454b0 blueswir1
    set_float_exception_flags(0, &env->fp_status);
81 7a0e1f41 bellard
    DT0 = float64_sqrt(DT1, &env->fp_status);
82 417454b0 blueswir1
    check_ieee_exceptions();
83 e8af50a3 bellard
}
84 e8af50a3 bellard
85 417454b0 blueswir1
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
86 65ce8c2f bellard
    void glue(do_, name) (void)                                         \
87 65ce8c2f bellard
    {                                                                   \
88 65ce8c2f bellard
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
89 65ce8c2f bellard
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
90 65ce8c2f bellard
        case float_relation_unordered:                                  \
91 65ce8c2f bellard
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
92 417454b0 blueswir1
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
93 65ce8c2f bellard
                env->fsr |= T0;                                         \
94 417454b0 blueswir1
                env->fsr |= FSR_NVC;                                    \
95 417454b0 blueswir1
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
96 65ce8c2f bellard
                raise_exception(TT_FP_EXCP);                            \
97 65ce8c2f bellard
            } else {                                                    \
98 65ce8c2f bellard
                env->fsr |= FSR_NVA;                                    \
99 65ce8c2f bellard
            }                                                           \
100 65ce8c2f bellard
            break;                                                      \
101 65ce8c2f bellard
        case float_relation_less:                                       \
102 65ce8c2f bellard
            T0 = FSR_FCC0 << FS;                                        \
103 65ce8c2f bellard
            break;                                                      \
104 65ce8c2f bellard
        case float_relation_greater:                                    \
105 65ce8c2f bellard
            T0 = FSR_FCC1 << FS;                                        \
106 65ce8c2f bellard
            break;                                                      \
107 65ce8c2f bellard
        default:                                                        \
108 65ce8c2f bellard
            T0 = 0;                                                     \
109 65ce8c2f bellard
            break;                                                      \
110 65ce8c2f bellard
        }                                                               \
111 65ce8c2f bellard
        env->fsr |= T0;                                                 \
112 e8af50a3 bellard
    }
113 e8af50a3 bellard
114 417454b0 blueswir1
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
115 417454b0 blueswir1
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
116 417454b0 blueswir1
117 417454b0 blueswir1
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
118 417454b0 blueswir1
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
119 3475187d bellard
120 3475187d bellard
#ifdef TARGET_SPARC64
121 417454b0 blueswir1
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
122 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
123 417454b0 blueswir1
124 417454b0 blueswir1
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
125 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
126 417454b0 blueswir1
127 417454b0 blueswir1
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
128 417454b0 blueswir1
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
129 417454b0 blueswir1
130 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
131 417454b0 blueswir1
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
132 3475187d bellard
133 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
134 417454b0 blueswir1
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
135 3475187d bellard
136 417454b0 blueswir1
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
137 417454b0 blueswir1
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
138 3475187d bellard
#endif
139 3475187d bellard
140 3475187d bellard
#ifndef TARGET_SPARC64
141 81ad8ba2 blueswir1
#ifndef CONFIG_USER_ONLY
142 a0c4cb4a bellard
void helper_ld_asi(int asi, int size, int sign)
143 e8af50a3 bellard
{
144 83469015 bellard
    uint32_t ret = 0;
145 e80cfcfc bellard
146 e80cfcfc bellard
    switch (asi) {
147 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
148 6c36d3fa blueswir1
        break;
149 e8af50a3 bellard
    case 3: /* MMU probe */
150 0f8a249a blueswir1
        {
151 0f8a249a blueswir1
            int mmulev;
152 0f8a249a blueswir1
153 0f8a249a blueswir1
            mmulev = (T0 >> 8) & 15;
154 0f8a249a blueswir1
            if (mmulev > 4)
155 0f8a249a blueswir1
                ret = 0;
156 0f8a249a blueswir1
            else {
157 0f8a249a blueswir1
                ret = mmu_probe(env, T0, mmulev);
158 0f8a249a blueswir1
                //bswap32s(&ret);
159 0f8a249a blueswir1
            }
160 e80cfcfc bellard
#ifdef DEBUG_MMU
161 0f8a249a blueswir1
            printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
162 e80cfcfc bellard
#endif
163 0f8a249a blueswir1
        }
164 0f8a249a blueswir1
        break;
165 e8af50a3 bellard
    case 4: /* read MMU regs */
166 0f8a249a blueswir1
        {
167 0f8a249a blueswir1
            int reg = (T0 >> 8) & 0xf;
168 3b46e624 ths
169 0f8a249a blueswir1
            ret = env->mmuregs[reg];
170 0f8a249a blueswir1
            if (reg == 3) /* Fault status cleared on read */
171 0f8a249a blueswir1
                env->mmuregs[reg] = 0;
172 55754d9e bellard
#ifdef DEBUG_MMU
173 0f8a249a blueswir1
            printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
174 55754d9e bellard
#endif
175 0f8a249a blueswir1
        }
176 0f8a249a blueswir1
        break;
177 6c36d3fa blueswir1
    case 9: /* Supervisor code access */
178 6c36d3fa blueswir1
        switch(size) {
179 6c36d3fa blueswir1
        case 1:
180 6c36d3fa blueswir1
            ret = ldub_code(T0);
181 6c36d3fa blueswir1
            break;
182 6c36d3fa blueswir1
        case 2:
183 6c36d3fa blueswir1
            ret = lduw_code(T0 & ~1);
184 6c36d3fa blueswir1
            break;
185 6c36d3fa blueswir1
        default:
186 6c36d3fa blueswir1
        case 4:
187 6c36d3fa blueswir1
            ret = ldl_code(T0 & ~3);
188 6c36d3fa blueswir1
            break;
189 6c36d3fa blueswir1
        case 8:
190 6c36d3fa blueswir1
            ret = ldl_code(T0 & ~3);
191 6c36d3fa blueswir1
            T0 = ldl_code((T0 + 4) & ~3);
192 6c36d3fa blueswir1
            break;
193 6c36d3fa blueswir1
        }
194 6c36d3fa blueswir1
        break;
195 81ad8ba2 blueswir1
    case 0xa: /* User data access */
196 81ad8ba2 blueswir1
        switch(size) {
197 81ad8ba2 blueswir1
        case 1:
198 81ad8ba2 blueswir1
            ret = ldub_user(T0);
199 81ad8ba2 blueswir1
            break;
200 81ad8ba2 blueswir1
        case 2:
201 81ad8ba2 blueswir1
            ret = lduw_user(T0 & ~1);
202 81ad8ba2 blueswir1
            break;
203 81ad8ba2 blueswir1
        default:
204 81ad8ba2 blueswir1
        case 4:
205 81ad8ba2 blueswir1
            ret = ldl_user(T0 & ~3);
206 81ad8ba2 blueswir1
            break;
207 81ad8ba2 blueswir1
        case 8:
208 81ad8ba2 blueswir1
            ret = ldl_user(T0 & ~3);
209 81ad8ba2 blueswir1
            T0 = ldl_user((T0 + 4) & ~3);
210 81ad8ba2 blueswir1
            break;
211 81ad8ba2 blueswir1
        }
212 81ad8ba2 blueswir1
        break;
213 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
214 81ad8ba2 blueswir1
        switch(size) {
215 81ad8ba2 blueswir1
        case 1:
216 81ad8ba2 blueswir1
            ret = ldub_kernel(T0);
217 81ad8ba2 blueswir1
            break;
218 81ad8ba2 blueswir1
        case 2:
219 81ad8ba2 blueswir1
            ret = lduw_kernel(T0 & ~1);
220 81ad8ba2 blueswir1
            break;
221 81ad8ba2 blueswir1
        default:
222 81ad8ba2 blueswir1
        case 4:
223 81ad8ba2 blueswir1
            ret = ldl_kernel(T0 & ~3);
224 81ad8ba2 blueswir1
            break;
225 81ad8ba2 blueswir1
        case 8:
226 81ad8ba2 blueswir1
            ret = ldl_kernel(T0 & ~3);
227 81ad8ba2 blueswir1
            T0 = ldl_kernel((T0 + 4) & ~3);
228 81ad8ba2 blueswir1
            break;
229 81ad8ba2 blueswir1
        }
230 81ad8ba2 blueswir1
        break;
231 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
232 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
233 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
234 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
235 6c36d3fa blueswir1
        break;
236 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
237 02aab46a bellard
        switch(size) {
238 02aab46a bellard
        case 1:
239 02aab46a bellard
            ret = ldub_phys(T0);
240 02aab46a bellard
            break;
241 02aab46a bellard
        case 2:
242 02aab46a bellard
            ret = lduw_phys(T0 & ~1);
243 02aab46a bellard
            break;
244 02aab46a bellard
        default:
245 02aab46a bellard
        case 4:
246 02aab46a bellard
            ret = ldl_phys(T0 & ~3);
247 02aab46a bellard
            break;
248 9e61bde5 bellard
        case 8:
249 0f8a249a blueswir1
            ret = ldl_phys(T0 & ~3);
250 0f8a249a blueswir1
            T0 = ldl_phys((T0 + 4) & ~3);
251 0f8a249a blueswir1
            break;
252 02aab46a bellard
        }
253 0f8a249a blueswir1
        break;
254 5dcb6b91 blueswir1
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
255 5dcb6b91 blueswir1
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
256 5dcb6b91 blueswir1
        switch(size) {
257 5dcb6b91 blueswir1
        case 1:
258 5dcb6b91 blueswir1
            ret = ldub_phys((target_phys_addr_t)T0
259 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
260 5dcb6b91 blueswir1
            break;
261 5dcb6b91 blueswir1
        case 2:
262 5dcb6b91 blueswir1
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
263 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
264 5dcb6b91 blueswir1
            break;
265 5dcb6b91 blueswir1
        default:
266 5dcb6b91 blueswir1
        case 4:
267 5dcb6b91 blueswir1
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
268 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
269 5dcb6b91 blueswir1
            break;
270 5dcb6b91 blueswir1
        case 8:
271 5dcb6b91 blueswir1
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
272 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
273 5dcb6b91 blueswir1
            T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
274 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
275 0f8a249a blueswir1
            break;
276 5dcb6b91 blueswir1
        }
277 0f8a249a blueswir1
        break;
278 5dcb6b91 blueswir1
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
279 e8af50a3 bellard
    default:
280 6c36d3fa blueswir1
        do_unassigned_access(T0, 0, 0, 1);
281 0f8a249a blueswir1
        ret = 0;
282 0f8a249a blueswir1
        break;
283 e8af50a3 bellard
    }
284 81ad8ba2 blueswir1
    if (sign) {
285 81ad8ba2 blueswir1
        switch(size) {
286 81ad8ba2 blueswir1
        case 1:
287 81ad8ba2 blueswir1
            T1 = (int8_t) ret;
288 e32664fb blueswir1
            break;
289 81ad8ba2 blueswir1
        case 2:
290 81ad8ba2 blueswir1
            T1 = (int16_t) ret;
291 e32664fb blueswir1
            break;
292 81ad8ba2 blueswir1
        default:
293 81ad8ba2 blueswir1
            T1 = ret;
294 81ad8ba2 blueswir1
            break;
295 81ad8ba2 blueswir1
        }
296 81ad8ba2 blueswir1
    }
297 81ad8ba2 blueswir1
    else
298 81ad8ba2 blueswir1
        T1 = ret;
299 e8af50a3 bellard
}
300 e8af50a3 bellard
301 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
302 e8af50a3 bellard
{
303 e8af50a3 bellard
    switch(asi) {
304 6c36d3fa blueswir1
    case 2: /* SuperSparc MXCC registers */
305 6c36d3fa blueswir1
        break;
306 e8af50a3 bellard
    case 3: /* MMU flush */
307 0f8a249a blueswir1
        {
308 0f8a249a blueswir1
            int mmulev;
309 e80cfcfc bellard
310 0f8a249a blueswir1
            mmulev = (T0 >> 8) & 15;
311 55754d9e bellard
#ifdef DEBUG_MMU
312 0f8a249a blueswir1
            printf("mmu flush level %d\n", mmulev);
313 55754d9e bellard
#endif
314 0f8a249a blueswir1
            switch (mmulev) {
315 0f8a249a blueswir1
            case 0: // flush page
316 0f8a249a blueswir1
                tlb_flush_page(env, T0 & 0xfffff000);
317 0f8a249a blueswir1
                break;
318 0f8a249a blueswir1
            case 1: // flush segment (256k)
319 0f8a249a blueswir1
            case 2: // flush region (16M)
320 0f8a249a blueswir1
            case 3: // flush context (4G)
321 0f8a249a blueswir1
            case 4: // flush entire
322 0f8a249a blueswir1
                tlb_flush(env, 1);
323 0f8a249a blueswir1
                break;
324 0f8a249a blueswir1
            default:
325 0f8a249a blueswir1
                break;
326 0f8a249a blueswir1
            }
327 55754d9e bellard
#ifdef DEBUG_MMU
328 0f8a249a blueswir1
            dump_mmu(env);
329 55754d9e bellard
#endif
330 0f8a249a blueswir1
            return;
331 0f8a249a blueswir1
        }
332 e8af50a3 bellard
    case 4: /* write MMU regs */
333 0f8a249a blueswir1
        {
334 0f8a249a blueswir1
            int reg = (T0 >> 8) & 0xf;
335 0f8a249a blueswir1
            uint32_t oldreg;
336 3b46e624 ths
337 0f8a249a blueswir1
            oldreg = env->mmuregs[reg];
338 55754d9e bellard
            switch(reg) {
339 55754d9e bellard
            case 0:
340 40ce0a9a blueswir1
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF | MMU_BM);
341 40ce0a9a blueswir1
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF | MMU_BM);
342 0f8a249a blueswir1
                // Mappings generated during no-fault mode or MMU
343 0f8a249a blueswir1
                // disabled mode are invalid in normal mode
344 6f7e9aec bellard
                if (oldreg != env->mmuregs[reg])
345 55754d9e bellard
                    tlb_flush(env, 1);
346 55754d9e bellard
                break;
347 55754d9e bellard
            case 2:
348 0f8a249a blueswir1
                env->mmuregs[reg] = T1;
349 55754d9e bellard
                if (oldreg != env->mmuregs[reg]) {
350 55754d9e bellard
                    /* we flush when the MMU context changes because
351 55754d9e bellard
                       QEMU has no MMU context support */
352 55754d9e bellard
                    tlb_flush(env, 1);
353 55754d9e bellard
                }
354 55754d9e bellard
                break;
355 55754d9e bellard
            case 3:
356 55754d9e bellard
            case 4:
357 55754d9e bellard
                break;
358 55754d9e bellard
            default:
359 0f8a249a blueswir1
                env->mmuregs[reg] = T1;
360 55754d9e bellard
                break;
361 55754d9e bellard
            }
362 55754d9e bellard
#ifdef DEBUG_MMU
363 55754d9e bellard
            if (oldreg != env->mmuregs[reg]) {
364 55754d9e bellard
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
365 55754d9e bellard
            }
366 0f8a249a blueswir1
            dump_mmu(env);
367 55754d9e bellard
#endif
368 0f8a249a blueswir1
            return;
369 0f8a249a blueswir1
        }
370 81ad8ba2 blueswir1
    case 0xa: /* User data access */
371 81ad8ba2 blueswir1
        switch(size) {
372 81ad8ba2 blueswir1
        case 1:
373 81ad8ba2 blueswir1
            stb_user(T0, T1);
374 81ad8ba2 blueswir1
            break;
375 81ad8ba2 blueswir1
        case 2:
376 81ad8ba2 blueswir1
            stw_user(T0 & ~1, T1);
377 81ad8ba2 blueswir1
            break;
378 81ad8ba2 blueswir1
        default:
379 81ad8ba2 blueswir1
        case 4:
380 81ad8ba2 blueswir1
            stl_user(T0 & ~3, T1);
381 81ad8ba2 blueswir1
            break;
382 81ad8ba2 blueswir1
        case 8:
383 81ad8ba2 blueswir1
            stl_user(T0 & ~3, T1);
384 81ad8ba2 blueswir1
            stl_user((T0 + 4) & ~3, T2);
385 81ad8ba2 blueswir1
            break;
386 81ad8ba2 blueswir1
        }
387 81ad8ba2 blueswir1
        break;
388 81ad8ba2 blueswir1
    case 0xb: /* Supervisor data access */
389 81ad8ba2 blueswir1
        switch(size) {
390 81ad8ba2 blueswir1
        case 1:
391 81ad8ba2 blueswir1
            stb_kernel(T0, T1);
392 81ad8ba2 blueswir1
            break;
393 81ad8ba2 blueswir1
        case 2:
394 81ad8ba2 blueswir1
            stw_kernel(T0 & ~1, T1);
395 81ad8ba2 blueswir1
            break;
396 81ad8ba2 blueswir1
        default:
397 81ad8ba2 blueswir1
        case 4:
398 81ad8ba2 blueswir1
            stl_kernel(T0 & ~3, T1);
399 81ad8ba2 blueswir1
            break;
400 81ad8ba2 blueswir1
        case 8:
401 81ad8ba2 blueswir1
            stl_kernel(T0 & ~3, T1);
402 81ad8ba2 blueswir1
            stl_kernel((T0 + 4) & ~3, T2);
403 81ad8ba2 blueswir1
            break;
404 81ad8ba2 blueswir1
        }
405 81ad8ba2 blueswir1
        break;
406 6c36d3fa blueswir1
    case 0xc: /* I-cache tag */
407 6c36d3fa blueswir1
    case 0xd: /* I-cache data */
408 6c36d3fa blueswir1
    case 0xe: /* D-cache tag */
409 6c36d3fa blueswir1
    case 0xf: /* D-cache data */
410 6c36d3fa blueswir1
    case 0x10: /* I/D-cache flush page */
411 6c36d3fa blueswir1
    case 0x11: /* I/D-cache flush segment */
412 6c36d3fa blueswir1
    case 0x12: /* I/D-cache flush region */
413 6c36d3fa blueswir1
    case 0x13: /* I/D-cache flush context */
414 6c36d3fa blueswir1
    case 0x14: /* I/D-cache flush user */
415 6c36d3fa blueswir1
        break;
416 e80cfcfc bellard
    case 0x17: /* Block copy, sta access */
417 0f8a249a blueswir1
        {
418 0f8a249a blueswir1
            // value (T1) = src
419 0f8a249a blueswir1
            // address (T0) = dst
420 0f8a249a blueswir1
            // copy 32 bytes
421 6c36d3fa blueswir1
            unsigned int i;
422 6c36d3fa blueswir1
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
423 3b46e624 ths
424 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
425 6c36d3fa blueswir1
                temp = ldl_kernel(src);
426 6c36d3fa blueswir1
                stl_kernel(dst, temp);
427 6c36d3fa blueswir1
            }
428 0f8a249a blueswir1
        }
429 0f8a249a blueswir1
        return;
430 e80cfcfc bellard
    case 0x1f: /* Block fill, stda access */
431 0f8a249a blueswir1
        {
432 0f8a249a blueswir1
            // value (T1, T2)
433 0f8a249a blueswir1
            // address (T0) = dst
434 0f8a249a blueswir1
            // fill 32 bytes
435 6c36d3fa blueswir1
            unsigned int i;
436 6c36d3fa blueswir1
            uint32_t dst = T0 & 7;
437 6c36d3fa blueswir1
            uint64_t val;
438 e80cfcfc bellard
439 6c36d3fa blueswir1
            val = (((uint64_t)T1) << 32) | T2;
440 6c36d3fa blueswir1
441 6c36d3fa blueswir1
            for (i = 0; i < 32; i += 8, dst += 8)
442 6c36d3fa blueswir1
                stq_kernel(dst, val);
443 0f8a249a blueswir1
        }
444 0f8a249a blueswir1
        return;
445 6c36d3fa blueswir1
    case 0x20: /* MMU passthrough */
446 0f8a249a blueswir1
        {
447 02aab46a bellard
            switch(size) {
448 02aab46a bellard
            case 1:
449 02aab46a bellard
                stb_phys(T0, T1);
450 02aab46a bellard
                break;
451 02aab46a bellard
            case 2:
452 02aab46a bellard
                stw_phys(T0 & ~1, T1);
453 02aab46a bellard
                break;
454 02aab46a bellard
            case 4:
455 02aab46a bellard
            default:
456 02aab46a bellard
                stl_phys(T0 & ~3, T1);
457 02aab46a bellard
                break;
458 9e61bde5 bellard
            case 8:
459 9e61bde5 bellard
                stl_phys(T0 & ~3, T1);
460 9e61bde5 bellard
                stl_phys((T0 + 4) & ~3, T2);
461 9e61bde5 bellard
                break;
462 02aab46a bellard
            }
463 0f8a249a blueswir1
        }
464 0f8a249a blueswir1
        return;
465 5dcb6b91 blueswir1
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
466 5dcb6b91 blueswir1
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
467 0f8a249a blueswir1
        {
468 5dcb6b91 blueswir1
            switch(size) {
469 5dcb6b91 blueswir1
            case 1:
470 5dcb6b91 blueswir1
                stb_phys((target_phys_addr_t)T0
471 5dcb6b91 blueswir1
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
472 5dcb6b91 blueswir1
                break;
473 5dcb6b91 blueswir1
            case 2:
474 5dcb6b91 blueswir1
                stw_phys((target_phys_addr_t)(T0 & ~1)
475 5dcb6b91 blueswir1
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
476 5dcb6b91 blueswir1
                break;
477 5dcb6b91 blueswir1
            case 4:
478 5dcb6b91 blueswir1
            default:
479 5dcb6b91 blueswir1
                stl_phys((target_phys_addr_t)(T0 & ~3)
480 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
481 5dcb6b91 blueswir1
                break;
482 5dcb6b91 blueswir1
            case 8:
483 5dcb6b91 blueswir1
                stl_phys((target_phys_addr_t)(T0 & ~3)
484 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
485 5dcb6b91 blueswir1
                stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
486 5dcb6b91 blueswir1
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
487 5dcb6b91 blueswir1
                break;
488 5dcb6b91 blueswir1
            }
489 0f8a249a blueswir1
        }
490 0f8a249a blueswir1
        return;
491 6c36d3fa blueswir1
    case 0x31: /* Ross RT620 I-cache flush */
492 6c36d3fa blueswir1
    case 0x36: /* I-cache flash clear */
493 6c36d3fa blueswir1
    case 0x37: /* D-cache flash clear */
494 6c36d3fa blueswir1
        break;
495 6c36d3fa blueswir1
    case 9: /* Supervisor code access, XXX */
496 5dcb6b91 blueswir1
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
497 e8af50a3 bellard
    default:
498 6c36d3fa blueswir1
        do_unassigned_access(T0, 1, 0, 1);
499 0f8a249a blueswir1
        return;
500 e8af50a3 bellard
    }
501 e8af50a3 bellard
}
502 e8af50a3 bellard
503 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
504 81ad8ba2 blueswir1
#else /* TARGET_SPARC64 */
505 81ad8ba2 blueswir1
506 81ad8ba2 blueswir1
#ifdef CONFIG_USER_ONLY
507 81ad8ba2 blueswir1
void helper_ld_asi(int asi, int size, int sign)
508 81ad8ba2 blueswir1
{
509 81ad8ba2 blueswir1
    uint64_t ret = 0;
510 81ad8ba2 blueswir1
511 81ad8ba2 blueswir1
    if (asi < 0x80)
512 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
513 81ad8ba2 blueswir1
514 81ad8ba2 blueswir1
    switch (asi) {
515 81ad8ba2 blueswir1
    case 0x80: // Primary
516 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
517 81ad8ba2 blueswir1
    case 0x88: // Primary LE
518 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
519 81ad8ba2 blueswir1
        {
520 81ad8ba2 blueswir1
            switch(size) {
521 81ad8ba2 blueswir1
            case 1:
522 81ad8ba2 blueswir1
                ret = ldub_raw(T0);
523 81ad8ba2 blueswir1
                break;
524 81ad8ba2 blueswir1
            case 2:
525 81ad8ba2 blueswir1
                ret = lduw_raw(T0 & ~1);
526 81ad8ba2 blueswir1
                break;
527 81ad8ba2 blueswir1
            case 4:
528 81ad8ba2 blueswir1
                ret = ldl_raw(T0 & ~3);
529 81ad8ba2 blueswir1
                break;
530 81ad8ba2 blueswir1
            default:
531 81ad8ba2 blueswir1
            case 8:
532 81ad8ba2 blueswir1
                ret = ldq_raw(T0 & ~7);
533 81ad8ba2 blueswir1
                break;
534 81ad8ba2 blueswir1
            }
535 81ad8ba2 blueswir1
        }
536 81ad8ba2 blueswir1
        break;
537 81ad8ba2 blueswir1
    case 0x81: // Secondary
538 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault
539 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
540 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
541 81ad8ba2 blueswir1
        // XXX
542 81ad8ba2 blueswir1
        break;
543 81ad8ba2 blueswir1
    default:
544 81ad8ba2 blueswir1
        break;
545 81ad8ba2 blueswir1
    }
546 81ad8ba2 blueswir1
547 81ad8ba2 blueswir1
    /* Convert from little endian */
548 81ad8ba2 blueswir1
    switch (asi) {
549 81ad8ba2 blueswir1
    case 0x88: // Primary LE
550 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
551 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
552 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
553 81ad8ba2 blueswir1
        switch(size) {
554 81ad8ba2 blueswir1
        case 2:
555 81ad8ba2 blueswir1
            ret = bswap16(ret);
556 e32664fb blueswir1
            break;
557 81ad8ba2 blueswir1
        case 4:
558 81ad8ba2 blueswir1
            ret = bswap32(ret);
559 e32664fb blueswir1
            break;
560 81ad8ba2 blueswir1
        case 8:
561 81ad8ba2 blueswir1
            ret = bswap64(ret);
562 e32664fb blueswir1
            break;
563 81ad8ba2 blueswir1
        default:
564 81ad8ba2 blueswir1
            break;
565 81ad8ba2 blueswir1
        }
566 81ad8ba2 blueswir1
    default:
567 81ad8ba2 blueswir1
        break;
568 81ad8ba2 blueswir1
    }
569 81ad8ba2 blueswir1
570 81ad8ba2 blueswir1
    /* Convert to signed number */
571 81ad8ba2 blueswir1
    if (sign) {
572 81ad8ba2 blueswir1
        switch(size) {
573 81ad8ba2 blueswir1
        case 1:
574 81ad8ba2 blueswir1
            ret = (int8_t) ret;
575 e32664fb blueswir1
            break;
576 81ad8ba2 blueswir1
        case 2:
577 81ad8ba2 blueswir1
            ret = (int16_t) ret;
578 e32664fb blueswir1
            break;
579 81ad8ba2 blueswir1
        case 4:
580 81ad8ba2 blueswir1
            ret = (int32_t) ret;
581 e32664fb blueswir1
            break;
582 81ad8ba2 blueswir1
        default:
583 81ad8ba2 blueswir1
            break;
584 81ad8ba2 blueswir1
        }
585 81ad8ba2 blueswir1
    }
586 81ad8ba2 blueswir1
    T1 = ret;
587 81ad8ba2 blueswir1
}
588 81ad8ba2 blueswir1
589 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
590 81ad8ba2 blueswir1
{
591 81ad8ba2 blueswir1
    if (asi < 0x80)
592 81ad8ba2 blueswir1
        raise_exception(TT_PRIV_ACT);
593 81ad8ba2 blueswir1
594 81ad8ba2 blueswir1
    /* Convert to little endian */
595 81ad8ba2 blueswir1
    switch (asi) {
596 81ad8ba2 blueswir1
    case 0x88: // Primary LE
597 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
598 81ad8ba2 blueswir1
        switch(size) {
599 81ad8ba2 blueswir1
        case 2:
600 81ad8ba2 blueswir1
            T0 = bswap16(T0);
601 e32664fb blueswir1
            break;
602 81ad8ba2 blueswir1
        case 4:
603 81ad8ba2 blueswir1
            T0 = bswap32(T0);
604 e32664fb blueswir1
            break;
605 81ad8ba2 blueswir1
        case 8:
606 81ad8ba2 blueswir1
            T0 = bswap64(T0);
607 e32664fb blueswir1
            break;
608 81ad8ba2 blueswir1
        default:
609 81ad8ba2 blueswir1
            break;
610 81ad8ba2 blueswir1
        }
611 81ad8ba2 blueswir1
    default:
612 81ad8ba2 blueswir1
        break;
613 81ad8ba2 blueswir1
    }
614 81ad8ba2 blueswir1
615 81ad8ba2 blueswir1
    switch(asi) {
616 81ad8ba2 blueswir1
    case 0x80: // Primary
617 81ad8ba2 blueswir1
    case 0x88: // Primary LE
618 81ad8ba2 blueswir1
        {
619 81ad8ba2 blueswir1
            switch(size) {
620 81ad8ba2 blueswir1
            case 1:
621 81ad8ba2 blueswir1
                stb_raw(T0, T1);
622 81ad8ba2 blueswir1
                break;
623 81ad8ba2 blueswir1
            case 2:
624 81ad8ba2 blueswir1
                stw_raw(T0 & ~1, T1);
625 81ad8ba2 blueswir1
                break;
626 81ad8ba2 blueswir1
            case 4:
627 81ad8ba2 blueswir1
                stl_raw(T0 & ~3, T1);
628 81ad8ba2 blueswir1
                break;
629 81ad8ba2 blueswir1
            case 8:
630 81ad8ba2 blueswir1
            default:
631 81ad8ba2 blueswir1
                stq_raw(T0 & ~7, T1);
632 81ad8ba2 blueswir1
                break;
633 81ad8ba2 blueswir1
            }
634 81ad8ba2 blueswir1
        }
635 81ad8ba2 blueswir1
        break;
636 81ad8ba2 blueswir1
    case 0x81: // Secondary
637 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
638 81ad8ba2 blueswir1
        // XXX
639 81ad8ba2 blueswir1
        return;
640 81ad8ba2 blueswir1
641 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault, RO
642 81ad8ba2 blueswir1
    case 0x83: // Secondary no-fault, RO
643 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE, RO
644 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE, RO
645 81ad8ba2 blueswir1
    default:
646 81ad8ba2 blueswir1
        do_unassigned_access(T0, 1, 0, 1);
647 81ad8ba2 blueswir1
        return;
648 81ad8ba2 blueswir1
    }
649 81ad8ba2 blueswir1
}
650 81ad8ba2 blueswir1
651 81ad8ba2 blueswir1
#else /* CONFIG_USER_ONLY */
652 3475187d bellard
653 3475187d bellard
void helper_ld_asi(int asi, int size, int sign)
654 3475187d bellard
{
655 83469015 bellard
    uint64_t ret = 0;
656 3475187d bellard
657 3475187d bellard
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
658 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
659 3475187d bellard
660 3475187d bellard
    switch (asi) {
661 81ad8ba2 blueswir1
    case 0x10: // As if user primary
662 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
663 81ad8ba2 blueswir1
    case 0x80: // Primary
664 81ad8ba2 blueswir1
    case 0x82: // Primary no-fault
665 81ad8ba2 blueswir1
    case 0x88: // Primary LE
666 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
667 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
668 81ad8ba2 blueswir1
            switch(size) {
669 81ad8ba2 blueswir1
            case 1:
670 81ad8ba2 blueswir1
                ret = ldub_kernel(T0);
671 81ad8ba2 blueswir1
                break;
672 81ad8ba2 blueswir1
            case 2:
673 81ad8ba2 blueswir1
                ret = lduw_kernel(T0 & ~1);
674 81ad8ba2 blueswir1
                break;
675 81ad8ba2 blueswir1
            case 4:
676 81ad8ba2 blueswir1
                ret = ldl_kernel(T0 & ~3);
677 81ad8ba2 blueswir1
                break;
678 81ad8ba2 blueswir1
            default:
679 81ad8ba2 blueswir1
            case 8:
680 81ad8ba2 blueswir1
                ret = ldq_kernel(T0 & ~7);
681 81ad8ba2 blueswir1
                break;
682 81ad8ba2 blueswir1
            }
683 81ad8ba2 blueswir1
        } else {
684 81ad8ba2 blueswir1
            switch(size) {
685 81ad8ba2 blueswir1
            case 1:
686 81ad8ba2 blueswir1
                ret = ldub_user(T0);
687 81ad8ba2 blueswir1
                break;
688 81ad8ba2 blueswir1
            case 2:
689 81ad8ba2 blueswir1
                ret = lduw_user(T0 & ~1);
690 81ad8ba2 blueswir1
                break;
691 81ad8ba2 blueswir1
            case 4:
692 81ad8ba2 blueswir1
                ret = ldl_user(T0 & ~3);
693 81ad8ba2 blueswir1
                break;
694 81ad8ba2 blueswir1
            default:
695 81ad8ba2 blueswir1
            case 8:
696 81ad8ba2 blueswir1
                ret = ldq_user(T0 & ~7);
697 81ad8ba2 blueswir1
                break;
698 81ad8ba2 blueswir1
            }
699 81ad8ba2 blueswir1
        }
700 81ad8ba2 blueswir1
        break;
701 3475187d bellard
    case 0x14: // Bypass
702 3475187d bellard
    case 0x15: // Bypass, non-cacheable
703 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
704 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
705 0f8a249a blueswir1
        {
706 02aab46a bellard
            switch(size) {
707 02aab46a bellard
            case 1:
708 02aab46a bellard
                ret = ldub_phys(T0);
709 02aab46a bellard
                break;
710 02aab46a bellard
            case 2:
711 02aab46a bellard
                ret = lduw_phys(T0 & ~1);
712 02aab46a bellard
                break;
713 02aab46a bellard
            case 4:
714 02aab46a bellard
                ret = ldl_phys(T0 & ~3);
715 02aab46a bellard
                break;
716 02aab46a bellard
            default:
717 02aab46a bellard
            case 8:
718 02aab46a bellard
                ret = ldq_phys(T0 & ~7);
719 02aab46a bellard
                break;
720 02aab46a bellard
            }
721 0f8a249a blueswir1
            break;
722 0f8a249a blueswir1
        }
723 83469015 bellard
    case 0x04: // Nucleus
724 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
725 83469015 bellard
    case 0x11: // As if user secondary
726 83469015 bellard
    case 0x19: // As if user secondary LE
727 83469015 bellard
    case 0x24: // Nucleus quad LDD 128 bit atomic
728 83469015 bellard
    case 0x2c: // Nucleus quad LDD 128 bit atomic
729 83469015 bellard
    case 0x4a: // UPA config
730 81ad8ba2 blueswir1
    case 0x81: // Secondary
731 83469015 bellard
    case 0x83: // Secondary no-fault
732 83469015 bellard
    case 0x89: // Secondary LE
733 83469015 bellard
    case 0x8b: // Secondary no-fault LE
734 0f8a249a blueswir1
        // XXX
735 0f8a249a blueswir1
        break;
736 3475187d bellard
    case 0x45: // LSU
737 0f8a249a blueswir1
        ret = env->lsu;
738 0f8a249a blueswir1
        break;
739 3475187d bellard
    case 0x50: // I-MMU regs
740 0f8a249a blueswir1
        {
741 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
742 3475187d bellard
743 0f8a249a blueswir1
            ret = env->immuregs[reg];
744 0f8a249a blueswir1
            break;
745 0f8a249a blueswir1
        }
746 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer
747 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer
748 3475187d bellard
    case 0x55: // I-MMU data access
749 0f8a249a blueswir1
        // XXX
750 0f8a249a blueswir1
        break;
751 83469015 bellard
    case 0x56: // I-MMU tag read
752 0f8a249a blueswir1
        {
753 0f8a249a blueswir1
            unsigned int i;
754 0f8a249a blueswir1
755 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
756 0f8a249a blueswir1
                // Valid, ctx match, vaddr match
757 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
758 0f8a249a blueswir1
                    env->itlb_tag[i] == T0) {
759 0f8a249a blueswir1
                    ret = env->itlb_tag[i];
760 0f8a249a blueswir1
                    break;
761 0f8a249a blueswir1
                }
762 0f8a249a blueswir1
            }
763 0f8a249a blueswir1
            break;
764 0f8a249a blueswir1
        }
765 3475187d bellard
    case 0x58: // D-MMU regs
766 0f8a249a blueswir1
        {
767 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
768 3475187d bellard
769 0f8a249a blueswir1
            ret = env->dmmuregs[reg];
770 0f8a249a blueswir1
            break;
771 0f8a249a blueswir1
        }
772 83469015 bellard
    case 0x5e: // D-MMU tag read
773 0f8a249a blueswir1
        {
774 0f8a249a blueswir1
            unsigned int i;
775 0f8a249a blueswir1
776 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
777 0f8a249a blueswir1
                // Valid, ctx match, vaddr match
778 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
779 0f8a249a blueswir1
                    env->dtlb_tag[i] == T0) {
780 0f8a249a blueswir1
                    ret = env->dtlb_tag[i];
781 0f8a249a blueswir1
                    break;
782 0f8a249a blueswir1
                }
783 0f8a249a blueswir1
            }
784 0f8a249a blueswir1
            break;
785 0f8a249a blueswir1
        }
786 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer
787 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer
788 3475187d bellard
    case 0x5b: // D-MMU data pointer
789 3475187d bellard
    case 0x5d: // D-MMU data access
790 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
791 83469015 bellard
    case 0x49: // Interrupt data receive
792 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
793 0f8a249a blueswir1
        // XXX
794 0f8a249a blueswir1
        break;
795 3475187d bellard
    case 0x54: // I-MMU data in, WO
796 3475187d bellard
    case 0x57: // I-MMU demap, WO
797 3475187d bellard
    case 0x5c: // D-MMU data in, WO
798 3475187d bellard
    case 0x5f: // D-MMU demap, WO
799 83469015 bellard
    case 0x77: // Interrupt vector, WO
800 3475187d bellard
    default:
801 6c36d3fa blueswir1
        do_unassigned_access(T0, 0, 0, 1);
802 0f8a249a blueswir1
        ret = 0;
803 0f8a249a blueswir1
        break;
804 3475187d bellard
    }
805 81ad8ba2 blueswir1
806 81ad8ba2 blueswir1
    /* Convert from little endian */
807 81ad8ba2 blueswir1
    switch (asi) {
808 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
809 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
810 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
811 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
812 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
813 81ad8ba2 blueswir1
    case 0x88: // Primary LE
814 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
815 81ad8ba2 blueswir1
    case 0x8a: // Primary no-fault LE
816 81ad8ba2 blueswir1
    case 0x8b: // Secondary no-fault LE
817 81ad8ba2 blueswir1
        switch(size) {
818 81ad8ba2 blueswir1
        case 2:
819 81ad8ba2 blueswir1
            ret = bswap16(ret);
820 e32664fb blueswir1
            break;
821 81ad8ba2 blueswir1
        case 4:
822 81ad8ba2 blueswir1
            ret = bswap32(ret);
823 e32664fb blueswir1
            break;
824 81ad8ba2 blueswir1
        case 8:
825 81ad8ba2 blueswir1
            ret = bswap64(ret);
826 e32664fb blueswir1
            break;
827 81ad8ba2 blueswir1
        default:
828 81ad8ba2 blueswir1
            break;
829 81ad8ba2 blueswir1
        }
830 81ad8ba2 blueswir1
    default:
831 81ad8ba2 blueswir1
        break;
832 81ad8ba2 blueswir1
    }
833 81ad8ba2 blueswir1
834 81ad8ba2 blueswir1
    /* Convert to signed number */
835 81ad8ba2 blueswir1
    if (sign) {
836 81ad8ba2 blueswir1
        switch(size) {
837 81ad8ba2 blueswir1
        case 1:
838 81ad8ba2 blueswir1
            ret = (int8_t) ret;
839 e32664fb blueswir1
            break;
840 81ad8ba2 blueswir1
        case 2:
841 81ad8ba2 blueswir1
            ret = (int16_t) ret;
842 e32664fb blueswir1
            break;
843 81ad8ba2 blueswir1
        case 4:
844 81ad8ba2 blueswir1
            ret = (int32_t) ret;
845 e32664fb blueswir1
            break;
846 81ad8ba2 blueswir1
        default:
847 81ad8ba2 blueswir1
            break;
848 81ad8ba2 blueswir1
        }
849 81ad8ba2 blueswir1
    }
850 3475187d bellard
    T1 = ret;
851 3475187d bellard
}
852 3475187d bellard
853 81ad8ba2 blueswir1
void helper_st_asi(int asi, int size)
854 3475187d bellard
{
855 3475187d bellard
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
856 0f8a249a blueswir1
        raise_exception(TT_PRIV_ACT);
857 3475187d bellard
858 81ad8ba2 blueswir1
    /* Convert to little endian */
859 81ad8ba2 blueswir1
    switch (asi) {
860 81ad8ba2 blueswir1
    case 0x0c: // Nucleus Little Endian (LE)
861 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
862 81ad8ba2 blueswir1
    case 0x19: // As if user secondary LE
863 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
864 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
865 81ad8ba2 blueswir1
    case 0x81: // Secondary
866 81ad8ba2 blueswir1
    case 0x88: // Primary LE
867 81ad8ba2 blueswir1
    case 0x89: // Secondary LE
868 81ad8ba2 blueswir1
        switch(size) {
869 81ad8ba2 blueswir1
        case 2:
870 81ad8ba2 blueswir1
            T0 = bswap16(T0);
871 e32664fb blueswir1
            break;
872 81ad8ba2 blueswir1
        case 4:
873 81ad8ba2 blueswir1
            T0 = bswap32(T0);
874 e32664fb blueswir1
            break;
875 81ad8ba2 blueswir1
        case 8:
876 81ad8ba2 blueswir1
            T0 = bswap64(T0);
877 e32664fb blueswir1
            break;
878 81ad8ba2 blueswir1
        default:
879 81ad8ba2 blueswir1
            break;
880 81ad8ba2 blueswir1
        }
881 81ad8ba2 blueswir1
    default:
882 81ad8ba2 blueswir1
        break;
883 81ad8ba2 blueswir1
    }
884 81ad8ba2 blueswir1
885 3475187d bellard
    switch(asi) {
886 81ad8ba2 blueswir1
    case 0x10: // As if user primary
887 81ad8ba2 blueswir1
    case 0x18: // As if user primary LE
888 81ad8ba2 blueswir1
    case 0x80: // Primary
889 81ad8ba2 blueswir1
    case 0x88: // Primary LE
890 81ad8ba2 blueswir1
        if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
891 81ad8ba2 blueswir1
            switch(size) {
892 81ad8ba2 blueswir1
            case 1:
893 81ad8ba2 blueswir1
                stb_kernel(T0, T1);
894 81ad8ba2 blueswir1
                break;
895 81ad8ba2 blueswir1
            case 2:
896 81ad8ba2 blueswir1
                stw_kernel(T0 & ~1, T1);
897 81ad8ba2 blueswir1
                break;
898 81ad8ba2 blueswir1
            case 4:
899 81ad8ba2 blueswir1
                stl_kernel(T0 & ~3, T1);
900 81ad8ba2 blueswir1
                break;
901 81ad8ba2 blueswir1
            case 8:
902 81ad8ba2 blueswir1
            default:
903 81ad8ba2 blueswir1
                stq_kernel(T0 & ~7, T1);
904 81ad8ba2 blueswir1
                break;
905 81ad8ba2 blueswir1
            }
906 81ad8ba2 blueswir1
        } else {
907 81ad8ba2 blueswir1
            switch(size) {
908 81ad8ba2 blueswir1
            case 1:
909 81ad8ba2 blueswir1
                stb_user(T0, T1);
910 81ad8ba2 blueswir1
                break;
911 81ad8ba2 blueswir1
            case 2:
912 81ad8ba2 blueswir1
                stw_user(T0 & ~1, T1);
913 81ad8ba2 blueswir1
                break;
914 81ad8ba2 blueswir1
            case 4:
915 81ad8ba2 blueswir1
                stl_user(T0 & ~3, T1);
916 81ad8ba2 blueswir1
                break;
917 81ad8ba2 blueswir1
            case 8:
918 81ad8ba2 blueswir1
            default:
919 81ad8ba2 blueswir1
                stq_user(T0 & ~7, T1);
920 81ad8ba2 blueswir1
                break;
921 81ad8ba2 blueswir1
            }
922 81ad8ba2 blueswir1
        }
923 81ad8ba2 blueswir1
        break;
924 3475187d bellard
    case 0x14: // Bypass
925 3475187d bellard
    case 0x15: // Bypass, non-cacheable
926 81ad8ba2 blueswir1
    case 0x1c: // Bypass LE
927 81ad8ba2 blueswir1
    case 0x1d: // Bypass, non-cacheable LE
928 0f8a249a blueswir1
        {
929 02aab46a bellard
            switch(size) {
930 02aab46a bellard
            case 1:
931 02aab46a bellard
                stb_phys(T0, T1);
932 02aab46a bellard
                break;
933 02aab46a bellard
            case 2:
934 02aab46a bellard
                stw_phys(T0 & ~1, T1);
935 02aab46a bellard
                break;
936 02aab46a bellard
            case 4:
937 02aab46a bellard
                stl_phys(T0 & ~3, T1);
938 02aab46a bellard
                break;
939 02aab46a bellard
            case 8:
940 02aab46a bellard
            default:
941 02aab46a bellard
                stq_phys(T0 & ~7, T1);
942 02aab46a bellard
                break;
943 02aab46a bellard
            }
944 0f8a249a blueswir1
        }
945 0f8a249a blueswir1
        return;
946 83469015 bellard
    case 0x04: // Nucleus
947 83469015 bellard
    case 0x0c: // Nucleus Little Endian (LE)
948 83469015 bellard
    case 0x11: // As if user secondary
949 83469015 bellard
    case 0x19: // As if user secondary LE
950 83469015 bellard
    case 0x24: // Nucleus quad LDD 128 bit atomic
951 83469015 bellard
    case 0x2c: // Nucleus quad LDD 128 bit atomic
952 83469015 bellard
    case 0x4a: // UPA config
953 83469015 bellard
    case 0x89: // Secondary LE
954 0f8a249a blueswir1
        // XXX
955 0f8a249a blueswir1
        return;
956 3475187d bellard
    case 0x45: // LSU
957 0f8a249a blueswir1
        {
958 0f8a249a blueswir1
            uint64_t oldreg;
959 0f8a249a blueswir1
960 0f8a249a blueswir1
            oldreg = env->lsu;
961 0f8a249a blueswir1
            env->lsu = T1 & (DMMU_E | IMMU_E);
962 0f8a249a blueswir1
            // Mappings generated during D/I MMU disabled mode are
963 0f8a249a blueswir1
            // invalid in normal mode
964 0f8a249a blueswir1
            if (oldreg != env->lsu) {
965 83469015 bellard
#ifdef DEBUG_MMU
966 26a76461 bellard
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
967 0f8a249a blueswir1
                dump_mmu(env);
968 83469015 bellard
#endif
969 0f8a249a blueswir1
                tlb_flush(env, 1);
970 0f8a249a blueswir1
            }
971 0f8a249a blueswir1
            return;
972 0f8a249a blueswir1
        }
973 3475187d bellard
    case 0x50: // I-MMU regs
974 0f8a249a blueswir1
        {
975 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
976 0f8a249a blueswir1
            uint64_t oldreg;
977 3b46e624 ths
978 0f8a249a blueswir1
            oldreg = env->immuregs[reg];
979 3475187d bellard
            switch(reg) {
980 3475187d bellard
            case 0: // RO
981 3475187d bellard
            case 4:
982 3475187d bellard
                return;
983 3475187d bellard
            case 1: // Not in I-MMU
984 3475187d bellard
            case 2:
985 3475187d bellard
            case 7:
986 3475187d bellard
            case 8:
987 3475187d bellard
                return;
988 3475187d bellard
            case 3: // SFSR
989 0f8a249a blueswir1
                if ((T1 & 1) == 0)
990 0f8a249a blueswir1
                    T1 = 0; // Clear SFSR
991 3475187d bellard
                break;
992 3475187d bellard
            case 5: // TSB access
993 3475187d bellard
            case 6: // Tag access
994 3475187d bellard
            default:
995 3475187d bellard
                break;
996 3475187d bellard
            }
997 0f8a249a blueswir1
            env->immuregs[reg] = T1;
998 3475187d bellard
#ifdef DEBUG_MMU
999 3475187d bellard
            if (oldreg != env->immuregs[reg]) {
1000 26a76461 bellard
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
1001 3475187d bellard
            }
1002 0f8a249a blueswir1
            dump_mmu(env);
1003 3475187d bellard
#endif
1004 0f8a249a blueswir1
            return;
1005 0f8a249a blueswir1
        }
1006 3475187d bellard
    case 0x54: // I-MMU data in
1007 0f8a249a blueswir1
        {
1008 0f8a249a blueswir1
            unsigned int i;
1009 0f8a249a blueswir1
1010 0f8a249a blueswir1
            // Try finding an invalid entry
1011 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1012 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
1013 0f8a249a blueswir1
                    env->itlb_tag[i] = env->immuregs[6];
1014 0f8a249a blueswir1
                    env->itlb_tte[i] = T1;
1015 0f8a249a blueswir1
                    return;
1016 0f8a249a blueswir1
                }
1017 0f8a249a blueswir1
            }
1018 0f8a249a blueswir1
            // Try finding an unlocked entry
1019 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1020 0f8a249a blueswir1
                if ((env->itlb_tte[i] & 0x40) == 0) {
1021 0f8a249a blueswir1
                    env->itlb_tag[i] = env->immuregs[6];
1022 0f8a249a blueswir1
                    env->itlb_tte[i] = T1;
1023 0f8a249a blueswir1
                    return;
1024 0f8a249a blueswir1
                }
1025 0f8a249a blueswir1
            }
1026 0f8a249a blueswir1
            // error state?
1027 0f8a249a blueswir1
            return;
1028 0f8a249a blueswir1
        }
1029 3475187d bellard
    case 0x55: // I-MMU data access
1030 0f8a249a blueswir1
        {
1031 0f8a249a blueswir1
            unsigned int i = (T0 >> 3) & 0x3f;
1032 3475187d bellard
1033 0f8a249a blueswir1
            env->itlb_tag[i] = env->immuregs[6];
1034 0f8a249a blueswir1
            env->itlb_tte[i] = T1;
1035 0f8a249a blueswir1
            return;
1036 0f8a249a blueswir1
        }
1037 3475187d bellard
    case 0x57: // I-MMU demap
1038 0f8a249a blueswir1
        // XXX
1039 0f8a249a blueswir1
        return;
1040 3475187d bellard
    case 0x58: // D-MMU regs
1041 0f8a249a blueswir1
        {
1042 0f8a249a blueswir1
            int reg = (T0 >> 3) & 0xf;
1043 0f8a249a blueswir1
            uint64_t oldreg;
1044 3b46e624 ths
1045 0f8a249a blueswir1
            oldreg = env->dmmuregs[reg];
1046 3475187d bellard
            switch(reg) {
1047 3475187d bellard
            case 0: // RO
1048 3475187d bellard
            case 4:
1049 3475187d bellard
                return;
1050 3475187d bellard
            case 3: // SFSR
1051 0f8a249a blueswir1
                if ((T1 & 1) == 0) {
1052 0f8a249a blueswir1
                    T1 = 0; // Clear SFSR, Fault address
1053 0f8a249a blueswir1
                    env->dmmuregs[4] = 0;
1054 0f8a249a blueswir1
                }
1055 0f8a249a blueswir1
                env->dmmuregs[reg] = T1;
1056 3475187d bellard
                break;
1057 3475187d bellard
            case 1: // Primary context
1058 3475187d bellard
            case 2: // Secondary context
1059 3475187d bellard
            case 5: // TSB access
1060 3475187d bellard
            case 6: // Tag access
1061 3475187d bellard
            case 7: // Virtual Watchpoint
1062 3475187d bellard
            case 8: // Physical Watchpoint
1063 3475187d bellard
            default:
1064 3475187d bellard
                break;
1065 3475187d bellard
            }
1066 0f8a249a blueswir1
            env->dmmuregs[reg] = T1;
1067 3475187d bellard
#ifdef DEBUG_MMU
1068 3475187d bellard
            if (oldreg != env->dmmuregs[reg]) {
1069 26a76461 bellard
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
1070 3475187d bellard
            }
1071 0f8a249a blueswir1
            dump_mmu(env);
1072 3475187d bellard
#endif
1073 0f8a249a blueswir1
            return;
1074 0f8a249a blueswir1
        }
1075 3475187d bellard
    case 0x5c: // D-MMU data in
1076 0f8a249a blueswir1
        {
1077 0f8a249a blueswir1
            unsigned int i;
1078 0f8a249a blueswir1
1079 0f8a249a blueswir1
            // Try finding an invalid entry
1080 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1081 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
1082 0f8a249a blueswir1
                    env->dtlb_tag[i] = env->dmmuregs[6];
1083 0f8a249a blueswir1
                    env->dtlb_tte[i] = T1;
1084 0f8a249a blueswir1
                    return;
1085 0f8a249a blueswir1
                }
1086 0f8a249a blueswir1
            }
1087 0f8a249a blueswir1
            // Try finding an unlocked entry
1088 0f8a249a blueswir1
            for (i = 0; i < 64; i++) {
1089 0f8a249a blueswir1
                if ((env->dtlb_tte[i] & 0x40) == 0) {
1090 0f8a249a blueswir1
                    env->dtlb_tag[i] = env->dmmuregs[6];
1091 0f8a249a blueswir1
                    env->dtlb_tte[i] = T1;
1092 0f8a249a blueswir1
                    return;
1093 0f8a249a blueswir1
                }
1094 0f8a249a blueswir1
            }
1095 0f8a249a blueswir1
            // error state?
1096 0f8a249a blueswir1
            return;
1097 0f8a249a blueswir1
        }
1098 3475187d bellard
    case 0x5d: // D-MMU data access
1099 0f8a249a blueswir1
        {
1100 0f8a249a blueswir1
            unsigned int i = (T0 >> 3) & 0x3f;
1101 3475187d bellard
1102 0f8a249a blueswir1
            env->dtlb_tag[i] = env->dmmuregs[6];
1103 0f8a249a blueswir1
            env->dtlb_tte[i] = T1;
1104 0f8a249a blueswir1
            return;
1105 0f8a249a blueswir1
        }
1106 3475187d bellard
    case 0x5f: // D-MMU demap
1107 83469015 bellard
    case 0x49: // Interrupt data receive
1108 0f8a249a blueswir1
        // XXX
1109 0f8a249a blueswir1
        return;
1110 3475187d bellard
    case 0x51: // I-MMU 8k TSB pointer, RO
1111 3475187d bellard
    case 0x52: // I-MMU 64k TSB pointer, RO
1112 3475187d bellard
    case 0x56: // I-MMU tag read, RO
1113 3475187d bellard
    case 0x59: // D-MMU 8k TSB pointer, RO
1114 3475187d bellard
    case 0x5a: // D-MMU 64k TSB pointer, RO
1115 3475187d bellard
    case 0x5b: // D-MMU data pointer, RO
1116 3475187d bellard
    case 0x5e: // D-MMU tag read, RO
1117 83469015 bellard
    case 0x48: // Interrupt dispatch, RO
1118 83469015 bellard
    case 0x7f: // Incoming interrupt vector, RO
1119 83469015 bellard
    case 0x82: // Primary no-fault, RO
1120 83469015 bellard
    case 0x83: // Secondary no-fault, RO
1121 83469015 bellard
    case 0x8a: // Primary no-fault LE, RO
1122 83469015 bellard
    case 0x8b: // Secondary no-fault LE, RO
1123 3475187d bellard
    default:
1124 6c36d3fa blueswir1
        do_unassigned_access(T0, 1, 0, 1);
1125 0f8a249a blueswir1
        return;
1126 3475187d bellard
    }
1127 3475187d bellard
}
1128 81ad8ba2 blueswir1
#endif /* CONFIG_USER_ONLY */
1129 81ad8ba2 blueswir1
#endif /* TARGET_SPARC64 */
1130 3475187d bellard
1131 3475187d bellard
#ifndef TARGET_SPARC64
1132 a0c4cb4a bellard
void helper_rett()
1133 e8af50a3 bellard
{
1134 af7bf89b bellard
    unsigned int cwp;
1135 af7bf89b bellard
1136 d4218d99 blueswir1
    if (env->psret == 1)
1137 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
1138 d4218d99 blueswir1
1139 e8af50a3 bellard
    env->psret = 1;
1140 5fafdf24 ths
    cwp = (env->cwp + 1) & (NWINDOWS - 1);
1141 e8af50a3 bellard
    if (env->wim & (1 << cwp)) {
1142 e8af50a3 bellard
        raise_exception(TT_WIN_UNF);
1143 e8af50a3 bellard
    }
1144 e8af50a3 bellard
    set_cwp(cwp);
1145 e8af50a3 bellard
    env->psrs = env->psrps;
1146 e8af50a3 bellard
}
1147 3475187d bellard
#endif
1148 e8af50a3 bellard
1149 8d5f07fa bellard
void helper_ldfsr(void)
1150 e8af50a3 bellard
{
1151 7a0e1f41 bellard
    int rnd_mode;
1152 e8af50a3 bellard
    switch (env->fsr & FSR_RD_MASK) {
1153 e8af50a3 bellard
    case FSR_RD_NEAREST:
1154 7a0e1f41 bellard
        rnd_mode = float_round_nearest_even;
1155 0f8a249a blueswir1
        break;
1156 ed910241 bellard
    default:
1157 e8af50a3 bellard
    case FSR_RD_ZERO:
1158 7a0e1f41 bellard
        rnd_mode = float_round_to_zero;
1159 0f8a249a blueswir1
        break;
1160 e8af50a3 bellard
    case FSR_RD_POS:
1161 7a0e1f41 bellard
        rnd_mode = float_round_up;
1162 0f8a249a blueswir1
        break;
1163 e8af50a3 bellard
    case FSR_RD_NEG:
1164 7a0e1f41 bellard
        rnd_mode = float_round_down;
1165 0f8a249a blueswir1
        break;
1166 e8af50a3 bellard
    }
1167 7a0e1f41 bellard
    set_float_rounding_mode(rnd_mode, &env->fp_status);
1168 e8af50a3 bellard
}
1169 e80cfcfc bellard
1170 e80cfcfc bellard
void helper_debug()
1171 e80cfcfc bellard
{
1172 e80cfcfc bellard
    env->exception_index = EXCP_DEBUG;
1173 e80cfcfc bellard
    cpu_loop_exit();
1174 e80cfcfc bellard
}
1175 af7bf89b bellard
1176 3475187d bellard
#ifndef TARGET_SPARC64
1177 af7bf89b bellard
void do_wrpsr()
1178 af7bf89b bellard
{
1179 d4218d99 blueswir1
    if ((T0 & PSR_CWP) >= NWINDOWS)
1180 d4218d99 blueswir1
        raise_exception(TT_ILL_INSN);
1181 d4218d99 blueswir1
    else
1182 d4218d99 blueswir1
        PUT_PSR(env, T0);
1183 af7bf89b bellard
}
1184 af7bf89b bellard
1185 af7bf89b bellard
void do_rdpsr()
1186 af7bf89b bellard
{
1187 af7bf89b bellard
    T0 = GET_PSR(env);
1188 af7bf89b bellard
}
1189 3475187d bellard
1190 3475187d bellard
#else
1191 3475187d bellard
1192 3475187d bellard
void do_popc()
1193 3475187d bellard
{
1194 3475187d bellard
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
1195 3475187d bellard
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
1196 3475187d bellard
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
1197 3475187d bellard
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
1198 3475187d bellard
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
1199 3475187d bellard
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
1200 3475187d bellard
}
1201 83469015 bellard
1202 83469015 bellard
static inline uint64_t *get_gregset(uint64_t pstate)
1203 83469015 bellard
{
1204 83469015 bellard
    switch (pstate) {
1205 83469015 bellard
    default:
1206 83469015 bellard
    case 0:
1207 0f8a249a blueswir1
        return env->bgregs;
1208 83469015 bellard
    case PS_AG:
1209 0f8a249a blueswir1
        return env->agregs;
1210 83469015 bellard
    case PS_MG:
1211 0f8a249a blueswir1
        return env->mgregs;
1212 83469015 bellard
    case PS_IG:
1213 0f8a249a blueswir1
        return env->igregs;
1214 83469015 bellard
    }
1215 83469015 bellard
}
1216 83469015 bellard
1217 8f1f22f6 blueswir1
static inline void change_pstate(uint64_t new_pstate)
1218 83469015 bellard
{
1219 8f1f22f6 blueswir1
    uint64_t pstate_regs, new_pstate_regs;
1220 83469015 bellard
    uint64_t *src, *dst;
1221 83469015 bellard
1222 83469015 bellard
    pstate_regs = env->pstate & 0xc01;
1223 83469015 bellard
    new_pstate_regs = new_pstate & 0xc01;
1224 83469015 bellard
    if (new_pstate_regs != pstate_regs) {
1225 0f8a249a blueswir1
        // Switch global register bank
1226 0f8a249a blueswir1
        src = get_gregset(new_pstate_regs);
1227 0f8a249a blueswir1
        dst = get_gregset(pstate_regs);
1228 0f8a249a blueswir1
        memcpy32(dst, env->gregs);
1229 0f8a249a blueswir1
        memcpy32(env->gregs, src);
1230 83469015 bellard
    }
1231 83469015 bellard
    env->pstate = new_pstate;
1232 83469015 bellard
}
1233 83469015 bellard
1234 8f1f22f6 blueswir1
void do_wrpstate(void)
1235 8f1f22f6 blueswir1
{
1236 8f1f22f6 blueswir1
    change_pstate(T0 & 0xf3f);
1237 8f1f22f6 blueswir1
}
1238 8f1f22f6 blueswir1
1239 83469015 bellard
void do_done(void)
1240 83469015 bellard
{
1241 83469015 bellard
    env->tl--;
1242 83469015 bellard
    env->pc = env->tnpc[env->tl];
1243 83469015 bellard
    env->npc = env->tnpc[env->tl] + 4;
1244 83469015 bellard
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1245 83469015 bellard
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1246 8f1f22f6 blueswir1
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1247 17d996e1 blueswir1
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1248 83469015 bellard
}
1249 83469015 bellard
1250 83469015 bellard
void do_retry(void)
1251 83469015 bellard
{
1252 83469015 bellard
    env->tl--;
1253 83469015 bellard
    env->pc = env->tpc[env->tl];
1254 83469015 bellard
    env->npc = env->tnpc[env->tl];
1255 83469015 bellard
    PUT_CCR(env, env->tstate[env->tl] >> 32);
1256 83469015 bellard
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
1257 8f1f22f6 blueswir1
    change_pstate((env->tstate[env->tl] >> 8) & 0xf3f);
1258 17d996e1 blueswir1
    PUT_CWP64(env, env->tstate[env->tl] & 0xff);
1259 83469015 bellard
}
1260 3475187d bellard
#endif
1261 ee5bbe38 bellard
1262 ee5bbe38 bellard
void set_cwp(int new_cwp)
1263 ee5bbe38 bellard
{
1264 ee5bbe38 bellard
    /* put the modified wrap registers at their proper location */
1265 ee5bbe38 bellard
    if (env->cwp == (NWINDOWS - 1))
1266 ee5bbe38 bellard
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
1267 ee5bbe38 bellard
    env->cwp = new_cwp;
1268 ee5bbe38 bellard
    /* put the wrap registers at their temporary location */
1269 ee5bbe38 bellard
    if (new_cwp == (NWINDOWS - 1))
1270 ee5bbe38 bellard
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
1271 ee5bbe38 bellard
    env->regwptr = env->regbase + (new_cwp * 16);
1272 ee5bbe38 bellard
    REGWPTR = env->regwptr;
1273 ee5bbe38 bellard
}
1274 ee5bbe38 bellard
1275 ee5bbe38 bellard
void cpu_set_cwp(CPUState *env1, int new_cwp)
1276 ee5bbe38 bellard
{
1277 ee5bbe38 bellard
    CPUState *saved_env;
1278 ee5bbe38 bellard
#ifdef reg_REGWPTR
1279 ee5bbe38 bellard
    target_ulong *saved_regwptr;
1280 ee5bbe38 bellard
#endif
1281 ee5bbe38 bellard
1282 ee5bbe38 bellard
    saved_env = env;
1283 ee5bbe38 bellard
#ifdef reg_REGWPTR
1284 ee5bbe38 bellard
    saved_regwptr = REGWPTR;
1285 ee5bbe38 bellard
#endif
1286 ee5bbe38 bellard
    env = env1;
1287 ee5bbe38 bellard
    set_cwp(new_cwp);
1288 ee5bbe38 bellard
    env = saved_env;
1289 ee5bbe38 bellard
#ifdef reg_REGWPTR
1290 ee5bbe38 bellard
    REGWPTR = saved_regwptr;
1291 ee5bbe38 bellard
#endif
1292 ee5bbe38 bellard
}
1293 ee5bbe38 bellard
1294 ee5bbe38 bellard
#ifdef TARGET_SPARC64
1295 ee5bbe38 bellard
void do_interrupt(int intno)
1296 ee5bbe38 bellard
{
1297 ee5bbe38 bellard
#ifdef DEBUG_PCALL
1298 ee5bbe38 bellard
    if (loglevel & CPU_LOG_INT) {
1299 0f8a249a blueswir1
        static int count;
1300 0f8a249a blueswir1
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
1301 ee5bbe38 bellard
                count, intno,
1302 ee5bbe38 bellard
                env->pc,
1303 ee5bbe38 bellard
                env->npc, env->regwptr[6]);
1304 0f8a249a blueswir1
        cpu_dump_state(env, logfile, fprintf, 0);
1305 ee5bbe38 bellard
#if 0
1306 0f8a249a blueswir1
        {
1307 0f8a249a blueswir1
            int i;
1308 0f8a249a blueswir1
            uint8_t *ptr;
1309 0f8a249a blueswir1

1310 0f8a249a blueswir1
            fprintf(logfile, "       code=");
1311 0f8a249a blueswir1
            ptr = (uint8_t *)env->pc;
1312 0f8a249a blueswir1
            for(i = 0; i < 16; i++) {
1313 0f8a249a blueswir1
                fprintf(logfile, " %02x", ldub(ptr + i));
1314 0f8a249a blueswir1
            }
1315 0f8a249a blueswir1
            fprintf(logfile, "\n");
1316 0f8a249a blueswir1
        }
1317 ee5bbe38 bellard
#endif
1318 0f8a249a blueswir1
        count++;
1319 ee5bbe38 bellard
    }
1320 ee5bbe38 bellard
#endif
1321 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1322 83469015 bellard
    if (env->tl == MAXTL) {
1323 c68ea704 bellard
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
1324 0f8a249a blueswir1
        return;
1325 ee5bbe38 bellard
    }
1326 ee5bbe38 bellard
#endif
1327 ee5bbe38 bellard
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
1328 0f8a249a blueswir1
        ((env->pstate & 0xf3f) << 8) | GET_CWP64(env);
1329 ee5bbe38 bellard
    env->tpc[env->tl] = env->pc;
1330 ee5bbe38 bellard
    env->tnpc[env->tl] = env->npc;
1331 ee5bbe38 bellard
    env->tt[env->tl] = intno;
1332 8f1f22f6 blueswir1
    change_pstate(PS_PEF | PS_PRIV | PS_AG);
1333 8f1f22f6 blueswir1
1334 8f1f22f6 blueswir1
    if (intno == TT_CLRWIN)
1335 8f1f22f6 blueswir1
        set_cwp((env->cwp - 1) & (NWINDOWS - 1));
1336 8f1f22f6 blueswir1
    else if ((intno & 0x1c0) == TT_SPILL)
1337 8f1f22f6 blueswir1
        set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
1338 8f1f22f6 blueswir1
    else if ((intno & 0x1c0) == TT_FILL)
1339 8f1f22f6 blueswir1
        set_cwp((env->cwp + 1) & (NWINDOWS - 1));
1340 83469015 bellard
    env->tbr &= ~0x7fffULL;
1341 83469015 bellard
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
1342 83469015 bellard
    if (env->tl < MAXTL - 1) {
1343 0f8a249a blueswir1
        env->tl++;
1344 83469015 bellard
    } else {
1345 0f8a249a blueswir1
        env->pstate |= PS_RED;
1346 0f8a249a blueswir1
        if (env->tl != MAXTL)
1347 0f8a249a blueswir1
            env->tl++;
1348 83469015 bellard
    }
1349 ee5bbe38 bellard
    env->pc = env->tbr;
1350 ee5bbe38 bellard
    env->npc = env->pc + 4;
1351 ee5bbe38 bellard
    env->exception_index = 0;
1352 ee5bbe38 bellard
}
1353 ee5bbe38 bellard
#else
1354 ee5bbe38 bellard
void do_interrupt(int intno)
1355 ee5bbe38 bellard
{
1356 ee5bbe38 bellard
    int cwp;
1357 ee5bbe38 bellard
1358 ee5bbe38 bellard
#ifdef DEBUG_PCALL
1359 ee5bbe38 bellard
    if (loglevel & CPU_LOG_INT) {
1360 0f8a249a blueswir1
        static int count;
1361 0f8a249a blueswir1
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
1362 ee5bbe38 bellard
                count, intno,
1363 ee5bbe38 bellard
                env->pc,
1364 ee5bbe38 bellard
                env->npc, env->regwptr[6]);
1365 0f8a249a blueswir1
        cpu_dump_state(env, logfile, fprintf, 0);
1366 ee5bbe38 bellard
#if 0
1367 0f8a249a blueswir1
        {
1368 0f8a249a blueswir1
            int i;
1369 0f8a249a blueswir1
            uint8_t *ptr;
1370 0f8a249a blueswir1

1371 0f8a249a blueswir1
            fprintf(logfile, "       code=");
1372 0f8a249a blueswir1
            ptr = (uint8_t *)env->pc;
1373 0f8a249a blueswir1
            for(i = 0; i < 16; i++) {
1374 0f8a249a blueswir1
                fprintf(logfile, " %02x", ldub(ptr + i));
1375 0f8a249a blueswir1
            }
1376 0f8a249a blueswir1
            fprintf(logfile, "\n");
1377 0f8a249a blueswir1
        }
1378 ee5bbe38 bellard
#endif
1379 0f8a249a blueswir1
        count++;
1380 ee5bbe38 bellard
    }
1381 ee5bbe38 bellard
#endif
1382 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1383 ee5bbe38 bellard
    if (env->psret == 0) {
1384 c68ea704 bellard
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1385 0f8a249a blueswir1
        return;
1386 ee5bbe38 bellard
    }
1387 ee5bbe38 bellard
#endif
1388 ee5bbe38 bellard
    env->psret = 0;
1389 5fafdf24 ths
    cwp = (env->cwp - 1) & (NWINDOWS - 1);
1390 ee5bbe38 bellard
    set_cwp(cwp);
1391 ee5bbe38 bellard
    env->regwptr[9] = env->pc;
1392 ee5bbe38 bellard
    env->regwptr[10] = env->npc;
1393 ee5bbe38 bellard
    env->psrps = env->psrs;
1394 ee5bbe38 bellard
    env->psrs = 1;
1395 ee5bbe38 bellard
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1396 ee5bbe38 bellard
    env->pc = env->tbr;
1397 ee5bbe38 bellard
    env->npc = env->pc + 4;
1398 ee5bbe38 bellard
    env->exception_index = 0;
1399 ee5bbe38 bellard
}
1400 ee5bbe38 bellard
#endif
1401 ee5bbe38 bellard
1402 5fafdf24 ths
#if !defined(CONFIG_USER_ONLY)
1403 ee5bbe38 bellard
1404 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1405 d2889a3e blueswir1
                                void *retaddr);
1406 d2889a3e blueswir1
1407 ee5bbe38 bellard
#define MMUSUFFIX _mmu
1408 d2889a3e blueswir1
#define ALIGNED_ONLY
1409 ee5bbe38 bellard
#define GETPC() (__builtin_return_address(0))
1410 ee5bbe38 bellard
1411 ee5bbe38 bellard
#define SHIFT 0
1412 ee5bbe38 bellard
#include "softmmu_template.h"
1413 ee5bbe38 bellard
1414 ee5bbe38 bellard
#define SHIFT 1
1415 ee5bbe38 bellard
#include "softmmu_template.h"
1416 ee5bbe38 bellard
1417 ee5bbe38 bellard
#define SHIFT 2
1418 ee5bbe38 bellard
#include "softmmu_template.h"
1419 ee5bbe38 bellard
1420 ee5bbe38 bellard
#define SHIFT 3
1421 ee5bbe38 bellard
#include "softmmu_template.h"
1422 ee5bbe38 bellard
1423 d2889a3e blueswir1
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1424 d2889a3e blueswir1
                                void *retaddr)
1425 d2889a3e blueswir1
{
1426 94554550 blueswir1
#ifdef DEBUG_UNALIGNED
1427 94554550 blueswir1
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1428 94554550 blueswir1
#endif
1429 94554550 blueswir1
    raise_exception(TT_UNALIGNED);
1430 d2889a3e blueswir1
}
1431 ee5bbe38 bellard
1432 ee5bbe38 bellard
/* try to fill the TLB and return an exception if error. If retaddr is
1433 ee5bbe38 bellard
   NULL, it means that the function was called in C code (i.e. not
1434 ee5bbe38 bellard
   from generated code or from helper.c) */
1435 ee5bbe38 bellard
/* XXX: fix it to restore all registers */
1436 ee5bbe38 bellard
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
1437 ee5bbe38 bellard
{
1438 ee5bbe38 bellard
    TranslationBlock *tb;
1439 ee5bbe38 bellard
    int ret;
1440 ee5bbe38 bellard
    unsigned long pc;
1441 ee5bbe38 bellard
    CPUState *saved_env;
1442 ee5bbe38 bellard
1443 ee5bbe38 bellard
    /* XXX: hack to restore env in all cases, even if not called from
1444 ee5bbe38 bellard
       generated code */
1445 ee5bbe38 bellard
    saved_env = env;
1446 ee5bbe38 bellard
    env = cpu_single_env;
1447 ee5bbe38 bellard
1448 ee5bbe38 bellard
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
1449 ee5bbe38 bellard
    if (ret) {
1450 ee5bbe38 bellard
        if (retaddr) {
1451 ee5bbe38 bellard
            /* now we have a real cpu fault */
1452 ee5bbe38 bellard
            pc = (unsigned long)retaddr;
1453 ee5bbe38 bellard
            tb = tb_find_pc(pc);
1454 ee5bbe38 bellard
            if (tb) {
1455 ee5bbe38 bellard
                /* the PC is inside the translated code. It means that we have
1456 ee5bbe38 bellard
                   a virtual CPU fault */
1457 ee5bbe38 bellard
                cpu_restore_state(tb, env, pc, (void *)T2);
1458 ee5bbe38 bellard
            }
1459 ee5bbe38 bellard
        }
1460 ee5bbe38 bellard
        cpu_loop_exit();
1461 ee5bbe38 bellard
    }
1462 ee5bbe38 bellard
    env = saved_env;
1463 ee5bbe38 bellard
}
1464 ee5bbe38 bellard
1465 ee5bbe38 bellard
#endif
1466 6c36d3fa blueswir1
1467 6c36d3fa blueswir1
#ifndef TARGET_SPARC64
1468 5dcb6b91 blueswir1
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1469 6c36d3fa blueswir1
                          int is_asi)
1470 6c36d3fa blueswir1
{
1471 6c36d3fa blueswir1
    CPUState *saved_env;
1472 6c36d3fa blueswir1
1473 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
1474 6c36d3fa blueswir1
       generated code */
1475 6c36d3fa blueswir1
    saved_env = env;
1476 6c36d3fa blueswir1
    env = cpu_single_env;
1477 6c36d3fa blueswir1
    if (env->mmuregs[3]) /* Fault status register */
1478 0f8a249a blueswir1
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1479 6c36d3fa blueswir1
    if (is_asi)
1480 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 16;
1481 6c36d3fa blueswir1
    if (env->psrs)
1482 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 5;
1483 6c36d3fa blueswir1
    if (is_exec)
1484 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 6;
1485 6c36d3fa blueswir1
    if (is_write)
1486 6c36d3fa blueswir1
        env->mmuregs[3] |= 1 << 7;
1487 6c36d3fa blueswir1
    env->mmuregs[3] |= (5 << 2) | 2;
1488 6c36d3fa blueswir1
    env->mmuregs[4] = addr; /* Fault address register */
1489 6c36d3fa blueswir1
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1490 6c36d3fa blueswir1
#ifdef DEBUG_UNASSIGNED
1491 5dcb6b91 blueswir1
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1492 6c36d3fa blueswir1
               "\n", addr, env->pc);
1493 6c36d3fa blueswir1
#endif
1494 1b2e93c1 blueswir1
        if (is_exec)
1495 1b2e93c1 blueswir1
            raise_exception(TT_CODE_ACCESS);
1496 1b2e93c1 blueswir1
        else
1497 1b2e93c1 blueswir1
            raise_exception(TT_DATA_ACCESS);
1498 6c36d3fa blueswir1
    }
1499 6c36d3fa blueswir1
    env = saved_env;
1500 6c36d3fa blueswir1
}
1501 6c36d3fa blueswir1
#else
1502 5dcb6b91 blueswir1
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1503 6c36d3fa blueswir1
                          int is_asi)
1504 6c36d3fa blueswir1
{
1505 6c36d3fa blueswir1
#ifdef DEBUG_UNASSIGNED
1506 6c36d3fa blueswir1
    CPUState *saved_env;
1507 6c36d3fa blueswir1
1508 6c36d3fa blueswir1
    /* XXX: hack to restore env in all cases, even if not called from
1509 6c36d3fa blueswir1
       generated code */
1510 6c36d3fa blueswir1
    saved_env = env;
1511 6c36d3fa blueswir1
    env = cpu_single_env;
1512 5dcb6b91 blueswir1
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1513 6c36d3fa blueswir1
           addr, env->pc);
1514 6c36d3fa blueswir1
    env = saved_env;
1515 6c36d3fa blueswir1
#endif
1516 1b2e93c1 blueswir1
    if (is_exec)
1517 1b2e93c1 blueswir1
        raise_exception(TT_CODE_ACCESS);
1518 1b2e93c1 blueswir1
    else
1519 1b2e93c1 blueswir1
        raise_exception(TT_DATA_ACCESS);
1520 6c36d3fa blueswir1
}
1521 6c36d3fa blueswir1
#endif
1522 20c9f095 blueswir1
1523 20c9f095 blueswir1
#ifdef TARGET_SPARC64
1524 20c9f095 blueswir1
void do_tick_set_count(void *opaque, uint64_t count)
1525 20c9f095 blueswir1
{
1526 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1527 20c9f095 blueswir1
    ptimer_set_count(opaque, -count);
1528 d8bdf5fa blueswir1
#endif
1529 20c9f095 blueswir1
}
1530 20c9f095 blueswir1
1531 20c9f095 blueswir1
uint64_t do_tick_get_count(void *opaque)
1532 20c9f095 blueswir1
{
1533 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1534 20c9f095 blueswir1
    return -ptimer_get_count(opaque);
1535 d8bdf5fa blueswir1
#else
1536 d8bdf5fa blueswir1
    return 0;
1537 d8bdf5fa blueswir1
#endif
1538 20c9f095 blueswir1
}
1539 20c9f095 blueswir1
1540 20c9f095 blueswir1
void do_tick_set_limit(void *opaque, uint64_t limit)
1541 20c9f095 blueswir1
{
1542 d8bdf5fa blueswir1
#if !defined(CONFIG_USER_ONLY)
1543 20c9f095 blueswir1
    ptimer_set_limit(opaque, -limit, 0);
1544 d8bdf5fa blueswir1
#endif
1545 20c9f095 blueswir1
}
1546 20c9f095 blueswir1
#endif