Statistics
| Branch: | Revision:

root / hw / slavio_timer.c @ ee6847d1

History | View | Annotate | Download (14.7 kB)

1
/*
2
 * QEMU Sparc SLAVIO timer controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "sun4m.h"
26
#include "qemu-timer.h"
27
#include "sysbus.h"
28

    
29
//#define DEBUG_TIMER
30

    
31
#ifdef DEBUG_TIMER
32
#define DPRINTF(fmt, ...)                                       \
33
    do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
34
#else
35
#define DPRINTF(fmt, ...) do {} while (0)
36
#endif
37

    
38
/*
39
 * Registers of hardware timer in sun4m.
40
 *
41
 * This is the timer/counter part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
46
 * are zero. Bit 31 is 1 when count has been reached.
47
 *
48
 * Per-CPU timers interrupt local CPU, system timer uses normal
49
 * interrupt routing.
50
 *
51
 */
52

    
53
#define MAX_CPUS 16
54

    
55
typedef struct SLAVIO_TIMERState {
56
    SysBusDevice busdev;
57
    qemu_irq irq;
58
    ptimer_state *timer;
59
    uint32_t count, counthigh, reached;
60
    uint64_t limit;
61
    // processor only
62
    uint32_t running;
63
    struct SLAVIO_TIMERState *master;
64
    uint32_t slave_index;
65
    // system only
66
    uint32_t num_slaves;
67
    struct SLAVIO_TIMERState *slave[MAX_CPUS];
68
    uint32_t slave_mode;
69
} SLAVIO_TIMERState;
70

    
71
#define SYS_TIMER_SIZE 0x14
72
#define CPU_TIMER_SIZE 0x10
73

    
74
#define SYS_TIMER_OFFSET      0x10000ULL
75
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
76

    
77
#define TIMER_LIMIT         0
78
#define TIMER_COUNTER       1
79
#define TIMER_COUNTER_NORST 2
80
#define TIMER_STATUS        3
81
#define TIMER_MODE          4
82

    
83
#define TIMER_COUNT_MASK32 0xfffffe00
84
#define TIMER_LIMIT_MASK32 0x7fffffff
85
#define TIMER_MAX_COUNT64  0x7ffffffffffffe00ULL
86
#define TIMER_MAX_COUNT32  0x7ffffe00ULL
87
#define TIMER_REACHED      0x80000000
88
#define TIMER_PERIOD       500ULL // 500ns
89
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
90
#define PERIODS_TO_LIMIT(l) ((l) << 9)
91

    
92
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
93
{
94
    return s->master && (s->master->slave_mode & (1 << s->slave_index));
95
}
96

    
97
// Update count, set irq, update expire_time
98
// Convert from ptimer countdown units
99
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
100
{
101
    uint64_t count, limit;
102

    
103
    if (s->limit == 0) /* free-run processor or system counter */
104
        limit = TIMER_MAX_COUNT32;
105
    else
106
        limit = s->limit;
107

    
108
    if (s->timer)
109
        count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
110
    else
111
        count = 0;
112

    
113
    DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
114
            s->counthigh, s->count);
115
    s->count = count & TIMER_COUNT_MASK32;
116
    s->counthigh = count >> 32;
117
}
118

    
119
// timer callback
120
static void slavio_timer_irq(void *opaque)
121
{
122
    SLAVIO_TIMERState *s = opaque;
123

    
124
    slavio_timer_get_out(s);
125
    DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
126
    s->reached = TIMER_REACHED;
127
    if (!slavio_timer_is_user(s))
128
        qemu_irq_raise(s->irq);
129
}
130

    
131
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
132
{
133
    SLAVIO_TIMERState *s = opaque;
134
    uint32_t saddr, ret;
135

    
136
    saddr = addr >> 2;
137
    switch (saddr) {
138
    case TIMER_LIMIT:
139
        // read limit (system counter mode) or read most signifying
140
        // part of counter (user mode)
141
        if (slavio_timer_is_user(s)) {
142
            // read user timer MSW
143
            slavio_timer_get_out(s);
144
            ret = s->counthigh | s->reached;
145
        } else {
146
            // read limit
147
            // clear irq
148
            qemu_irq_lower(s->irq);
149
            s->reached = 0;
150
            ret = s->limit & TIMER_LIMIT_MASK32;
151
        }
152
        break;
153
    case TIMER_COUNTER:
154
        // read counter and reached bit (system mode) or read lsbits
155
        // of counter (user mode)
156
        slavio_timer_get_out(s);
157
        if (slavio_timer_is_user(s)) // read user timer LSW
158
            ret = s->count & TIMER_MAX_COUNT64;
159
        else // read limit
160
            ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
161
        break;
162
    case TIMER_STATUS:
163
        // only available in processor counter/timer
164
        // read start/stop status
165
        ret = s->running;
166
        break;
167
    case TIMER_MODE:
168
        // only available in system counter
169
        // read user/system mode
170
        ret = s->slave_mode;
171
        break;
172
    default:
173
        DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
174
        ret = 0;
175
        break;
176
    }
177
    DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
178

    
179
    return ret;
180
}
181

    
182
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
183
                                    uint32_t val)
184
{
185
    SLAVIO_TIMERState *s = opaque;
186
    uint32_t saddr;
187

    
188
    DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
189
    saddr = addr >> 2;
190
    switch (saddr) {
191
    case TIMER_LIMIT:
192
        if (slavio_timer_is_user(s)) {
193
            uint64_t count;
194

    
195
            // set user counter MSW, reset counter
196
            s->limit = TIMER_MAX_COUNT64;
197
            s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
198
            s->reached = 0;
199
            count = ((uint64_t)s->counthigh << 32) | s->count;
200
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
201
                    count);
202
            if (s->timer)
203
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
204
        } else {
205
            // set limit, reset counter
206
            qemu_irq_lower(s->irq);
207
            s->limit = val & TIMER_MAX_COUNT32;
208
            if (s->timer) {
209
                if (s->limit == 0) /* free-run */
210
                    ptimer_set_limit(s->timer,
211
                                     LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
212
                else
213
                    ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
214
            }
215
        }
216
        break;
217
    case TIMER_COUNTER:
218
        if (slavio_timer_is_user(s)) {
219
            uint64_t count;
220

    
221
            // set user counter LSW, reset counter
222
            s->limit = TIMER_MAX_COUNT64;
223
            s->count = val & TIMER_MAX_COUNT64;
224
            s->reached = 0;
225
            count = ((uint64_t)s->counthigh) << 32 | s->count;
226
            DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
227
                    count);
228
            if (s->timer)
229
                ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
230
        } else
231
            DPRINTF("not user timer\n");
232
        break;
233
    case TIMER_COUNTER_NORST:
234
        // set limit without resetting counter
235
        s->limit = val & TIMER_MAX_COUNT32;
236
        if (s->timer) {
237
            if (s->limit == 0)        /* free-run */
238
                ptimer_set_limit(s->timer,
239
                                 LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
240
            else
241
                ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
242
        }
243
        break;
244
    case TIMER_STATUS:
245
        if (slavio_timer_is_user(s)) {
246
            // start/stop user counter
247
            if ((val & 1) && !s->running) {
248
                DPRINTF("processor %d user timer started\n", s->slave_index);
249
                if (s->timer)
250
                    ptimer_run(s->timer, 0);
251
                s->running = 1;
252
            } else if (!(val & 1) && s->running) {
253
                DPRINTF("processor %d user timer stopped\n", s->slave_index);
254
                if (s->timer)
255
                    ptimer_stop(s->timer);
256
                s->running = 0;
257
            }
258
        }
259
        break;
260
    case TIMER_MODE:
261
        if (s->master == NULL) {
262
            unsigned int i;
263

    
264
            for (i = 0; i < s->num_slaves; i++) {
265
                unsigned int processor = 1 << i;
266

    
267
                // check for a change in timer mode for this processor
268
                if ((val & processor) != (s->slave_mode & processor)) {
269
                    if (val & processor) { // counter -> user timer
270
                        qemu_irq_lower(s->slave[i]->irq);
271
                        // counters are always running
272
                        ptimer_stop(s->slave[i]->timer);
273
                        s->slave[i]->running = 0;
274
                        // user timer limit is always the same
275
                        s->slave[i]->limit = TIMER_MAX_COUNT64;
276
                        ptimer_set_limit(s->slave[i]->timer,
277
                                         LIMIT_TO_PERIODS(s->slave[i]->limit),
278
                                         1);
279
                        // set this processors user timer bit in config
280
                        // register
281
                        s->slave_mode |= processor;
282
                        DPRINTF("processor %d changed from counter to user "
283
                                "timer\n", s->slave[i]->slave_index);
284
                    } else { // user timer -> counter
285
                        // stop the user timer if it is running
286
                        if (s->slave[i]->running)
287
                            ptimer_stop(s->slave[i]->timer);
288
                        // start the counter
289
                        ptimer_run(s->slave[i]->timer, 0);
290
                        s->slave[i]->running = 1;
291
                        // clear this processors user timer bit in config
292
                        // register
293
                        s->slave_mode &= ~processor;
294
                        DPRINTF("processor %d changed from user timer to "
295
                                "counter\n", s->slave[i]->slave_index);
296
                    }
297
                }
298
            }
299
        } else
300
            DPRINTF("not system timer\n");
301
        break;
302
    default:
303
        DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
304
        break;
305
    }
306
}
307

    
308
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
309
    NULL,
310
    NULL,
311
    slavio_timer_mem_readl,
312
};
313

    
314
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
315
    NULL,
316
    NULL,
317
    slavio_timer_mem_writel,
318
};
319

    
320
static void slavio_timer_save(QEMUFile *f, void *opaque)
321
{
322
    SLAVIO_TIMERState *s = opaque;
323

    
324
    qemu_put_be64s(f, &s->limit);
325
    qemu_put_be32s(f, &s->count);
326
    qemu_put_be32s(f, &s->counthigh);
327
    qemu_put_be32s(f, &s->reached);
328
    qemu_put_be32s(f, &s->running);
329
    if (s->timer)
330
        qemu_put_ptimer(f, s->timer);
331
}
332

    
333
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
334
{
335
    SLAVIO_TIMERState *s = opaque;
336

    
337
    if (version_id != 3)
338
        return -EINVAL;
339

    
340
    qemu_get_be64s(f, &s->limit);
341
    qemu_get_be32s(f, &s->count);
342
    qemu_get_be32s(f, &s->counthigh);
343
    qemu_get_be32s(f, &s->reached);
344
    qemu_get_be32s(f, &s->running);
345
    if (s->timer)
346
        qemu_get_ptimer(f, s->timer);
347

    
348
    return 0;
349
}
350

    
351
static void slavio_timer_reset(void *opaque)
352
{
353
    SLAVIO_TIMERState *s = opaque;
354

    
355
    s->limit = 0;
356
    s->count = 0;
357
    s->reached = 0;
358
    s->slave_mode = 0;
359
    if (!s->master || s->slave_index < s->master->num_slaves) {
360
        ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
361
        ptimer_run(s->timer, 0);
362
    }
363
    s->running = 1;
364
}
365

    
366
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
367
                                            qemu_irq irq,
368
                                            SLAVIO_TIMERState *master,
369
                                            uint32_t slave_index,
370
                                            uint32_t num_slaves)
371
{
372
    DeviceState *dev;
373
    SysBusDevice *s;
374
    SLAVIO_TIMERState *d;
375

    
376
    dev = qdev_create(NULL, "slavio_timer");
377
    qdev_prop_set_uint32(dev, "slave_index", slave_index);
378
    qdev_prop_set_uint32(dev, "num_slaves", num_slaves);
379
    qdev_prop_set_ptr(dev, "master", master);
380
    qdev_init(dev);
381
    s = sysbus_from_qdev(dev);
382
    sysbus_connect_irq(s, 0, irq);
383
    sysbus_mmio_map(s, 0, addr);
384

    
385
    d = FROM_SYSBUS(SLAVIO_TIMERState, s);
386

    
387
    return d;
388
}
389

    
390
static void slavio_timer_init1(SysBusDevice *dev)
391
{
392
    int io;
393
    SLAVIO_TIMERState *s = FROM_SYSBUS(SLAVIO_TIMERState, dev);
394
    QEMUBH *bh;
395

    
396
    sysbus_init_irq(dev, &s->irq);
397

    
398
    if (!s->master || s->slave_index < s->master->num_slaves) {
399
        bh = qemu_bh_new(slavio_timer_irq, s);
400
        s->timer = ptimer_init(bh);
401
        ptimer_set_period(s->timer, TIMER_PERIOD);
402
    }
403

    
404
    io = cpu_register_io_memory(slavio_timer_mem_read, slavio_timer_mem_write,
405
                                s);
406
    if (s->master) {
407
        sysbus_init_mmio(dev, CPU_TIMER_SIZE, io);
408
    } else {
409
        sysbus_init_mmio(dev, SYS_TIMER_SIZE, io);
410
    }
411

    
412
    register_savevm("slavio_timer", -1, 3, slavio_timer_save,
413
                    slavio_timer_load, s);
414
    qemu_register_reset(slavio_timer_reset, s);
415
    slavio_timer_reset(s);
416
}
417

    
418
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
419
                           qemu_irq *cpu_irqs, unsigned int num_cpus)
420
{
421
    SLAVIO_TIMERState *master;
422
    unsigned int i;
423

    
424
    master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0,
425
                               num_cpus);
426

    
427
    for (i = 0; i < MAX_CPUS; i++) {
428
        master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
429
                                             CPU_TIMER_OFFSET(i),
430
                                             cpu_irqs[i], master, i, 0);
431
    }
432
}
433

    
434
static SysBusDeviceInfo slavio_timer_info = {
435
    .init = slavio_timer_init1,
436
    .qdev.name  = "slavio_timer",
437
    .qdev.size  = sizeof(SLAVIO_TIMERState),
438
    .qdev.props = (Property[]) {
439
        {
440
            .name = "num_slaves",
441
            .info = &qdev_prop_uint32,
442
            .offset = offsetof(SLAVIO_TIMERState, num_slaves),
443
        },
444
        {
445
            .name = "slave_index",
446
            .info = &qdev_prop_uint32,
447
            .offset = offsetof(SLAVIO_TIMERState, slave_index),
448
        },
449
        {
450
            .name = "master",
451
            .info = &qdev_prop_ptr,
452
            .offset = offsetof(SLAVIO_TIMERState, master),
453
        },
454
        {/* end of property list */}
455
    }
456
};
457

    
458
static void slavio_timer_register_devices(void)
459
{
460
    sysbus_register_withprop(&slavio_timer_info);
461
}
462

    
463
device_init(slavio_timer_register_devices)