Statistics
| Branch: | Revision:

root / hw / spapr.c @ ee86dfee

History | View | Annotate | Download (13.4 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30

    
31
#include "hw/boards.h"
32
#include "hw/ppc.h"
33
#include "hw/loader.h"
34

    
35
#include "hw/spapr.h"
36
#include "hw/spapr_vio.h"
37
#include "hw/xics.h"
38

    
39
#include <libfdt.h>
40

    
41
#define KERNEL_LOAD_ADDR        0x00000000
42
#define INITRD_LOAD_ADDR        0x02800000
43
#define FDT_MAX_SIZE            0x10000
44
#define RTAS_MAX_SIZE           0x10000
45

    
46
#define TIMEBASE_FREQ           512000000ULL
47

    
48
#define MAX_CPUS                32
49
#define XICS_IRQS                1024
50

    
51
sPAPREnvironment *spapr;
52

    
53
static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
54
                              const char *cpu_model, CPUState *envs[],
55
                              sPAPREnvironment *spapr,
56
                              target_phys_addr_t initrd_base,
57
                              target_phys_addr_t initrd_size,
58
                              const char *kernel_cmdline,
59
                              target_phys_addr_t rtas_addr,
60
                              target_phys_addr_t rtas_size,
61
                              long hash_shift)
62
{
63
    void *fdt;
64
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
65
    uint32_t start_prop = cpu_to_be32(initrd_base);
66
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
67
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
68
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
69
        "\0hcall-tce";
70
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
71
    int i;
72
    char *modelname;
73
    int ret;
74

    
75
#define _FDT(exp) \
76
    do { \
77
        int ret = (exp);                                           \
78
        if (ret < 0) {                                             \
79
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
80
                    #exp, fdt_strerror(ret));                      \
81
            exit(1);                                               \
82
        }                                                          \
83
    } while (0)
84

    
85
    fdt = qemu_mallocz(FDT_MAX_SIZE);
86
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
87

    
88
    _FDT((fdt_finish_reservemap(fdt)));
89

    
90
    /* Root node */
91
    _FDT((fdt_begin_node(fdt, "")));
92
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
93
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));
94

    
95
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
96
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
97

    
98
    /* /chosen */
99
    _FDT((fdt_begin_node(fdt, "chosen")));
100

    
101
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
102
    _FDT((fdt_property(fdt, "linux,initrd-start",
103
                       &start_prop, sizeof(start_prop))));
104
    _FDT((fdt_property(fdt, "linux,initrd-end",
105
                       &end_prop, sizeof(end_prop))));
106

    
107
    _FDT((fdt_end_node(fdt)));
108

    
109
    /* memory node */
110
    _FDT((fdt_begin_node(fdt, "memory@0")));
111

    
112
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
113
    _FDT((fdt_property(fdt, "reg",
114
                       mem_reg_property, sizeof(mem_reg_property))));
115

    
116
    _FDT((fdt_end_node(fdt)));
117

    
118
    /* cpus */
119
    _FDT((fdt_begin_node(fdt, "cpus")));
120

    
121
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
122
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
123

    
124
    modelname = qemu_strdup(cpu_model);
125

    
126
    for (i = 0; i < strlen(modelname); i++) {
127
        modelname[i] = toupper(modelname[i]);
128
    }
129

    
130
    for (i = 0; i < smp_cpus; i++) {
131
        CPUState *env = envs[i];
132
        uint32_t gserver_prop[] = {cpu_to_be32(i), 0}; /* HACK! */
133
        char *nodename;
134
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
135
                           0xffffffff, 0xffffffff};
136

    
137
        if (asprintf(&nodename, "%s@%x", modelname, i) < 0) {
138
            fprintf(stderr, "Allocation failure\n");
139
            exit(1);
140
        }
141

    
142
        _FDT((fdt_begin_node(fdt, nodename)));
143

    
144
        free(nodename);
145

    
146
        _FDT((fdt_property_cell(fdt, "reg", i)));
147
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
148

    
149
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
150
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
151
                                env->dcache_line_size)));
152
        _FDT((fdt_property_cell(fdt, "icache-block-size",
153
                                env->icache_line_size)));
154
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
155
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
156
         * full emu, for kvm we should copy it from the host */
157
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
158
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
159
        _FDT((fdt_property(fdt, "ibm,pft-size",
160
                           pft_size_prop, sizeof(pft_size_prop))));
161
        _FDT((fdt_property_string(fdt, "status", "okay")));
162
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
163
        _FDT((fdt_property_cell(fdt, "ibm,ppc-interrupt-server#s", i)));
164
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
165
                           gserver_prop, sizeof(gserver_prop))));
166

    
167
        if (envs[i]->mmu_model & POWERPC_MMU_1TSEG) {
168
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
169
                               segs, sizeof(segs))));
170
        }
171

    
172
        _FDT((fdt_end_node(fdt)));
173
    }
174

    
175
    qemu_free(modelname);
176

    
177
    _FDT((fdt_end_node(fdt)));
178

    
179
    /* RTAS */
180
    _FDT((fdt_begin_node(fdt, "rtas")));
181

    
182
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
183
                       sizeof(hypertas_prop))));
184

    
185
    _FDT((fdt_end_node(fdt)));
186

    
187
    /* interrupt controller */
188
    _FDT((fdt_begin_node(fdt, "interrupt-controller@0")));
189

    
190
    _FDT((fdt_property_string(fdt, "device_type",
191
                              "PowerPC-External-Interrupt-Presentation")));
192
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
193
    _FDT((fdt_property_cell(fdt, "reg", 0)));
194
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
195
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
196
                       interrupt_server_ranges_prop,
197
                       sizeof(interrupt_server_ranges_prop))));
198

    
199
    _FDT((fdt_end_node(fdt)));
200

    
201
    /* vdevice */
202
    _FDT((fdt_begin_node(fdt, "vdevice")));
203

    
204
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
205
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
206
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
207
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
208
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
209
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
210

    
211
    _FDT((fdt_end_node(fdt)));
212

    
213
    _FDT((fdt_end_node(fdt))); /* close root node */
214
    _FDT((fdt_finish(fdt)));
215

    
216
    /* re-expand to allow for further tweaks */
217
    _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE)));
218

    
219
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
220
    if (ret < 0) {
221
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
222
        exit(1);
223
    }
224

    
225
    /* RTAS */
226
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
227
    if (ret < 0) {
228
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
229
    }
230

    
231
    _FDT((fdt_pack(fdt)));
232

    
233
    *fdt_size = fdt_totalsize(fdt);
234

    
235
    return fdt;
236
}
237

    
238
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
239
{
240
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
241
}
242

    
243
static void emulate_spapr_hypercall(CPUState *env)
244
{
245
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
246
}
247

    
248
/* pSeries LPAR / sPAPR hardware init */
249
static void ppc_spapr_init(ram_addr_t ram_size,
250
                           const char *boot_device,
251
                           const char *kernel_filename,
252
                           const char *kernel_cmdline,
253
                           const char *initrd_filename,
254
                           const char *cpu_model)
255
{
256
    CPUState *envs[MAX_CPUS];
257
    void *fdt, *htab;
258
    int i;
259
    ram_addr_t ram_offset;
260
    target_phys_addr_t fdt_addr, rtas_addr;
261
    uint32_t kernel_base, initrd_base;
262
    long kernel_size, initrd_size, htab_size, rtas_size;
263
    long pteg_shift = 17;
264
    int fdt_size;
265
    char *filename;
266
    int irq = 16;
267

    
268
    spapr = qemu_malloc(sizeof(*spapr));
269
    cpu_ppc_hypercall = emulate_spapr_hypercall;
270

    
271
    /* We place the device tree just below either the top of RAM, or
272
     * 2GB, so that it can be processed with 32-bit code if
273
     * necessary */
274
    fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
275
    /* RTAS goes just below that */
276
    rtas_addr = fdt_addr - RTAS_MAX_SIZE;
277

    
278
    /* init CPUs */
279
    if (cpu_model == NULL) {
280
        cpu_model = "POWER7";
281
    }
282
    for (i = 0; i < smp_cpus; i++) {
283
        CPUState *env = cpu_init(cpu_model);
284

    
285
        if (!env) {
286
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
287
            exit(1);
288
        }
289
        /* Set time-base frequency to 512 MHz */
290
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
291
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
292

    
293
        env->hreset_vector = 0x60;
294
        env->hreset_excp_prefix = 0;
295
        env->gpr[3] = i;
296

    
297
        envs[i] = env;
298
    }
299

    
300
    /* allocate RAM */
301
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
302
    cpu_register_physical_memory(0, ram_size, ram_offset);
303

    
304
    /* allocate hash page table.  For now we always make this 16mb,
305
     * later we should probably make it scale to the size of guest
306
     * RAM */
307
    htab_size = 1ULL << (pteg_shift + 7);
308
    htab = qemu_mallocz(htab_size);
309

    
310
    for (i = 0; i < smp_cpus; i++) {
311
        envs[i]->external_htab = htab;
312
        envs[i]->htab_base = -1;
313
        envs[i]->htab_mask = htab_size - 1;
314
    }
315

    
316
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
317
    rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr);
318
    if (rtas_size < 0) {
319
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
320
        exit(1);
321
    }
322
    qemu_free(filename);
323

    
324
    /* Set up Interrupt Controller */
325
    spapr->icp = xics_system_init(smp_cpus, envs, XICS_IRQS);
326

    
327
    /* Set up VIO bus */
328
    spapr->vio_bus = spapr_vio_bus_init();
329

    
330
    for (i = 0; i < MAX_SERIAL_PORTS; i++, irq++) {
331
        if (serial_hds[i]) {
332
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i],
333
                             xics_find_qirq(spapr->icp, irq), irq);
334
        }
335
    }
336

    
337
    if (kernel_filename) {
338
        uint64_t lowaddr = 0;
339

    
340
        kernel_base = KERNEL_LOAD_ADDR;
341

    
342
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
343
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
344
        if (kernel_size < 0) {
345
            kernel_size = load_image_targphys(kernel_filename, kernel_base,
346
                                              ram_size - kernel_base);
347
        }
348
        if (kernel_size < 0) {
349
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
350
                    kernel_filename);
351
            exit(1);
352
        }
353

    
354
        /* load initrd */
355
        if (initrd_filename) {
356
            initrd_base = INITRD_LOAD_ADDR;
357
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
358
                                              ram_size - initrd_base);
359
            if (initrd_size < 0) {
360
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
361
                        initrd_filename);
362
                exit(1);
363
            }
364
        } else {
365
            initrd_base = 0;
366
            initrd_size = 0;
367
        }
368
    } else {
369
        fprintf(stderr, "pSeries machine needs -kernel for now");
370
        exit(1);
371
    }
372

    
373
    /* Prepare the device tree */
374
    fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
375
                           initrd_base, initrd_size, kernel_cmdline,
376
                           rtas_addr, rtas_size, pteg_shift + 7);
377
    assert(fdt != NULL);
378

    
379
    cpu_physical_memory_write(fdt_addr, fdt, fdt_size);
380

    
381
    qemu_free(fdt);
382

    
383
    envs[0]->gpr[3] = fdt_addr;
384
    envs[0]->gpr[5] = 0;
385
    envs[0]->hreset_vector = kernel_base;
386
}
387

    
388
static QEMUMachine spapr_machine = {
389
    .name = "pseries",
390
    .desc = "pSeries Logical Partition (PAPR compliant)",
391
    .init = ppc_spapr_init,
392
    .max_cpus = MAX_CPUS,
393
    .no_vga = 1,
394
    .no_parallel = 1,
395
};
396

    
397
static void spapr_machine_init(void)
398
{
399
    qemu_register_machine(&spapr_machine);
400
}
401

    
402
machine_init(spapr_machine_init);